Frascati, May 26, 1993

Note: **L-7**

(revised July 27, 1993)

DAΦNE: a tracking program for the Frascati Φ-factory

M.E. Biagini

1. INTRODUCTION

The DAΦNE Φ-factory, under construction in Frascati, presents, among its unique features, the necessity to compensate the high solenoidal field of the detectors KLOE and FI.NU.DA. (1,2), which will be installed on the two Interaction Regions. Due to the relatively low energy, the coupling and focusing effects of these devices have a great influence on the beam behaviour and their compensation must be carefully studied. In Table I a) and I b) the principal characteristics of the two detectors are summarized. Here $K_S = B_Z/(2B\rho)$ and $\theta_S = K_S L_S$, the value printed is the rotation from I.P. to one solenoid's edge.

Table I a) - The KLOE field

.6
4.5
.176
22.7

Table I b) - The FI.NU.DA. field *

1.5
2.3
.442
29.

As we said before, the main effects of a solenoidal field on the beam are the focusing on both planes and the rotation. For instance at the end of the KLOE detector the trajectory coordinate frame has a rotation around the main axis of about 23°, at 510 MeV, and the beam experiences a focusing equivalent to a quadrupole with a strength of .031 m⁻². The rotation must be corrected since it leads to a coupling between the horizontal and vertical betatron oscillations, that must be absolutely avoided in a low-coupling machine (k=1%) like DA Φ NE. The correction scheme⁽³⁾ foresees a rotation of each low- β triplet quadrupole, corresponding to the rotation of the beam at the quadrupole position, plus two compensating solenoids at both I.R. ends, to fully decouple the two phase-planes. In Table II a) and II b) are summarized the two I.R. layouts.

^{*} preliminary design.

Table II a) - The KLOE half Interaction Region layout.

ТҮРЕ	NAME	L (m) (Projected)	K2 (m-2)	B z (T)	ANGLE (rad)
IP1					
SOL	KLOE	0.460		0.6	
QUAD	QKFI1004	0.200	3.4839635	0.6	.10423
SOL	KLOE	0.170		0.6	
QUAD	QKDI1005	0.350	-6.049274	0.6	.17689
SOL	KLOE	0.150		0.6	
QUAD	QKFI1006	0.270	3.101060	0.6	.25371
SOL	KLOE	0.350		0.6	
SOL	KLOE	0.300		0.3	
DRIFT	O	1.105			
DIAG	BPSI1003	0.000			
DRIFT	O	0.100			
COMP	SOLI1002	0.300		759	
COMP	SOLI1002	0.540		-1.52	
COMP	SOLI1002	0.300		759	
DRIFT	O	0.305			
CORR	CHVI1008	0.100			
DRIFT	0	0.050			

Table II b) - The FI.NU.DA. half Interaction Region layout.

ТҮРЕ	NAME	L (m) (Projected)	K2 (m-2)	Bz (T)	ANGLE (rad)
IP2					
SOL	FINUDA	0.46000		1.5	
QUAD	QFFI2004	0.20000	3.0	1.5	0.24933
SOL	FINUDA	0.19000		1.5	
QUAD	QFDI2005	0.30000	-6.5	0.75	0.40555
DRIFT	0	0.27400			
QUAD	QFFI2006	0.20000	4.0		0.43378
DRIFT	0	1.32900			
DIAG	BPSI2009	0.00000			
COMP	SOLI2002	0.30000		759	
COMP	SOLI2001	0.69600		-1.52	
COMP	SOLI2002	0.30000		759	
DRIFT	O	0.65100			
CORR	CHVI2008	0.10000			
DRIFT	O	0.05000			
DIAG	BPSI2010	0.00000			

This compensation scheme is valid only for on-energy particles, so a careful study of the off-energy behaviour, to evaluate the residual coupling, is required.

Moreover, the choice to horizontally cross at an angle ranging between 10 and 15 mrad, makes the two beams pass off-axis in the low- β triplet, so this angle must be included in the simulation. The particles arrive at the splitter entrance, where the vacuum chamber splits in two parts, the short half of one ring and the long half of the other, with a beam-to-beam half separation ranging from 4.7 cm to 7.1 cm and a half divergence ranging from 3.5 mrad to 5.3 mrad. Then, to take into account that in the two rings the beam travels on-axis, a translation and a rotation of the horizontal coordinates (x,x') must be performed.

These peculiarities and the lack of a computer code capable to simulate them is the reason for the developing of a new tracking program, suitable for DAΦNE.

2. THE DAΦNE PROGRAM MAIN FEATURES

DA Φ NE is a kick-code tracking program. The elements like quadrupoles, bendings, drifts, solenoids, etc. are treated as matrices and stored, once for each tracking energy, in a three index array containing the matrix product for all the elements between two sextupoles. The sextupoles, or other non-linear elements (for example the octupoles) are treated as kicks. This method ensures the symplecticity of the code, and allows to save CPU time.

A detailed description of the input and output files is given in § 3,4,5, relative to the DA Φ NE lattice with two KLOE I.R.'s (structure D15⁽⁴⁾).

The Fortran code is on VAXLNF::D17:[BIAGINI.TRACK]DAFNE.FOR, and so are the object and executive files. The file COMBLOCK.FOR in the same directory contains the COMMON blocks, and it is used for compiling and linking the main program.

In Appendix A are the command file, the lattice file (Unit 55), the tracking file (Unit 54), the IR matrices file (Unit 56). In Appendix B is the corresponding output (Unit 6).

In Figs. 1a), b), c) is the dynamic aperture respectively for $\Delta p/p = -1\%$, 0, +1%.

In Figs. 2a), b), c) is the horizontal tune shift vs. amplitude, respectively for $\Delta p/p = -1\%$, 0, +1%.

In Figs. 3a), b), c) is the vertical tune shift vs. amplitude, respectively for $\Delta p/p = -1\%$, 0, +1%.

In Fig. 4 are the horizontal and vertical tune shifts vs. $\Delta p/p$.

In Figs. 5a), b), c) is the (x, x') phase-space diagrams for three test particle with initial coordinates $N_x = 3$, 6, 9 and $N_z = 0$, for the three energy deviations.

One of the two input files, containing the lattice specifications, is the LEDA⁽⁵⁾ program input, with minor modifications as described in § 3. In the second one is the information about the tracking and the sextupole configuration.

