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ABSTRACT

Waveguide dampers are widely used in accelerator RF cavities to reduce
the quality factors of high order resonant modes, in order to avoid multibunch
instabilities. The theoretical evaluation of the coupling between cavity and
waveguide through large apertures presents numerous difficulties and requires
a vast amount of computing time on powerful computers. In this paper we
present a simple method to obtain a first estimate of the damped quality factors,
based on the well-known Kirchhoff's approximation. We also compare our
results with the measurements of the DAΦNE main rings cavity prototype and
with the output data of two available computer codes.

1. INTRODUCTION

High order modes (HOMs) damping constitutes one of the main problems in
the RF system of high current accelerators [1]. The beam spectrum may couple
with the modes of the accelerating cavity, and if the quality factor Q of a given
mode is high enough (i.e. if the parasitic losses are low with respect to the
energy left by each passing bunch) the beam can become unstable.

Two methods are currently used to extract the HOM power from the RF
cavity in order to attenuate such instability: antenna or loop couplers and
waveguide couplers. Both reduce the shunt impedance of the cavity HOMs; the
waveguides have an advantage over loop couplers in that they offer an intrinsic
rejection of the accelerating mode of the cavity, while a loop coupler needs some
kind of filtering. Moreover, waveguide dampers work on a much wider frequency
range. On the contrary an antenna or magnetic loop damper applied on the
resonator surface in correspondence of the peak of a specific HOM, offers a
better damping for that mode.
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In the case of DAΦNE [2], where broadband damping is required, wave-
guides have been chosen; the residual beam oscillations are damped by a
bunch-by-bunch digital feedback system. With this feedback system alone, be-
cause of the high current stored in the machine (1.5÷5 Ampere), it would be
impossible to stabilize the beam.

In this paper we investigate the problem of the calculation of the coupling
between an accelerating cavity and waveguide dampers. We restricted ourselves
to an approximate method, comparing the results to the measurements done on
the DAΦNE RF cavity prototype; further comparison is made with HFSS [3] and
POPBCI [4] simulation codes.

2. KIRCHHOFF'S APPROXIMATION

2.1 High order modes damping

In studying multibunch instabilities for DAΦNE, we have found that, even
taking into account the damping mechanisms (e.g. feedback systems, radiation
and Landau damping), the beam is unstable unless the Q values of the HOMs
are kept below a certain threshold. The design of waveguide damping systems
requires to evaluate the coupling between cavity and waveguides. This can be
done by using three-dimensional computer simulation codes, which are very
time consuming even on powerful computers; on the other side direct mea-
surements on prototypes are not very practical as well. Therefore a simple way
of evaluating Qs, even if approximate to some extent, would be quite useful.

Monopolar modes have the highest values of coupling impedance since they
are the only modes with a non-zero longitudinal electric field on the cavity axis.
Being azimuthally symmetric, it is possible to calculate them with a simple 2D
simulation code. The output of such a code may then be used to evaluate the
additional losses due to radiation in the waveguides.

The electromagnetic field propagating into a waveguide connected to the
resonant cavity through an aperture A can be expressed in terms of the
waveguide Green's functions and of the tangential field on A:

      

Ewg (r ) = − jωµ G1(r, ′r ) ⋅ z0 ( ′r )
A∫ × H( ′r )  d ′A + G3 (r, ′r ) ⋅ z0 ( ′r )

A∫ × E ( ′r )  d ′A

Hwg (r ) = jωε G2 (r, ′r ) ⋅ z0 ( ′r )
A∫ × E ( ′r )  d ′A + G4 (r, ′r ) ⋅ z0 ( ′r ) × H( ′r )

A∫  d ′A
(1)

where     z0 is the unit vector normal to A and, in our case, has the same direction
as the waveguide axis; the dyadics     Gi  for the rectangular waveguide, are known
from literature [5].

