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A RF FEEDBACK FOR DAΦNE
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INTRODUCTION

In the RF-5 DAΦNE note we showed that is possible to avoid Sands
and Robinson instabilities for any beam current up to 5 Amps by properly
setting the RF system. This is in principle true, but the stability region around
the working point may be too small, especially for high current values, getting
the machine operation very much impractical and sensitive to any longitudinal
transient oscillation.

There are several different techniques to reduce or compensate the beam
loading effects on the center of mass stability and to broaden the stability
region. A simple and reliable method consists in adding back a portion of the
cavity voltage to the low level RF drive in the negative feedback scheme shown
in Fig 1.

In this way the differential impedance seen by the beam, and then the
beam induced voltage, is reduced by the open loop gain factor. This technique
is called "RF feedback" or "Wide band feedback" and has been successfully
tested in some proton machines, as the CERN SPS. In practice the
performances are limited only by the total group delay τ of the overall loop
that limits the maximum attainable feedback gain.
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Fig. 1a: RF Feedback
schematic connection Fig. 1b: RF Feedback circuit (Laplace domain)

In this paper we compute the effectiveness of this method in the
DAΦNE case and compare the results to those reported in RF-5 note.
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1) THE STABILITY REGION

The values of the main RF parameters are listed in Tab. 1. Some of
them show different values for the two considered cases of machine broadband
impedance Z/n (1 or 2 Ohms).

Z/n=1Ω Z/n=2Ω
 FRF RF Frequency (MHz) 368.25

  Vgn Nominal Gap Voltage (KV) 130 260

  Rs Cavity Shunt Impedance (MΩ) 2.25

Q0 Cavity Unloaded Quality Factor 30.000

  Vr Total Losses per turn (KV) 16.3 23.3

  Fsi Incoherent Synchrotron (KHz) 27.3 38.6
Frequency (@ Vgn)

  IdcM Max Average Stored Current (Amps) 5.24 2.62

  Nb Max Number of Bunches 120 60

  β Coupling Coefficient 25 5

  PiM Max Available RF Power (KV) 150

Tab. 1: RF parameter list.

The results of RF-5 note are reported in Fig. 2 in a more convenient
way. The RF system working points are plotted on a plane having the beam
loading factor Y on the vertical axis and the total load phase φL on the
horizontal one. The beam loading factor Y is the ratio between the beam
induced voltage and the actual gap voltage, and is defined as:

Y=  
 2 

 1 + β  
Idc Rs 

Vg   (1)

where β is the generator to cavity coupling factor, Idc is the average beam
current, Rs  is the cavity shunt impedance and Vg is the cavity gap voltage.

The total load phase φL is the phase of the load seen by the RF
generator, that includes the cavity impedance and the beam.

The shaded areas of Fig. 2 are the allowed regions for the working point
in the φL-Y plane because they lie inside the Robinson, Sands and power
limits.

The case Z/n=2Ω at nominal gap voltage Vg=260 KV is reported in Fig.
2a. The stable phase range is roughly 65° for 30 bunches (1.31 Amps, day-one
goal) and 45° for 60 bunches (2.62 Amps). These values are further reduced if
the gap voltage is lowered. They become respectively 60° and 35° at Vg=130 KV
(see Fig. 2b).
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The case Z/n=1Ω is considered in Fig. 2c at nominal gap voltage (130
KV). The stable phase range for 120 bunches (5.24 Amps, max machine
current) is less than 30°. In the following we will compute how all these values
are modified by a RF feedback scheme.

Fig. 2: Stability regions of the DAΦNE beam with a standard RF system

2) THE RF FEEDBACK

The synchrotron equation for an electron machine, including the beam
to cavity accelerating mode interaction, is derived in Appendix and is of the
following form:
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ωsi
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where ε is the relative energy error of the circulating particle, ωsc is 2π times
the coherent synchrotron frequency, φs is the synchronous phase measured
from the peak of the accelerating voltage, and Zr

±, Zi
± are the real and

imaginary parts of the impedance seen by the beam at FRF ± Fsc frequencies.