The maximum number of turns per particle is 512. The maximum number of tracked particles is 500. When calculating a dynamic aperture (flag IDYNA set to 1), in number of σ , the scale must be chosen in order to have:

$$(|N_x^{\ min}| + |N_x^{\ max}| + 1) * N_z^{\ max} < 500$$

if the step is 1σ , or must be scaled proportionally to the step.

For each stable particle, at the last turn a Fast Fourier Transform analysis, to calculate the tune shifts with the particle amplitude, is performed.

The program can also read on a third data file the I.R. matrices, previously calculated, if the flag ISOL is set to 1.

It calculates the optical functions for $\Delta p/p = 0$, flag IBET set to 1, and the sextupole strengths for one or two SF and SD families, in order to correct the horizontal and vertical chromaticities to zero.

Before tracking, it is possible (flag IDPP set to 1) to calculate the off-energy horizontal (x_c) and vertical (z_c) closed orbits and the corresponding tunes as a function of the energy deviation $\Delta p/p$. In this case the sextupoles are treated as thin lens matrices as the one below:

1	0	0	0	0
$\frac{h \ x_c}{1 + Dp/p}$	1	0	$\frac{-h \ z_c}{1 + Dp/p}$	0
0	0	1	0	0
0	0	0	1	0
$\frac{-h z_c}{1+Dp/p}$	0	0	$\frac{-h x_c}{1+Dp/p}$	1

Here h is sextupole strength in m^{-3} . The off-energy closed orbits are propagated along the lattice starting from their calculated value at I.P. At each sextupole these trajectories experience the standard sextupolar kick and that value x_c after the kick is the one used in the previous matrix.

In case of strong coupling, if the flag ICOUP is set to 1 the program calculates the eigenvalues for the off-energy one turn matrices, and prints them together with the tunes.

It is of course possible to track also single particles, whose trajectories are stored on three different graphic output files for the (x, x'), (z, z') and (x, z) planes. In this case the particles coordinates are read from the second input file, or they can be random extracted following a uniform (IEX=1) or a gaussian (IEX=2) distribution.

3. THE INPUT FILES

The input files are two: the lattice is read from unit **55**, following the LEDA fixed format. The specifications for the tracking and the sextupole configuration are read from unit **54**. If necessary from unit **56** the two half-I.R. matrices, previously calculated, are read.

3 a. The lattice file

- i) the values for η' , α_x , α_z at the Interaction Point must be added to the line 23, when the BX0,BZ0,ETAW0 values are read (they are usually set to zero);
- ii) in the list of elements, where the field IDENT is read, for each sextupole the sequential number corresponding to its position in the ring is given (1 for the first sextupole and so on);
- iii) for the I.R. elements a 1. is written in the field BL, to exactly calculate the onenergy tunes when IBET=1.

ii) and iii) don't really modify the LEDA file, but i) must be corrected when a LEDA run has to be performed.

Let's recall here the LEDA fixed format for the lattice input. For each element **I** is read (in parenthesis is the fixed format):

I(I4) IDENT(I4) NEL(I4) A(G10.6) B(G10.6) RAG(G10.6) BL(G10.6)

Here NEL is the element type, as specified in the following list:

- NEL=1: DRIFT. In the field A the length in *m* is given. If the element belongs to the I.R. a 1. is written in the field BL.
- NEL=2: FOCUSING QUADRUPOLE. In the field A the length, in the field B the absolute value of the strength in m^{-2} are given. If the element belongs to the I.R. a 1. is written in the field BL.
- NEL=3: DEFOCUSING QUADRUPOLE. Same as above.
- NEL=4: HORIZONTAL SECTOR DIPOLE. In the field A the length, in the field RAG the bending radius in *m* are given. A particle bent towards the center of the ring has a positive radius. If the element belongs to the I.R. a 1. is written in the field BL. A parallel faces magnet is represented by a edge-sector-edge (6-4-6) sequence. The edge angle, in *degrees*, is half of the bending angle.
- NEL=5: WIGGLER. The wiggler matrix has not been implemented yet. For the moment the wiggler is represented by a sequence of parallel faces dipoles with alternating bending radius sign.
- NEL= $\mathbf{6}$: DIPOLE EDGE. In the field B the angle in *degrees*, in the field RAG the bending radius in m are given.
- NEL=7: FOCUSING SEXTUPOLE. In the field IDENT the number corresponding to its position in the lattice, as sextupole, is given. In the field A the length set to 0. In the field B **the absolute value** of the strength in m^{-2} , is given. In the file 55 for simplicity the strengths are all set to zero, and read instead from the file 54. In the linear lattice calculation (IBET = 1) the optical functions are kept the same as the previous element.

NEL=8: DEFOCUSING SEXTUPOLE. Same as above.

N.B. The sextupole strengths are given in absolute value in the lattice and tracking files. Actually they have in the kick calculations the same sign with respect to PATRICIA, that is the SD's are set to a positive strength and the SF's to a negative one.

NEL=9: UNIFORM SOLENOID WITH ONLY FOCUSING. In the field A the length in m is given. In the field RAG the solenoidal field in Tesla, with its sign, is given. If the element belongs to the I.R. a 1. is written in the field BL. To be used in connection with the elements 22 and 33 ("quadrusoles").

NEL=10: the matrix of the right side of the I.R. (with respect to I.P.) is read from unit 56.

NEL=11: the matrix of the left side of the I.R. (with respect to I.P.) is read from unit 56.

N.B. The two matrices must be written in this order.

NEL=12: TILTED FOCUSING QUADRUPOLE. In the field A the length (for the thin lens approximation, used for the DAΦNE I.R., A is zero), in the field B the absolute value of the strength in m^{-2} are given. In the field RAG the angle θ in rad, with its sign, is given. If the element belongs to the I.R. a 1. is written in the field BL.

NEL=13 : TILTED DEFOCUSING QUADRUPOLE. Same as above. In the matrix calculation the angle is set to $\pi/2+\theta$.

NEL=14: UNIFORM SOLENOID. In the field A the length in m is given. In the field RAG the solenoidal field in Tesla, with its sign, is given. If the element belongs to the I.R. a 1. is written in the field BL.