If the slot dimensions are comparable to the wavelength of the HOM con-
sidered, it is reasonable to use equations (1) to calculate the field propagating in
the waveguide. We can replace the exact fields in the integrals with the
uncoupled cavity field values (Ec0,Hc0) on A: this procedure is known as
Kirchhoff's approximation.
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As the electric field Ec0 is obviously normal to A, we can rewrite equations
(1) as:

      

Ewg (r ) = − jωµ G1(r, ′r ) ⋅ z0 ( ′r )
A∫ × Hc 0 ( ′r )  d ′A

Hwg (r ) = G4 (r, ′r ) ⋅ z0 ( ′r ) × Hc 0 ( ′r )
A∫  d ′A

(2)

The power absorbed by the waveguide is given by the real part of the
Poynting vector flux through the aperture:

      
Pwg = 1

2
Re Ewg × Hwg

* ⋅ z0 dA
A∫{ } (3)

The Q of the loaded cavity (QL) is therefore:

    

Q0 = ωU

P0
⇒ QL = ωU

P0 + Pwg
= 1

Q0
−1 +

Pwg

ωU

(4)

where Q0 is the unloaded quality factor, P0 is the power dissipated by the cavity
walls, ω is the angular resonant frequency and U is the energy stored in the
cavity.

The quantity ωU/Pwg is often referred to as Qext. If the losses on the walls
are considerably less then the losses caused by the waveguides (i.e. if the Q0 is
high enough), then QL≈Qext.

We have applied this method to the case of the DAΦNE main rings cavities,
where a total of five rectangular waveguides have been used. Three 305×40
mm2 guides are placed 120° apart onto the cavity main body and two smaller
140×40 mm2 guides are applied on the tapers, rotated 90° apart for a better
dipole coupling.

The cut-off frequency of the bigger waveguides is 491 MHz, while the next
two propagating modes are at 982 MHz (TE20) and 1.474 GHz (TE30) and the
cut-off of the small waveguides is at 1.070 GHz.

The accelerating mode of the cavity (0-EM-1) resonates at 367 MHz and
does not propagate in the waveguides; we shall see later how it is affected by
their presence.

Thus, in expressions (2) we can restrict ourselves to a modal expansion of
the Green's functions consisting of the TE10 mode alone when dealing with
HOMs below the TE20 cut-off, since all the other modes give no contribution
to (3).



RF-15 pg. 4

The rectangular waveguide Green's functions to use in (2) are in conclu-
sion:

      

G1(r, ′r ) = − 1
ab

e jkz ( z − ′z )

jkz
sin

π
a

x



 sin

π
a

′x



 y0y0

G4 (r, ′r ) = − 1
ab

e jkz ( z − ′z )

jkz
− jkz sin

π
a

x



 sin

π
a

′x



 x0y0 +



                     + π
a

cos
π
a

x



 sin

π
a

′x



 z0y0




(5)

where x0y0, y0y0 and z0y0 are the ordinary Cartesian tensor components.

Substituting (2) and (5) in expression (3), we have:

    

Pwg = 1
2

ωµ
kz

1

(ab )2
sin2 π

a
x



0

b

∫0

a

∫  dxdy ⋅

          ⋅ sin
π
a

′x



 H0 x ′x , ′y( )

0

b

∫0

a

∫  d ′x d ′y





2

(6)

where Hc0=H0xx0+H0yy0. In the case of N rectangular waveguides a×b, expres-
sion (4) becomes:

    

QL = Q0
−1 +

N

4
ωµ
kz

1
ab

sin
π
a

′x



0

b

∫0

a

∫  H0 x ′x , ′y( )  d ′x d ′y





2

ωU

























−1

(7)

We note that only the component H0x of the cavity magnetic field couples
with the waveguide TE10 field (this is true in general for all the TEm0 modes). In
addition it is easy to show that the coupling to the TE20 is negligible, since the
coupled power depends on the integral:

    
sin

2π
a

′x



0

b

∫0

a

∫ H0 x ′x , ′y( )  d ′x d ′y (8)

which is zero given the azimuthal symmetry of H0x and the orientation of the
slots (Fig. 1). We shall therefore consider the coupling of all cavity modes up to
1.5 GHz with the TE10 only. Above this frequency the wall losses and the effect
of the propagation through the beam tubes decrease the HOM Qs significantly.