The Sands limit is reached when the coherent synchrotron frequency
approaches 0, that is:

ωsc
2 = ωsi

2 
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
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1 + 
Idc (Zi

-+ Zi
+)

Vg sin φs
   = 0   =>   1 +  

2 Idc Zi(jωRF)
Vg sin φs

  = 0 (3)

If there are no feedback connections, the impedance seen by the beam is
just the resonant impedance of the cavity fundamental mode and is given by:

Zcav = Rc cos (φz) e 
jφz (4)

where φz is the cavity tuning angle, i. e. the impedance phase at ωRF, and
Rc = Rs/(1+β) is the loaded cavity shunt impedance. If ωC is 2π times the
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cavity resonant frequency, φz is related to the detuning ∆ω = ωRF - ωC by the
expression:

tan(φz) = -  
2 Q0 ∆ω 
(1+β) ωC  = -  ∆ω /ωBW (5)

where ωBW is 2π times the half-bandwidth of the cavity.

This leads to the well known limit value of the Y variable given by:

YS = - 
2 sin φs

 sin (2φz) 
 (6)

The RF feedback scheme modifies the impedance seen by the beam and
then the instability threshold. Referring to Fig. 1b, which describes the
feedback in the domain of the Laplace transform, we have:

Vg(s) = 
Zcav(s)

1+ gm Zcav(s) e-sτ  [Ig(s) - Ib(s)] (7)

So the impedance seen by the beam in this case is:

Z(s) = 
Zcav(s)

1+ H(s)        =>     H(s) = gm Zcav(s) e-sτ  (8)

where H(s) is the open loop transfer function. In the frequency domain the
function H is given by:

H(jω) = gm Rc cos [φz(ω)] e 
jφz(ω) e-jωτ (9)

with the function φz(ω) defined in (5). To maximize the loop gain it is worth to
trim the total group delay τ in such a way that ωCτ = 2nπ. In this case we
have:

H(jωC) = gm Rc = A (10)

and A is the maximum value of the RF feedback transfer function H. Later on
we will show how the total group delay τ limits the maximum attainable value
of A.

Combining eqs. (3) and (8) under the condition (10), the Sands
threshold in the RF feedback scheme becomes:

Yf = -  
2 sin φs

 sin (2φz) 
   

 1 +
A

1 + tan2(φz)
 







A + 
2 cos(φz- ∆ω τ)

cos(φz) 
 

 1 + 
A sin(∆ω τ)

 tan(φz) 
 

 (11)

where φz and ∆ω are related by (5).
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Before going into the details of (11) let us do some consideration on the
restrictions posed by the total group delay on the maximum attainable
feedback gain.

3) STABILITY CONDITIONS FOR THE RF FEEDBACK

The maximum open loop gain A must not exceed a certain threshold to
avoid loop instability. We can use the standard Bode criterion to analyze the
loop stability. If we set a π/4 phase margin, the frequency deviation
∆ω0dB corresponding to the 0 dB point is given by the eq.:

- atan(∆ω0dB/ωBW) - τ ∆ω0dB  = - π + π/4 (12)

that, with the approximation:

atan(∆ω0dB/ωBW) = π/2 - atan(ωBW/∆ω0dB) ≈ π/2 - ωBW/∆ω0dB

gives a second order algebraic eq. to compute ∆ω0dB.

This corresponds to a maximum loop gain given by (5) and (4):

A2 = 1 + (∆ω0dB/ωBW)2 (13)

The resulting A value is a function of the total group delay τ and the
cavity bandwidth ωBW. In Tab. 2 are reported the A values for 3 possible τ
values and for the two cases Z/n= 1 or 2 Ω.