NEL=15: OCTUPOLE. Used sometimes to introduce a tune-shift function of the particle amplitude, avoiding the sextupole induced aberrations. In the field A the length is set to zero. In the field B the strength in m^{-3} , with its relative sign, is given. The octupolar kick is:

$$x' = x_0' + B (x_0^3 - 3 x_0 z_0^2)/6$$

$$z' = z_0' - B (3 x_0^2 z_0 - z_0^3)/6$$

NEL=16: TRANSLATION AND ROTATION OF HORIZONTAL TRAJECTORIES. This element is used at the splitter entrance when performing tracking with a crossing angle at the I.P., to put the particles on-axis in the regular lattice after the splitter. In the field A the separation x in m and in the field B the slope x' in rad at each splitter entrance, with their relative sign, are given.

NEL=17: DISPERSION AND ITS SLOPE. In the field A the matrix element A_{13} in m, in the field B the element A_{23} in rad, with their relative sign, are given. When there are in the I.R. solenoids and quadrupoles, and the particles cross at I.P. with an angle, we must take into account the fact that they pass off-axis in the quadrupoles: we define at the splitter a dispersion D and a slope D' different from zero, calculated as a trajectory derivative at two different energy deviations $\Delta p/p$. So, at that point in the machine matrix the A_{13} and A_{23} elements are forced. They are used to exactly compute the dispersion in the regular lattice, so that the sextupole calculation for chromaticity correction is correct. It is not used in the tracking procedure.

N.B.: Pay attention to the signs. In fact the signs of A_{13} and A_{23} depend on the direction of motion: entering in a splitter from IP the signs are the same as for D and D', while going out from the splitter to IP the sign of A_{13} is the opposite with respect to D. For the DA Φ NE lattice D15, for example, we have:

$A_{13} < 0$,	$A_{23} < 0$	entering in the short half
$A_{13} > 0$,	$A_{23} < 0$	going out from the short half
$A_{13} > 0$,	$A_{23} > 0$	entering in the long half
$A_{13} < 0$,	$A_{23} > 0$	going out from the long half.

NEL=22: THICK FOCUSING QUADRUPOLE IMMERSED IN A SOLENOIDAL FIELD. This is used when we want to take into account only the focusing effect of the solenoid ("quadrupole" scheme). In the field A the length, in the field B the absolute value of the strength in m⁻² are given. In the field RAG the solenoidal superimposed field in Tesla is given. If the element belongs to the I.R. a 1. is written in the field BL.

NEL=33: THICK DEFOCUSING QUADRUPOLE IMMERSED IN A SOLENOIDAL FIELD. Same as above.

N.B. All the magnetic element strengths are divided by $(1+\Delta p/p)$ to take into account the off-energy particles behaviour.

For the solenoid it is: $B \longrightarrow B/(1+\Delta p/p)^2$. For the bendings is: $\rho \longrightarrow \rho(1+\Delta p/p)$.

3 b. The tracking file

On unit 54 the tracking instructions are read. The format is free, and each data line is preceded by a title line, explaining the meaning on the following data.

The file contains:

• A title line:

TITLE

• N. of turns, n. of particles, sampling element (where the trajectories are observed), and a sequence of flags:

NTURN NPART ISAMPLE ICROM IDPP IBET IPRIN ISOL IDYNA ICOUP IAUTO IORB

where:

ISAMPLE=**0** : observation at I.P.

ICROM=1: the chromaticity correction to zero is performed.

IDPP=1: the off-energy closed orbits at different $\Delta p/p$, with a number of energy steps NDP chosen by the user, are calculated by a Newton-Raphson minimization procedure. The one turn matrix with the sextupoles treated as matrices is computed, and from its half-trace the tunes as a function of the energy deviation are calculated. Their values and the closed orbits values are printed as a function of the energy deviations.

IBET=1: the lattice optical functions are calculated. If ICROM = 1 it must be IBET = 1.

IPRIN=1: the calculated optical functions are printed. Of course, it is valid only in connection with IBET=1.

ISOL=1: the I.R. right and left matrices are read sequentially from unit 56.

IDYNA=1: the dynamic aperture calculation is performed. If the variable NEN is set to 1 only the dynamic aperture at the energy specified by DPP, read in a following line, is computed. If NEN=3, and DPP is not zero, three dynamic apertures are calculated, respectively for $\Delta p/p = -DPP,0,+DPP$. The particle initial coordinates are calculated uniformly filling a plane (N_x, N_z) , whose limits are given in a data line below, with a step NSTEP.

ICOUP=1: the eigenvalues of the one turn matrix for various $\Delta p/p$ are computed and printed with the tunes vs. $\Delta p/p$.

IAUTO=1: the auto- β and auto-dispersion at the IP are calculated when computing the optical functions.

IORB=1: the one turn orbit for the central trajectory $(0, \theta_c)$ is calculated and printed at each block. It is useful to check that the input data are correct when dealing with crossing angles. To correctly use this option:

- NTURN = 1,
- NPART = 1,
- ICROM = 1,
- NEN = 1 and DPP = 0.0,
- NSFIX= total number of sextupoles (including SF and SD),
- **all** the sextupoles (including SF and SD) must be listed on file 54 with their strengths set to zero,
- NX = 0, NXP = 0, NZ = 0, NZP = 0, NE = 0.

This option works also by putting ICROM = 0 and setting to zero the two natural chromaticities.

• Type of extraction, seed, n. of energies, step in energy:

IEX SEED NEN NDP

where:

IEX=0: means no extraction of random particle initial coordinates;

IEX=1: means random uniform extraction;

IEX=2: means random Gaussian extraction.

SEED: is the seed for the random extraction (5 digits, less than 60000).

NEN: is the number of energies for which dynamic aperture must be calculated. Usually is set to 3.

NDP: is the number of steps in $\Delta p/p$, usually 10 or 20. It is used if IDPP = 1.

• Beam dimensions and maximum energy deviation:

SIGAXO SIGAXPO SIGAPO SIGAZO SIGAZPO DPP

where:

SIGAX0: is the off-coupling horizontal r.m.s. beam dimension at I.P. in mm.

SIGAXP0: is the horizontal r.m.s. beam slope at I.P. in *mrad*.

SIGAP0: is the natural energy spread.

SIGAZ0: is the full-coupling vertical r.m.s. beam dimension at I.P. in mm.

SIGAZP0: is the horizontal r.m.s. beam slope at I.P. in *mrad*.

DPP: is the maximum relative energy deviation $\Delta p/p$.

