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1. Introduction.

As reported in other papers1,2, multibunch instabilities in DAΦNE have been
studied by means of a dedicated simulation code describing the beam-cavity HOM
interaction in the time domain. The radiation damping effect and the bunch-by-
bunch feedback system aimed at curing the multibunch instabilities were also in-
cluded in the code.

On the other hand the interaction with the cavity fundamental mode, that
strongly affects the beam longitudinal dynamics3,4, has been so far neglected in the
code. A pure sinusoidal accelerating voltage independent from beam synchrotron
oscillations was assumed in the simulations, loosing therefore all the information on
beam loading effects. This ideal assumption is the so called "perfectly compensated
case" and corresponds to an infinite gain RF feedback loop closed around the
accelerating cavity.

Recently the code has been modified to include the effect of a real RF feedback
whose gain is limited by the total group delay of the loop5. Updated simulations
including the beam loading effects are reported in this note, together with a general
description of the model adopted to implement the feedback network in the code.

2. General approach to the RF feedback implementation.

The typical schematics and the corresponding block diagram of an RF feedback
aimed at reducing the cavity dynamical impedance are shown in Fig. 1. The L(s)
block represents the transfer function of the whole loop components but the cavity,
that has its own transfer function C(s) equal to:

C s( ) = 2β
β + 1
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(1)

where ωc is the cavity resonant angular frequency, β is the cavity-generator coupling
factor and QL=Qo/(1+β) is the loaded cavity quality factor.
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The cavity fundamental mode dynamical impedance Z(s) is reduced by the
feedback response down to:

Z s( ) = Zo s( )
1 + L s( )C s( )

(2)

where   

Zo s( ) = R

Q
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+ s

QLωc
+ 1

(3)

is the fundamental mode impedance without feedback.

Fig. 1: RF feedback system and block diagram.

In order to implement the RF feedback operation in the simulation code a circuit
model of the L(s) block must be chosen. The time evolution of the system can then
be studied with the superposition theorem considering the terms due to the RF
reference generator and to the beam separately.

The RF reference generator gives a sinusoidal regime term of angular frequency
ωr to the cavity accelerating voltage. The beam contributes to the accelerating
voltage by exciting free oscillations in the system at each bunch passage. The status
of the system, while executing free oscillations is determined at any time by a set of
conjugated variables representing the capacitance voltages and the inductance
currents of the whole feedback network. The number of these status variables
depends on the order of the open loop transfer function H(s) = L(s) C(s). At any new
bunch passage the status of the system, together with the kick given by the bunch,
is summarized in a set of new initial conditions which determines the free oscillation
evolution. The time evolution of the status variables is determined by a transport
matrix according to:

X to + t( ) = A t( )X to( ) (4)

where X is the vector of the conjugated variables, A is the transport matrix and to is
the starting time, i.e., the time of the bunch passage.

The matrix elements aij t( ) are obtained from the Laplace inverse transform of
the transfer functions aij s( )  which correlate each status variable with the other
ones.
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Since these transfer functions refer to a negative feedback network, they are of
the following general form:

aij s( ) =
a' ij s( )

1 + L s( )C s( )
(5)

and can be computed by solving the network with standard techniques.
The choice of a realistic model for the L(s) block is of crucial importance because

the associated frequency response limits the maximum attainable feedback gain and
consequently the feedback efficiency. On the other hand, a too complex model
produces a too large transport matrix and the system solution may get very
unpractical.

3. The RF feedback lumped circuit model.

The major contributions to be included in the response L(s) are the klystron
frequency response and the delay of the lines used for the loop connections.

The frequency response of the DAΦNE klystron TTE 2145 has been measured
during the factory acceptance test of the tube. The result reported in Fig. 2 shows
that the frequency response can be very well fitted by a double resonator model.