Z/n= 1 Ω Z/n= 2 Ω
(β = 25) (β = 5)

τ = 250 nsec A = 4.2 = 12.5 dB A = 14.8 = 23.4 dB

τ = 375 nsec A = 3.1= 10.0  dB A = 10.2 = 20.2 dB

τ = 500 nsec A = 2.6 =  8.3  dB A =  8.0 = 18.0  dB

Tab. 2: Max open loop gain under different conditions

4) CENTER OF MASS THRESHOLDS WITH RF FEEDBACK

The curves reported in Fig. 2 have been recalculated taking into account
the RF feedback effects. We have considered 3 different values for the total
group delay. The case τ = 250 nsec represents the shortest delay for a real
equipment managing 150 KW. This value can be reached providing that fast
tubes (tetrodes) instead of klystrons are used as RF final stages.
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The case τ = 375 nsec represents a very good performances for a
klystron-based equipment, while τ = 500 nsec seems to be a standard value.
We remind that the total load phase φL is related to the beam loading variable
Y and the cavity phase φZ  by the eq. :

tan(φZ) = tan(φL) [ 1 + Y cos(φS) ] - Y sin(φS) (15)

The new center of mass stability limits due to the RF feedback are
reported in Fig. 3  together with the old limits of Fig. 2. The new curves have
been computed by eliminating φZ between eqs. (11) and (15). The case
Z/n=2Ω at nominal voltage 260 KV is reported in Fig. 3a. The shaded area
represents the new stable region for the RF working point. We have considered
the most conservative case τ = 500 nsec. Comparing Figs. 2a and 3a we can see
that the stability margin is almost doubled at 30 and 60 bunches (respectively
115° and 90°) and, more important, it lies between only power limits that are
not exactly instability thresholds. Nevertheless, a small portion of the φL - Y
plane, weakly shaded in the Fig. 3a, is lost in the new stability limits.

Fig. 3: Stability regions of the DAΦNE beam with a RF feedback.
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This drawback is much more evident at lower voltage, as shown in
Fig. 3b where the accelerating voltage has been reduced to 130 KV. In this case
the stability margin for 30 bunches is always 115° but there is no more chance
to store 60 bunches because the related Y value is far beyond the limit curve.
This means that the RF feedback scheme is less flexible than standard RF
arrangement for accelerating voltage variations. The situation is much more
favorable if the voltage is larger than nominal value. A 350 KV value is
considered in Fig. 3c; the stability region is again limited only by power
considerations for 30 and 60 bunches.

The case Z/n=1Ω has been considered only in view of the highest
machine current that is 5.24 Amps in 120 bunches. The stability diagram is
reported in Fig. 3d at nominal voltage (130 KV). Due to the very high coupling
factor β=25 the result in this case is awfully bad. The Y value corresponding to
120 bunches lays far beyond the limit curve even if we considered the most
optimistic condition τ=250 nsec.

5) CONCLUSIONS

The RF feedback scheme seems to be very effective for a bunch number
up to 60, providing that the operating voltage is not sensitively lower than the
nominal value. The case Z/n=1Ω is more critic but the β value may be lowered
if an upper limit of 60 bunches is accepted.

On the contrary, as this RF feedback seems to be useless at 120
bunches, the equipment should be switched off near the top current value. To
broaden the stability region even in this case a careful study of the possible
improvements of the RF feedback (such some sophisticated phase
compensating networks) is requested, or alternatively, a different beam loading
compensation (ex. : feedforward scheme) has to be considered.
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APPENDIX

Since the results of this note are essentially based on eq. (2), it is worth
to show its derivation. The derivation takes advantage of a perturbative
method.

Let us consider a particle in its own longitudinal phase space (φ,ε),
where φ is the particle phase delay respect to the synchronous phase φs, and
ε = ∆E/E0 is the already mentioned relative energy error of the particle.

The equilibrium point in this phase space is then the origin point (0,0).