• The following two lines contain the variables used in the minimization procedure of finding the off-energy closed orbits In the first line are:

NEQ DELTA MXCALL EPS ESPF ESPFMN IPRINT

where:

NEQ= n. of equations (2 if only horizontal closed orbits are wanted, 4 if both horizontal and vertical).

DELTA: is the increment of the variables when calculating the linear tangent solution. Usually is 10⁻⁸.

MXCALL: is the maximum number of calls to be used. If no solution is found for a number of calls > MXCALL, then the minimization fails. Usually is 500 or 1000.

EPS: is the precision required in the minimization. Usually is 10^{-24} .

ESPF, ESPFMN: variables used in the convergence procedure. Usual values are -16. and -25.

IPRINT=1: the one turn matrices with and without sextupoles, and some information about the convergence at each energy is printed. Usually is set to zero.

N.B.: Do not confuse IPRIN with IPRINT!!!

• In the second one is the array:

XIN(5)

where:

XIN(1): is the horizontal initial value for the closed orbit in m.

XIN(2): is the horizontal initial value for the closed orbit slope in rad.

XIN(3): is the energy deviation.

XIN(4): is the vertical initial value for the closed orbit in m.

XIN(5): is the vertical initial value for the closed orbit slope in rad.

• Horizontal and vertical maximum pipe apertures (+/-) in *mm*, and crossing angle in *rad* (preceded by two comment lines):

HPIPE VPIPE TETAC

Usually the first two are set to 1000. mm, $\theta_c = -12.5$ mrad for DA Φ NE.

• N. of fixed sextupoles, horizontal and vertical natural chromaticities, n. of variable sextupole families, variable NVAR:

NSFIX CXN CZN NS NVAR

where:

NSFIX: is the number of fixed sextupoles. CXN: is the natural horizontal chromaticity. CZN: is the natural vertical chromaticity.

NS: is number of variable sextupole families to correct the chromaticity to zero. The program accepts 1 or 2. Obviously 2 is to be used only with completely symmetric lattices!

NVAR=0: means that the chromaticity correction is not performed, the sextupole arrangement is kept fixed, then in the list of the sextupoles it must be included also the normally variable sextupoles. It is used to compare dynamic apertures at fixed sextupole configurations.

• Position, among all the sextupoles, of the SF and SD to be varied:

JF JD (in this order!)

where:

JF: is the sequential number of the first SF sextupole (ex. 1, 2....).

JD: is the sequential number of the first SD sextupole.

This line must be repeated if NS = 2, with the next SF and SD position in the lattice.

• Sextupoles arrangement in the lattice, with the same format as in input 55:

$$\textbf{I}(\text{I4}) \quad \textbf{IDENT}(\text{I4}) \quad \textbf{NEL}(\text{I4}) \quad \textbf{A}(\text{G10.6}) \quad \textbf{B}(\text{G10.6}) \quad \textbf{RAG}(\text{G10.6}) \quad \textbf{BL}(\text{G10.6})$$

• Dynamic aperture limits:

NXMIN NXMAX NZMIN NZMAX NSTEP

where:

NXMIN: is the minimum number of horizontal sigma. NXMAX: is the maximum number of horizontal sigma.

NZMIN: is the minimum number of vertical sigma.

NZMAX : is the maximum number of vertical sigma.

NSTEP: is the step in number of sigma (holds both for horizontal and vertical scaling). The phase-plane limited by these variables is scanned with a NSTEP, and for each the particle initial coordinates are calculated as (see below for definitions):

$$\begin{array}{ll} X_{in} &= NX * \sigma_x \\ X'_{in} &= NXP * \sigma'_x + TETAC \\ Z_{in} &= NZ * \sigma_z \\ Z'_{in} &= NZP * \sigma'_z \end{array}$$

• If IDYNA = 0, the initial NPART particle coordinates are read in the following NPART lines, as:

NX NXP NZ NZP NP

where:

 $NX = number of horizontal \sigma$,

NXP = number of horizontal σ' ,

 $NZ = number of vertical \sigma$,

NZP = number of vertical σ' ,

NP = number of σ_p .

4. THE OUTPUT FILE

The output file on unit 6 contains the results of the tracking. That is:

- the optical functions if IBET=1 and IPRIN=1;
- the sextupoles configuration if ICROM=1,IBET=1;
- the minimization results for the off-energy closed orbit calculation, if IDPP=1 and IPRINT=1;
- the tunes and the closed orbits vs. $\Delta p/p$, if IDPP=1;
- the efficiency, defined as the number of stable particles over the total number of tracked particles for each energy deviation;

- if only single particles are tracked, the initial particle coordinates and the tunes calculated by FFT at the last turn for the stable particles are printed. For the unstable particles a message with the last stable turn, the element where the particle was lost and its horizontal and vertical amplitudes is printed.

5. THE GRAPHIC OUTPUT FILES

Several graphic outputs are produced by the program.

On Unit 99 the dynamic aperture for each required energy is plotted.

On Unit 97 the fractional part of the horizontal tune as a function of the horizontal particle amplitude is plotted.

On Unit 98 the fractional part of the vertical tune as a function of the vertical particle amplitude is plotted.

If IDPP=1, on Unit 8 the fractional part of the horizontal and vertical tunes as a function of the energy deviation $\Delta p/p$ are plotted on the same scale.

If IDYNA=0, on Unit 11 the (x, x') phase-plane diagram for all the stable particles is plotted, the same for (z, z') on Unit 22 and for (x, z) on Unit 33. Then, it is recommended to track a limited (up to 6) number of single particles for one energy (NEN=1), or if NEN>1 in the tracking input file 54 the particle initial coordinates must be repeated NEN times.

6. CHROMATICITY CALCULATION

When solenoids are inserted in the I.R. it is not easy to calculate the natural chromaticity, due both to the focusing and the rotation, with the optics programs. A possibility to calculate it with the DA Φ NE program is to:

- set ICROM = 0.
- insert in the tracking file **all** the lattice sextupoles, included those normally left free to vary by the program, **with their strengths set to 0**, (here NSFIX must be the number of fixed sextupoles only),
- perform the tunes calculation as a function of the energy (IDPP=1) for **very small** energy deviations.

The slope of the tunes around the on-energy value is the chromaticity. In general, being this behaviour not linear, it is advisable to calculate the average value between the positive and the negative energy deviation.