In the more general case of coupling to several waveguide modes, this
procedure keeps valid since the modes transport power independently. The total
power will be given by the sum of the (6) where the proper expressions of the
Green's function component have to be used.
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Fig. 1 - DAΦNE main ring cavity.

2.2 Losses for the accelerating mode

The measurements performed on the cavity prototype have shown a small
damping effect on the accelerating mode due to after the application of the
waveguide dampers.

Since at the 0-EM-1 frequency no mode propagates into the waveguide, the
attenuation is due to the power dissipation of the evanescent modes on the
waveguides walls. The waveguide modes below cut-off are attenuated ex-
ponentially with a constant

    
α = mπ

a





2
+ nπ

b





2
− k2 = − jkz (9)

and they enter the waveguides for a few wavelengths.
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Also in this case the main contribution to these power losses is given by
the TE10, which has the lowest attenuation constant. It is worth noting that
expression (9), valid only in the loss-free case, can be used since the attenuation
due to wall losses is much lower than the attenuation given by the cut-off
condition.

The power dissipated on the waveguide walls is given by the real part of
the Poynting vector flux normal to the metallic surfaces:

      
Pd = 1

2
Re Eτ × Hτ ⋅ n0 dzds

0

∞
∫C∫









(10)

where C is the waveguide section boundary.

Since on the surface of a good conductor (having conductivity equal to σ)
the Leontovic's relation holds:

      
Eτ = 1 + j( ) ωµ

2σ
Hτ × n0 (11)

equation (10) becomes:

      
Pd = ωµ

8σ
Hτ

2
dzds

0

∞
∫C∫ (12)

From the second of (5) we can obtain the components of the magnetic field
in the waveguides:

    

Hx = − 1
ab

e jkzz sin
π
a

x



 sin

π
a

′x



0

b

∫0

a

∫ H0 x ′x , ′y( )  d ′x d ′y

Hz = − π
a2b

e jkzz

jkz
cos

π
a

x



 sin

π
a

′x



0

b

∫0

a

∫ H0 x ′x , ′y( )  d ′x d ′y

(13)

We note that Hx vanishes on the walls (x=0 and x=a) while it is normal to
the other two waveguide walls. Therefore only the component Hz is considered
in calculating the power loss.

In conclusion, we find for a single waveguide:

    
Pd = ωµ

8σ
π2

a3b

1
a

+ 1
2b







sin
π
a

′x



0

b

∫0

a

∫ H0 x ′x , ′y( )  d ′x d ′y





2

α3 (14)
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3. ANALYTICAL AND EXPERIMENTAL RESULTS

To calculate the integrals in formulas (7) and (14), the magnetic field H0x
has been approximated by a third order polynomial fitting the output data of the
OSCAR2D [6] two-dimensional simulation code for each mode.

The experimental measurements have been performed on a low cost copper
prototype of the RF cavity. The resonance frequencies and the Q0 values
reported in Tab. 1 show significant differences between the numerical
simulation (URMEL code [7]) and the measurements [8] because of the poor
quality of the prototype.

Table 1 - Unloaded cavity

MODE
Freq. [MHz]

(URMEL)
Freq. [MHz]
(Measured)

Q 0
(URMEL)

Q 0
(Measured)

0-EM-1 367.4 357.0 49100 25000

0-MM-1 696.0 747.5 49800 24000

0-EM-2 794.9 796.8 81900 40000

0-MM-2 987.2 1023.6 65900 28000

0-EM-3 1069.8 1121.1 66900 12000

0-MM-3 1138.4 1175.9 56800  5000

0-EM-4 1119.9 1201.5 57500  9000

0-EM-5 1203.8 1369.0 67600  5000

However, since the Q0 values are high enough, according to (7), these
differences are not important when we compare measured and calculated QL. In
the accelerating mode case it is instead necessary to take into account the
differences on the Q0 values, and only a comparison between the relative re-
duction (i.e. the Q0/QL ratio) is significative.