The energy gain of a particle over a machine turn may be generically
expressed by:

δE(φ,ε) = - U(φ) - U'(ε) = - U(0) -  
∂U
∂φ (0)  φ - U'(0) -  

∂U'
∂ε  (0)  ε (1a)

where U(φ) and U'(ε) give the dissipated energy as functions of the phase and
energy deviations. The synchronous particle neither gain nor lose any energy.
This means:

U(0) + U'(0) = 0

So, dividing eq. (1a) by the revolution time T0 and the machine energy
E0 we obtain:

ε = - 
ω0

2πE0
  

∂U'
∂ε  (0)  ε -  

ω0
2πE0

  
∂U
∂φ (0)  φ (2a)

where ω0 = ωRF/h is 2π times the particle revolution frequency. Tacking into
account the lattice dispersion:

φ =  α ωRF ε (3a)

where α is the machine momentum compaction, the time derivative of eq. (3a)
leads to:

ε + 
ω0

2πE0
  

∂U'
∂ε  (0)  ε + 

h α ω0
2

2πE0
  

∂U
∂φ (0)  ε = 0 (4a)

which is a generic form of the synchrotron equation. The functions U and U'
are the potential for the elastic and frictional forces involved in the motion.
We use a perturbative approach [4] to derive them.

Let us consider a beam oscillating longitudinally in the rigid mode. Let
us assume a beam current phase of the form:

φ(t) =  φM cos(ωsc t) (5a)

where ωsc is the coherent synchrotron frequency and φM is the amplitude of
the phase oscillations.
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The beam current at RF harmonic may be written as:

I(t) = 2 Idc cos[ωRF t -  φM cos(ωsc t)] (6a)

If φM is small enough, eq. (6a) becomes:

I(t) ≈ 2Idc cos (ωRF t) + IdcφM [sin(ωRF + ωsc)t + sin(ωRF - ωsc)t] (7a)

The 3 frequency components of the beam current, together with the RF
generator, interact with the cavity impedance and give rise to 3 voltages. The
carrier component of the gap voltage is opposite in phase and anticipates by φs
with respect to the carrier of the beam current. So the total voltage is given by:

V(t) = - Vg cos (ωRF t+φs)+IdcφM Z
+ sin[(ωRF + ωsc)t+ φ+

] +

+ IdcφM Z
-  sin[(ωRF - ωsc)t+ φ- 

] (8a)

where Z± and φ± are the modules and phases of the cavity impedance at the
two sideband frequencies.

The instantaneous dissipated power P(t) is the product of the two
functions I(t) and V(t). By neglecting the RF components of P(t) (thay average
out over a fraction of turn) and the terms containing  φM

2  we get:

P(t) = - VgIdc cos(φs) + Idc
2φM [Z

+ sin(ωsct+ φ+
) - Z

- sin(ωsct- φ-
)] -

 - (VgIdcφM /2) [sin( ωsct- φs) - sin(ωsct+ φs)] =

= - VgIdc cos (φs) + [φ(t) Idc
2/ωsc] (Zr

-- Zr
+) (9a)

+ φ(t) Idc
2(Zi

-+Zi
+) + VgIdcφ(t) sin(φs) 

The energy gained by each particle in one turn is then:

δE = - P(t)T0 /N =  qVg cos(φs) - [qIdcφ(t)/ωsc] (Zr
-- Zr

+) -

- qIdcφ(t) (Zi
-+Zi

+) - qVgφ(t) sin(φs) (10a)

where N is the number of particles and q is the electron charge. By comparing
(10a) to (1a) and reminding (3a) we finally obtain:  

  ∂U'
∂ε   = 

qIdcα ωRF

ωsc
  (Zr

-- Zr
+)  ;  

∂U
∂φ  = q Idc (Zi

-+ Zi
+) + qVg sin(φs) (11a)

The incoherent synchrotron frequency  Fsi =ωsi /2π  is given by the
well-known relation:

ωsi
2 =  

h ω0
2 α q Vg sin(φs)

2 π E0 
  (12a)

Combining (4a) and (11a), and tacking into account (12a) we finally
obtain eq. (2).