REFERENCES

- [1] The KLOE design proposal.
- [2] The FI.NU.DA. design proposal.
- [3] M. Bassetti et al., "DAΦNE Interaction Region Design", presented at the 1993 Particle Accelerator Conference, Washington, May 17-20, 1993.
- [4] M. Biagini et al., "DAΦNE lattices", Technical Note, in preparation.
- [5] G. Vignola, unpublished.

APPENDIX A - INPUT FILES

A1. Command file

```
$ ASSIGN DAD15.DAT FOR099
$ ASSIGN QXD15.DAT FOR097
$ ASSIGN QZD15.DAT FOR098
$ ASSIGN XX.TOP FOR011
$ ASSIGN ZZ.TOP FOR022
$ ASSIGN XZ.TOP FOR033
$ ASSIGN NUD15.DAT FOR008
$ ASSIGN TD15.DAT FOR054
$ ASSIGN TD15.DAT FOR056
$ ASSIGN D15.DAT FOR055
$ ASSIGN D15.DAT FOR055
$ R/NODEB DAFNE
```

A2. Tracking file

```
D15 CON KLOE & KLOE dati per AD
#TURN #PART. #SAMP.EL. ICROM IDPP IBET IPRIN ISOL IDYNA 1COUP IAUTO
            0 1 1 1
                                       1 0 1 1
TYPE OF EXTR. (0=none,1=LINEAR,2=GAUSS) SEED(5digit<60000) N.ENERGIES NOP
                                  13333 3 20
     0
            SIGMAX'(mrad) SIGMAP SIGMAZ(mm) SIGMAZ'(mrad) DPP (%)
0. 3.96D-04 .15 0. 0.01
SIGMAX (mm) SIGMAX (mrad) SIGMAP
VARIABILI PER IL NOLISY SE DPP.NE.O. : NEQ, DELTA, MXCALL, EPS, ESPF, ESPFMN, IPRINT
4 1.0D-8 1000 1.D-24 -16.D0 -25.D0 0
VETTORE XIN (m, rad) INNESCO PER CALCOLO ETA OFF-ENERGY
0.001 12.5D-5 -.01 0.001 0.001
PIPE APERTURE (+-) AND CROSSING ANGLE
HORIZ(mm) VERT(mm) TETAC(rad)
1000
         1000.
                  -12.5D-3
# FIXED SEXT. CROM. X CROM. Z #VARIABLE FAM. (SF,SD) NVAR(IF#0 DOESN'T CALCULATE SF,SD)
                  -20.4
                              2
                                                1
     JD = POSITION OF SF AND SD (IN THIS ORDER!) BETWEEN SEXTUPOLES, REPETED TWICE IF NS=2
 3 2
 6
       7
POS. # TYPE LENGHT K(m-2) OF FIXED SEXTUPOLES
 82 1 7.0 1.
172 4 8 .0
                 0.0
189 5 8 .0
                 0.0
279 8 7 .0
445 9 8 .0
                 1.
453 10 7 .0
                 8.3
522 11 8 .0
                 5.9
530 12 7 .0
551 13 7 .0
                 .0
559 14 8 .0
628 15 7 .0
                 5.9
                 8.3
                3.0
636 16 8 .0
DYNAMIC APERTURE LIMITS : NXMIN, NXMAX, NZMIN, NZMAX, NSTEP
-15 15 0 10 1
PARTICLE COORDINATES (NX, NXP, NZ, NZP, NP)
      0
           0
                 0
                     0
      0
            0
                 0
           0
               0 0
     0
3
     0 0 0 0
```