In Tab. 2 we show the results obtained from both measurements and
Kirchhoff's approximation.

Table 2 - Waveguides coupled cavity (*) Q0/QL

MODE
Freq. [MHz]
(Measured)

Q L
(Calc.)

Q L
(Measured)

0-EM-1  349.5 1.07* 1.14*

0-MM-1  745.7  75  70

0-EM-2  796.5 550 230

0-MM-2 1024.9 190 150

0-EM-3 1125.4  — 240

0-MM-3 1172.0  65 100

0-EM-4 1194.3 220 130

0-EM-5 1361.6 115 300
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We see that there is a rather good agreement between theoretical previ-
sions and experimental measurements. However, we expect this accuracy to
reduce for the higher frequency HOMs, as the fringing effects become more
evident.

The 0-EM-3 mode deserves particular attention since from Tab. 1 one can
see that the calculated resonance frequency, used in Kirchhoff's approximation,
is very close to the cut-off frequency of the smaller waveguides (the difference is
in fact less than 0.1 %). In this case equation (7) shows a singularity since
kz→0, yielding a gross overestimate of the damping effect.

Tab. 3 shows a comparison of Kirchhoff's method with results of the two
available simulation codes HFSS and POPBCI [9]. Since those codes run a cavity
shape slightly different from the prototype (the waveguides are placed on the
maximum peak of the 0-MM-1 mode), calculations have been performed also for
the new geometry, obtaining values of QL different from those of Tab. 2.

Table 3 - Computer simulations

MODE
Q L

(Calc.)
Q L

(HFSS)
Q L

(POPBCI)

0-EM-1  1.08*  1.29* 1.34*

0-MM-1    48   28 10

0-EM-2  2071 1136  —

0-MM-2  1030   73   —

It must be noted that in the case of HOMs having almost vanishing
magnetic field on the surface A (as is the case of the MM-2 mode in Tab. 3) the
perturbation induced by the waveguides on the magnetic field is no longer
negligible, so that Kirchhoff's approximation, based on the unperturbed fields,
might fail.

4. CONCLUSIONS

In this note we derive a semianalytical method to estimate the coupling of a
resonant cavity to absorbing waveguides, based on Kirchhoff's approximation.
The method can be easily used to evaluate the quality factor of damped HOMs,
when the RF cavity is loaded with waveguides through large apertures. The
comparison with measurements and computer simulations shows a rather good
agreement, and makes this approximate method useful, at least at a first stage
of the waveguide couplers design.

ACKNOWLEDGEMENTS

The authors wish to thank P. Arcioni of Università di Pavia and B. Spataro
of INFN-LNF for their collaboration and for kindly providing us the data from
POPBCI simulations.



RF-15 pg. 9

REFERENCES

[1] E. Haebel, Higher Order Mode Suppression in Accelerators, CERN-AT, pp.
307-311, 1991.

[2] S. Bartalucci et al., Analysis of Methods for Controlling Multibunch
Instabilities in DAΦNE, LNF-93/067 (P), Frascati, Oct. 1993.

[3] Hewlett Packard Company, HFSS: the High Frequency Structure Simulator
HP85180A™.

[4] P. Arcioni, POPBCI — A Post-Processor for Calculating Beam Coupling
Impedances in Heavily Damped Accelerating Cavities, SLAC-PUB-5444, Mar.
1991.

[5] C. T. Tai, Dyadic Green's Functions in Electromagnetic Theory, pp. 69-80,
Intext Educational Publishers 1971.

[6] P. Fernandes and R. Parodi, IEEE Trans. on Magnetism 21(6) (1985) 2246

[7] T. Weiland, NIM 216 (1983), pp. 329-348

[8] P. Baldini et al., DAΦNE Cavity R&D: A Shunt Impedance Measurement
System Based on the Perturbative Method, LNF-91/063 (IR), Oct. 1991.

[9] R. Boni et al., DAΦΝE Main Ring Cavity 3D Code Simulations, DAΦNE
Technical Note RF-13, Jul. 1994.