The total delay of the cables and lines used for the feedback connections is
To ≈ 100 nsec corresponding to a total length of about 3O m. To include both
contributions in L(s) we should consider a fourth-order transfer function multiplied
by the pure delay term exp(-sTo). The resulting transfer function is too complex to
be handled in the previously described formalism.
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Fig. 2: Frequency response of the DAΦNE  klystron
fitted by a double resonator model

In order to simplify the model, the klystron response around the operating
frequency can be approximated with an additional pure delay term exp(-sTk) where
Tk is the klystron group delay, i.e. the derivative of the output phase with respect
to the angular frequency of the excitation.
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A group delay Tk ≈ 160 nsec has been measured during the factory acceptance
tests of the klystron TH 2145.

With this last assumption the L(s) transfer function becomes a pure delay term
of the following form:

L s( ) = Gexp −sTd( ) = Gexp −sTo − sTk( ) (6)

where the total delay Td is less than 300 nsec.

In spite of the simplicity of this last expression, the presence of an exponential
term in the open loop transfer function complicates a lot the computation of the
Laplace inverse transform of the aij s( )  functions6. To simplify the inverse transform
operation it is possible to well approximate a pure delay term with a special lumped
network. Let us consider the following expression for L(s):

L s( ) = −G

s2

ωd
2

− 4
s

ωd
2Td

+ 1

s2

ωd
2

+ 4
s

ωd
2Td

+ 1

(7)

corresponding to the frequency response of the lumped network in Fig. 3, assuming
Td = 4 Rd Cd  and  ωd = (Ld Cd )-1/2 . As in the case of a pure delay line, the
amplitude of this transfer function is equal to 1 at any frequency, while the phase
response is shown in Fig. 4 compared to the linear phase advance of the pure delay
line. The linearity is very good in the ±π/2 range, with a total phase response range
of ±π.

Fig. 3: Lumped network used for the RF feedback system.

In order to preserve the negative sign of the feedback and to exploit the linear
part of the frequency response, the network parameters must be such that ωd ≈ ωc.

By adopting the model of Fig. 3, the total open loop transfer function  H(s) = L(s)
C(s)  is of the fourth-order. Then the time evolution of the system is determined by
a 4x4 transport matrix which can be computed with a reasonable effort, as shown
in Appendix 1.

Under the assumption (7) the H(s) phase response range is wider than ±π and an
excessive open loop gain in the simulation leads the feedback system to instability
reproducing the actual system behavior. This confirms that the lumped delay
network is a realistic model.
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Fig. 4: Phase response of the lumped network used in the simulation code.

The complete circuit model of the RF feedback including the cavity is shown in
Fig. 5.

The four status variables are the two voltages across the capacitances Cc and Cd
and the two currents flowing through the inductances Lc and Ld. The beam is
represented by a Dirac-δ current generator that suddenly charges the cavity
capacitance. Other 4 Dirac-δ generators have been introduced in the model to force
the initial conditions at every bunch passage.

Fig. 5: Circuit model of the RF feedback.
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4. The transfer function and the stability conditions.

A linear feedback system is stable as long as its open loop transfer function
does not enclose the (-1,0) point in the polar diagram (Nyquist criterion).

In practice a real system can not operate safetly if it is too close to the instability
threshold. A commonly used parameter to indicate how close the system is to the
instability point is the so called "phase margin" φm which is the open loop transfer
function phase with respect to the negative abscissa at the frequency where the
amplitude is equal to 1.

The polar diagram of the open loop transfer function H(s) obtained by multiplying
expressions (1) and (7) is shown in Fig. 6. A phase margin of 45° is obtained with a
maximum gain of about 30 for a 300 nsec total group delay. The plot of the cavity
fundamental mode impedance, as given by (2), for four phase margin values is
shown in Fig. 7.

Fig. 6: (a) Polar diagram of the open transfer function.
(b) Expanded view of (a) around the origin.
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Fig. 7: Amplitude of Z(jω) for different phase margin values.