0

0 0 0

A3. Lattice file

```
KLOE & KLOE (D15)
# OF ELEMENTS ---- # OF FAMILIES ---- # OF CONDITIONS
                                                                (FREE FORMAT)
(11 DATA F.F.)
                                                                   (3 DATA F.F.)
510. 0. 1.d+17
PAR FLAG (0/1) -- SYMFLAG(0=NO,1=YES) --SCREENFLAG(0/1) -- DISPERS MULTIPLIER
                                              0
                     0
IDENTIFIERS OF VARIABLES (MUST BE = # OF CONDITIONS)
103 105 108 110 319 321 323 325

QxW QzW
                                                                 (FREE FORMAT)
    5.15
                 6.18
CORRECTED CHROMATICITIES (CRXCOR, CRZCOR)
            Ω
    0
FIT CHROMATICITIES and EMITTANCE ( CRXW, CRZW, EMW --- when used)
-9.1 -4.1 1.D-06
RF RELATED PARAMETERS ( MUST BE OK WHEN PAR-FLAG=1)
 I(mA) - COUPL - VRF(KV) - RF HARMONIC - HOR APERT(m) - VERT AP(m) - Z/n(Ohm)
43.75 .01 254. 120 .04
ADDITONAL CONSTANTS
                   ETAPO
                            ALFAX0
                                      ALFAZ0
                                                  -> new
BX0 BZ0 ETAOW
                             0._
                                       0.
             0.
                      Ο.
 4.5
       .045
                                         вх2
                     ETA1W
                                                    BZ2
                                                            ETA2w
        BZ1
BX1
                                                           ٥.
                                          10.
                                                    1.
                      0.
            1.199
5.7
                                         BX4
                                                    BZ4
                                                            ETA4w
                      ETA3W
           BZ3
BX3
                          1
                                          1
           -.66
 -.66
                                                    BZ6
                                                            ETA6w
                                         вх6
                      ETA5W
 BX5
           BZ5
                                                     1
                                                              1
                                          1
            1
                        1
 1
                                                            ETA8w
                                                    DETAZi
                                         ETAZi
           BZ7
                      ETA7W
 BX7
                                          0
                                                    0
                                                              0
                        0
            ٥
 0
                                                            DETAXi
                                                    AZi
                      ETAXi
                                         AXi
           BZi
 BXi
                                                       0.
                                                              ٥.
                                          ٥.
            .045
                      0.
 ALCOST (# 0) FRFW
  1.22e-2
                 0
 XXXX
 XXXXX
 XXXX
                                     (FOLLOW THE FIELD INDICATOR)
  CELL INPUT : FORMAT (314-4G(10.6)
 14 .46
14 .01
12 .0
                                    . 6
                                                1.
                                                1.
                                     . 6
    2
                        .069679270 -.1042305
    3
           14 .02
12 .0
                                     .6
                                                1.
                        .069679270 -.1042305
    5
           14 .02
12 .0
                                     . 6
    6
                        .069679270 -.1042305
    7
                                     . 6
           14 .02
                                                1.
    8
                                                1.
                        .069679270 -.1042305
            12 .0
    9
                                                1.
            14 .02
   10
                        .069679270 -.1042305
            12 .0
   11
                                                1.
            14 .02
                                     .6
   12
                         .069679270 - .1042305
                                                1.
            12 .0
   1.3
            14 .02
12 .0
                                                1.
   14
                         .069679270 -.1042305
   15
            14 02
                         .069679270 -.1042305
   17
            12 .0
            14 .02
12 .0
                         .069679270 -.1042305
                                                 1.
    19
                                                 1.
            14 .02
                                     . 6
    20
                         .069679270 -.1042305
                                                 1.
            12 .0
    21
                                     , 6
            14 .01
                                                 1.
    22
            14 .17
                                     . 6
                                                 1.
    23
            14 .0175
                                     .6
    24
                         .2117246
                                    -.1768889
            13 .0
14 .035
                                     . 6
    26
```

```
1.
27
          13 .0
                         .2117246
                                       -.1768889
          14 .035
28
                                        . 6
                                                      1.
                                       -.1768889
                                                      1.
          13 .0
                          .2117246
29
          14 .035
13 .0
14 .035
                                        . 6
                                                      1.
30
                                       -.1768889
                         .2117246
                                                      1.
31
                                                       1.
                                        . 6
32
          13 .0
14 .035
13 .0
14 .035
                                       -.1768889
                         .2117246
                                                      1.
33
                                       .6
-.1768889
34
                                                       1.
                          .2117246
35
                                                      1.
36
                                        .6
                                                       l.
                                       -.1768889
                          ,2117246
37
          13 .0
                                                       ı.
38
          14 .035
                                        .6
                                                       l.
          13 .0
14 .035
                                       -.1768889
39
                          .2117246
                                                       1.
                                                       1.
40
                                         .6
41
          13 .0
                          .2117246
                                       -.1768889
                                                       1.
          14 .035
42
                                        . 6
                                                       1.
          13 .0
14 .0175
14 .15
                                        -,1768889
43
                          .2117246
                                                       1.
44
                                         .6
                                                       1.
                                         .6
                                                       1.
45
46
          14 .0135
                                         . 6
          12 .0
14 .027
12 .0
                          .08372863
                                       -.2537126
                                                       1.
47
                                        .6
                                                       1.
48
                          .08372863
                                        -.2537126
                                                       1.
49
50
          14 .027
                                        . 6
                                                       1.
                                       -.2537126
                          .08372863
51
          12 .0
                                                       1.
          14 .027
                                        .6
52
          12 .0
14 .027
12 .0
                                       -.2537126
                          .08372863
53
                                                       1.
                                                       1.
54
                                         . 6
                          .08372863
                                       -.2537126
55
          14 .027
                                        . 6
56
                                                       1.
          12 .0
14 .027
12 .0
                          .08372863
                                       -.2537126
                                                       1.
57
                                        . 6
58
                                                       1.
                          .08372863
                                        -.2537126
                                                       1.
59
60
          14 .027
                                        . 6
                                                       1.
          12 .0
14 .027
12 .0
                                        -.2537126
                          .08372863
                                                       1.
61
62
                                                       1.
                                        -.2537126
                          .08372863
                                                       1.
63
                                         . 6
64
          14 .027
                                                       1.
          12 .0
                          .08372863
                                       -.2537126
                                                       1.
65
                                                       1.
66
          14 .0135
                                         . 6
67
                                                       1.
          14 .35
                                         . 6
68
          14
              .3
                                         . 3
69
               1.205
                                      -.74381854
          14 .3
70
                                                       1.
          14 .54
14 .3
                                      -1.4876371
                                                       1.
71
                                       -.74381854
72
                                                       1.
           1 .455
73
                                                       1.
           16 .05875
                          .004375
74
75
           17 .035
                          .020
76
            4 1,45
                                      +9.4954552
            1 .375
77
78
            1,25
            1 .375
79
80
            2 .3
                          1.5877255
            1
7
81
              . 2
              .0
82
                          0.
            1 ,2
83
            3 .3
                          2.6259437
84
85
            1
              .3
86
            1 .3
              .3
87
            2
                          .55945964
88
            1
              .80
 89
            4.99
                                       1.4005635
 90
            1 0.6
 91
            3 .30
                          1,7513375
 92
            1 .2
```

```
93
      2
           7 .0
                        0.
 94
           1 .4
 95
           2
             . 3
                        2,2700186
 96
             . 6
           1
 97
           6
                        1,217382
                                    1.888884
 98
           4.08026743
                                   +1.888884
 99
           6
                        1.217382
                                    1.888884
100
                        1.217382
           6
                                    0.944442
101
           4.040133715
                                   +0.944442
                        1.217382
                                    0.944442
102
           6
103
                                    1.888884
           6
                        1.217382
           4.08026743
104
                                   +1,888884
105
           6
                        1.217382
                                    1.888884
                                    1.888884
106
                        1.217382
           6
107
           4.08026743
                                   -1.888884
                        1.217382
108
           6
                                    1.888884
109
                        4,869526
                                    0.944442
           6
110
           4.16053486
                                   -0.944442
                        4.869526
                                    0.944442
111
           6
112
           6
                        1.217382
                                    1.888884
           4.08026743
113
                                   -1.888884
                        1.217382
                                    1.888884
           6
114
115
           6
                        1.217382
                                    1.888884
           4.08026743
116
                                   +1.888884
                        1.217382
117
           6
                                    1.888884
118
           6
                        4.869526
                                    0.944442
119
           4.16053486
                                   +0.944442
120
           6
                        4.869526
                                    0.944442
121
                        1.217382
                                    1.888884
           6
122
           4.08026743
                                   +1.888884
                        1.217382
123
           6
                                    1.888884
124
           6
                        1.217382
                                    1.888884
125
           4.08026743
                                   -1.888884
126
           6
                        1,217382
                                    1.888884
127
           6
                        4.869526
                                    0.944442
128
           4.08026743
                                   -0.944442
129
           4.08026743
                                   -0.944442
130
           6
                        4.869526
                                    0.944442
131
           6
                        1.217382
                                    1.888884
           4.08026743
132
                                   -1.888884
133
           6
                        1.217382
                                    1.888884
134
                        1.217382
           6
                                    1.888884
135
           4.08026743
                                   +1.888884
136
           6
                        1.217382
                                    1.888884
137
                                    0.944442
                        4.869526
           6
138
           4.16053486
                                   +0.944442
139
                        4.869526
           6
                                    0.944442
140
           6
                        1.217382
                                    1.888884
141
           4.08026743
                                   +1.888884
142
           6
                        1.217382
                                    1.888884
143
           6
                        1.217382
                                    1.888884
144
           4.08026743
                                   -1.888884
145
           6
                        1.217382
                                    1.888884
                                    0.944442
146
           6
                        4.869526
147
           4.16053486
                                   -0.944442
148
                        4.869526
           6
                                    0.944442
149
                                    1.888884
           6
                        1.217382
150
           4.08026743
                                   -1.888884
151
           6
                        1.217382
                                    1.888884
152
           6
                        1.217382
                                    1.888884
153
           4.08026743
                                   +1.888884
154
           6
                        1.217382
                                    1.888884
155
           6
                        1,217382
                                    0.944442
156
           4.040133715
                                   +0.944442
157
           6
                        1.217382
                                    0.944442
158
           6
                        1.217382
                                    1.888884
```

```
159
           4.08026743
                                   +1.888884
                        1.217382
160
           6
                                    1.888884
161
           1 .225
162
       3
           8.0
163
           1 .375
           2 .30
164
                        1.0258862
165
166
           6
                        20.25
                                   1.4005635
167
            4.99
                                   1.4005635
168
           6
                        20.25
                                   1.4005635
           1 .75
3.30
169
170
                        2.0618852
171
           1 .2
172
           8 0.
                        0.
173
           1 .2
174
           2.3
                        3.0554795
175
           1 1.11
176
           1 1.11
177
           3 .3
                        2.9834573
           1 .2
178
179
           1 .41419696
           2 .15
180
                        6.3780512
181
           2 .15
                        6.3780512
182
           1 .41419696
           1 .2 3 .3
183
184
                       2.9834573
185
           1 1.11
186
           1 1.11
187
           2.3
                       3.0554795
188
           1.2
           8 0.
189
       5
                       0.
190
           1.2
191
           3.30
                       2.0618852
192
           1 .75
193
                                   1.4005635
           6
                       20.25
194
           4.99
                                   1.4005635
195
           6
                       20.25
                                   1.4005635
196
           1 .6
197
           2 .30
                       1.0258862
198
           1 .375
199
       6
           8 .0
200
           1 .225
                                    1.888884
201
           6
                       1.217382
202
           4.08026743
                                   +1.888884
203
                       1.217382
           6
                                   1.888884
204
           6
                       1,217382
                                    0.944442
205
           4.040133715
                                   +0.944442
206
           6
                       1.217382
                                   0.944442
207
           6
                       1.217382
                                    1.888884
208
           4.08026743
                                   +1.888884
209
           6
                       1.217382
                                    1.888884
210
           6
                       1.217382
                                   1.888884
211
           4.08026743
                                   -1.888884
212
           6
                       1.217382
                                   1.888884
213
           6
                                    0.944442
                       4.869526
214
           4.16053486
                                   -0.944442
                                   0.944442
215
           6
                       4.869526
216
           6
                       1.217382
                                   1.888884
217
           4.08026743
                                   -1.888884
218
           6
                       1.217382
                                   1.888884
219
           6
                       1.217382
                                   1.888884
220
           4.08026743
                                  +1.888884
221
           6
                       1.217382
                                   1.888884
222
           6
                       4.869526
                                   0.944442
223
           4.16053486
                                  +0.944442
224
           6
                       4.869526
                                   0.944442
```

```
1.217382
                                    1.888884
225
                                   +1.888884
           4.08026743
226
                        1,217382
                                    1.888884
227
           6
                                    1.888884
                        1.217382
228
                                   -1.888884
           4.08026743
229
                        1.217382
                                    1.888884
230
           6
                        4.869526
                                    0.944442
231
           6
           4.08026743
                                   -0.944442
232
                                   -0.944442
233
           4.08026743
                                    0.944442
                        4.869526
234
           6
                                    1.888884
235
           6
                        1.217382
                                    -1.888884
           4.08026743
236
                        1.217382
                                    1.888884
237
           6
                        1.217382
                                    1.888884
           6
238
           4.08026743
                                   +1.888884
239
                                    1.888884
                        1.217382
240
           6
                        4.869526
                                    0.944442
241
           6
                                   +0.944442
            4.16053486
242
                        4.869526
                                    0.944442
           6
243
                                    1.888884
                        1.217382
244
           6
                                   +1.888884
            4.08026743
245
                                    1.888884
246
            6
                        1.217382
                        1.217382
                                    1.888884
247
            6
                                    -1.888884
248
            4.08026743
                        1.217382
                                    1.888884
249
            6
                        4.869526
                                    0.944442
250
            6
                                    -0.944442
            4.16053486
251
                        4.869526
                                     0.944442
            6
252
                                     1.888884
253
            6
                        1.217382
            4.08026743
                                    -1.888884
254
                        1.217382
                                    1.888884
255
            6
                        1.217382
                                    1.888884
256
            6
            4.08026743
                                    +1.888884
257
                        1.217382
                                     1.888884
258
            6
                        1,217382
                                     0.944442
259
            6
                                    +0.944442
            4.040133715
260
            6
                        1.217382
                                     0.944442
261
                                     1,888884
                        1,217382
262
            6
            4.08026743
                                    +1,888884
263
            6
                        1.217382
                                     1,888884
264
265
            1
              . 6
             .3
                        2.2700186
            2
266
              . 4
267
            1
            7
                        0.
268
              .0
              . 2
269
            1
                        1.7513375
270
            3
             .30
            1 0.6
271
                                    1.4005635
272
            4.99
            1 .80
273
              .3
274
                         .55945964
275
            1 .3
              .3
            1
276
                        2.6259437
 277
            3
              . 3
 278
              . 2
            1
              .0
            7
                         0.
 279
        8
              .2
 280
            1
                         1.5877255
 281
            2
              .3
              .375
 282
            1
 283
            1 .25
            1 .375
 284
            4 1.45
                                    +9.4954552
 285
                          .020
 286
           17 -.035
           16 -.05875
                          .004375
 287
 288
            1 .455
                                    -.74381854
                                                   1.
 289
           14 .3
                                    -1.4876371
 290
           14 .54
                                                   1.
```

291	14 .3		74381854	1.
292	1 1.205			1.
293	14 .3		. 3	1.
294 295	14 .35		. 6	1.
296	14 .0135 12 .0	00377063	.6	1.
297	14 .027	.08372863	.2537126 .6	1. 1.
298	12 .0	.08372863	.2537126	1.
299	14 .027		.6	1.
300	12 .0	.08372863	.2537126	1.
301 302	14 .027 12 .0	.08372863	.6	1.
303	14 .027	.003/2803	.2537126 .6	1. 1.
304	12 .0	.08372863	.2537126	1.
305	14 .027		.6	1.
306	12 .0	.08372863	.2537126	1.
307 308	14 .027	00220000	.6	1.
309	12 .0 14 .027	.08372863	.2537126 .6	1.
310	12 .0	.08372863	.2537126	1.
311	14 .027	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.6	1.
312	12 .0	.08372863	.2537126	1.
313	14 .027	*****	.6	1.
314 315	12 .0 14 .0135	.08372863	.2537126	1.
316	14 .15		.6 .6	1. 1.
317	14 .0175		.6	1.
318	13 .0	.2117246	.1768889	1.
319 320	14 .035	2127246	.6	1.
321	13 .0 14 .035	.2117246	.1768889 .6	1. 1.
322	13 .0	.2117246	.1768889	1.
323	14 .035		.6	ī.
324	13 .0	.2117246	.1768889	1.
325 326	14 .035 13 .0	2117246	.6	1.
327	14 .035	.2117246	.1768889 .6	1. 1.
328	13 .0	.2117246	.1768889	1.
329	14 .035		.6	1.
330	13 .0	.2117246	.1768889	1.
331 332	14 .035 13 .0	2112246	.6	1.
333	14 .035	.2117246	.1768889 .6	1. 1.
334	13 .0	.2117246	.1768889	1.
335	14 .035		.6	1.
336 337	13 .0	.2117246	.1768889	1.
338	14 .0175 14 .17		.6 .6	1.
339	14 .01		.6	1. 1.
340	12 .0	.069679270	.1042305	1.
341	14 .02		.6	1.
342 343	12 .0	.069679270	.1042305	1.
344	14 .02 12 .0	.069679270	.6	1.
345	14 .02	.009679270	.1042305 .6	1. 1.
346	12 .0	.069679270	.1042305	1.
347	14 .02		.6	ī.
348	12 .0	.069679270	.1042305	1.
349 350	14 .02 12 .0	.069679270	.6	1.
351	14 .02	.009079270	.1042305 .6	1. 1.
352	12 .0	.069679270	.1042305	1.
353	14 .02		.6	1.
354 355	12 .0 14 .02	.069679270	.1042305	1.
355 356	14 .02	.069679270	.6 .1042305	1.
-	·- • •		. + 0 - 2 3 0 3	