5. Simulation code tests.

In order to verify the correctness of the simulation code, we have investigated
some particular situations useful to tune the values of the RF feedback parameters.

5.1 Dynamic Robinson's instability.

When the phase margin of the feedback system is between 0° and 60°, the
fundamental mode impedance is deformed in such a way that, for the usual positive
detuning values of the cavity (∆ω=ω r- ω c>0), the beam is unstable (dynamic
Robinson's instability7). This is because the stable synchrotron line of the multi-
bunch "0" oscillation mode is lower than the unstable line, as shown in Fig. 7. On
the contrary, when the phase margin is larger than 60°, the beam is stable.

From the single particle synchrotron equation it is possible to obtain analytically
the rise time of the dynamic Robinson's instability. In fact by neglecting the
radiation damping effect and considering the beam loading voltage, we can write7:

˙̇ϕ + 1

τr
ϕ̇ + ωs

2ϕ = 0 (8)

where ϕ is the phase shift of the particle with respect to the synchronous phase, ωs
is the synchrotron angular frequency and the rise time τr is given by:

1

τr
= Ibαcωr

ωs Eo / e( )T Re Z j ωr + ωs( )( ) − Z j ωr − ωs( )( )[ ]{ } (9)

with αc the momentum compaction, Eo the nominal energy, and T the revolution
period.

ωωc ωr - ωs ωr + ωs
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The rise time calculated with eq. (9) is in excellent agreement with that obtained
by fitting the simulation code output.

5.2 Static Robinson's stability limit.

Let us define φL as the phase of the load (cavity impedance and beam) seen from
the cavity main coupler. When φL=0 this impedance is purely resistive.

The static Robinson's stability limit8 relates the maximum current storable in the
ring to φL. In Fig. 8 we show some analytical stability thresholds5 computed for
different values of the total time delay Td. The curves refer to a phase margin of
60°. The results of the code simulations match the analytical predictions very well.

Fig. 8: Robinson's stability limits at different Td.

5.3 Above Robinson's stability limit.

It is interesting to spend a few words on what happens above the Robinson's
stability limit. For given values of the forward voltage Vf, beam loss voltage Vl and
cavity fundamental mode impedance Zo, below the instability threshold there is only
one mathematical solution for the gap accelerating voltage Vg and the synchronous
phase φs. Above the stability limit a second mathematical solution appears
corresponding to a higher Vg value and a new synchronous phase9. Even if this
solution satisfies the Robinson's stability criterion, in the real operation the
automatic RF level control circuit (AGC) prevents the system from approaching this
operating condition.

Since the AGC system has not been implemented in the code, above the static
Robinson's threshold the beam in the simulations can either get unstable or find a
new equilibrium around the new synchronous phase depending on the starting
conditions.
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6. Multibunch simulations.

We have performed the simulations with all the measured HOMs in the cavity1,2,
with 29 bunches at their equilibrium position and simulating the injection of the
30th bunch with an error of 100 psec.

The phase oscillations of the injected bunch and of one of the 29 perturbed
bunches during the first 5000 turns are shown in Fig. 9. The effects of both RF
and bunch-by-bunch feedback systems are included in the simulation and the re-
sults are very similar to those obtained in the perfectly compensated case1,2.

If we turn off the longitudinal bunch-by-bunch feedback, we observe in Fig. 10
a slow instability growth due to the damped HOMs.

Fig. 9: Oscillations with both longitudinal and RF feedback systems on.

Fig. 10: Oscillations with the longitudinal feedback system off.

Without the RF feedback (Fig. 11) we have instead a very fast instability because
we are above the static Robinson's stability limit. In this case the longitudinal
feedback can not damp the instability because the bunches do not oscillate at all,
but their phase increases exponentially since the longitudinal force becomes
defocusing.
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Fig. 11: Bunch instability with the RF feedback system off.

7. Conclusions.

The lumped network presented in this note has been adopted to simulate the RF
feedback system. It approximates the klystron response and the delay lines of the
real system near the cavity resonant frequency ωc quite well.

The simulation code reproduces all the instabilities predicted by the theory with
great accuracy. The multibunch simulations do not give any new unexpected result
but they are in agreement with the theory and show that the feedback system can
reduce the effect of the beam loading avoiding the static Robinson's instability. We
can also conclude that the multibunch collective dynamics in presence of an
efficient RF feedback system can be well analyzed by considering the ideal case of
perfectly compensated beam loading of the fundamental mode.
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APPENDIX 1

From the circuit of Fig. 5, in the Lapalce domain and by neglecting Ib and VRef,
it is possible to obtain the following relations:

Vc s( ) = sP1 s( )
Q s( )

Vc 0( ) − 2αRs
P1 s( )
Q s( )

Ic 0( ) − 8αβG
s2

Q s( )
Vd 0( ) + 16αα"βGRd

s

Q s( )
Id 0( )

Ic s( ) = ωc
2

2αRs

P1 s( )
Q s( )

Vc 0( ) + P2 s( )
Q s( )

Ic 0( ) − 4βGωc
2

Rs

s

Q s( )
Vd 0( ) + 8α"βGRdωc

2

Rs

1

Q s( )
Id 0( )

Vd s( ) = 2α"
s2

Q s( )
Vc 0( ) − 4αα" Rs

s

Q s( )
Ic 0( ) + sP s( )

Q s( )
Vd 0( ) − 2α" Rd

P s( )
Q s( )

Id 0( )

Id s( ) = ωd
2

Rd

s

Q s( )
Vc 0( ) − 2αRsωd

2

Rd

1

Q s( )
Ic 0( ) + ωd

2

2α" Rd

P s( )
Q s( )

Vd 0( ) + P3 s( )
Q s( )

Id 0( )
























where

α = 1

2CcRs
 ,   α' = α 1 + β − 2βG( )  ,  α"= 1

2Cd Rd

P s( ) = s2 + 2α' s + ωc
2 ,  P1 s( ) = s2 + 2α"s + ωd

2

P2 s( ) = P1 s( ) s + 2α'( ) + 16αα"βGs  ,  P3 s( ) = P s( ) s + 2α"( ) + 16αα"βGs

Q s( ) = P s( )P1 s( ) + 16αα"βGs2

The system of equations can be written in the matrix form:

X s( ) = A s( )X 0( )
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where

X s( ) =

Vc s( )
Ic s( )
Vd s( )
Id s( )



















and A(s) is a 4x4 matrix.
The response in the time domain is obtained by the inverse Laplace transform of

the matrix elements aij s( ) , which are of the general form:

aij s( ) =
Pij

3 s( )
Q s( )

Here Pij
3 s( ) is a 3rd order polynomial at most, and Q(s) is a 4th order polynomial

with real coefficients which has two pairs of complex conjugated solutions, and
therefore can be written as:

Q s( ) = s2 − 2α1s + ω1
2( ) s2 − 2α2s + ω2

2( )
The general form of aij t( ) is then:

aij t( ) = eα1t Aij cos β1t( ) + Bij sin β1t( )[ ] + eα 2t Cij cos β2t( ) + Dij sin β2t( )[ ]
where

α1
2 + β1

2 = ω1
2    α2

2 + β2
2 = ω2

2

and (Aij,Bij,Cij,Dij) are easily obtained with the usual technique of partial fractions.
The final time evolution of the free oscillations is therefore obtained from the

transport system:

Vc t( )
Ic t( )
Vd t( )
Id t( )



















=

a11 t( ) a12 t( ) a13 t( ) a14 t( )
a21 t( ) a22 t( ) a23 t( ) a24 t( )
a31 t( ) a32 t( ) a33 t( ) a34 t( )
a41 t( ) a42 t( ) a43 t( ) a44 t( )


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













Vc 0( )
Ic 0( )
Vd 0( )
Id 0( )
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
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
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
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
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