357 358	14 .02 12 .0	.069679270		1.
359 360 361	14 .01 14 .46 16 .0	. 0	.6 .6	1. 1.
362 363 364	14 .46 14 .01 12 .0	.069679270	.6 .6 1042305	1.
365 366	14 .02 12 .0	.069679270	. 6	1. 1. 1.
367 368 369	14 .02 12 .0	.069679270		$\begin{array}{c} 1 \ . \\ 1 \ . \end{array}$
370 371	14 .02 12 .0 14 .02	.069679270	.6 1042305 .6	1. 1. 1.
372 373	12 .0 14 .02	.069679270		1. 1.
374 375 376	12 .0 14 .02 12 .0	.069679270	.6	1. 1.
377 378	14 .02 12 .0	.069679270	. 6	1. 1. 1.
379 380	14 .02 12 .0	.069679270	.6 1042305	1. 1.
381 382 383	14 .02 12 .0 14 .01	.069679270	.6 1042305 .6	1. 1. 1.
384 385	14 .17 14 .0175		.6	1. 1.
386 387 388	13 .0 14 .035 13 .0	.2117246	1768889 .6	1.
389 390	14 .035 13 .0	.2117246	1768889 .6 1768889	1. 1. 1.
391 392	14 .035 13 .0	.2117246	.6 1768889	1. 1.
393 394 395	14 .035 13 .0 14 .035	.2117246	.6 1768889 .6	1. 1. 1.
396 397	13 .0 14 .035	.2117246	1768889 .6	1.
398 399 400	13 .0 14 .035 13 .0	.2117246	1768889 .6	1.
401 402	14 .035 13 .0	.2117246	1768889 .6 1768889	1. 1. 1.
403 404	14 .035 13 .0	.2117246	.6 1768889	1.
405 406 407	14 .0175 14 .15 14 .0135		.6 .6 .6	1. 1. 1.
408 409	12 .0 14 .027	.08372863	2537126 .6	1.
410 411 412	12 .0 14 .027 12 .0	.08372863	2537126 .6 2537126	1.
413 414	14 .027 12 .0	.08372863	.6 2537126	1. 1. 1.
415 416 417	14 .027 12 .0 14 .027	.08372863	.6 2537126	1. 1.
418 419	14 .027 12 .0 14 .027	.08372863	.6 2537126 .6	1. 1. 1.
420 421	12 .0 14 .027	.08372863	2537126 .6	1. 1.
422	12 .0	.08372863	2537126	1.

```
14 .027
                                .6
     12 .0
                   .08372863
                               -.2537126
                                            1.
     14 .027
                                . 6
                                            1.
     12 .0
                   .08372863
                               -.2537126
                                            1,
     14 .0135
                                .6
                                            1.
     14 .35
                                . 6
                                            1.
     14
         .3
                                .3
                                            1.
      1
         1.205
                                            1.
     14 .3
                              -.74381854
                                            1.
     14 .54
                             -1.4876371
                                            1.
     14 .3
                              -.74381854
                                            1.
      1 .455
                                            1.
     17 -.035
                   -.020
     16 -.05875
                   -.004375
      4 1.45
                             -9.4954552
      1 .375
      1 .25
      1 .375
      2
        . 3
                  .94342508
     1.4
      3 .3
                  2.3339084
       . 3
     1
       .0
 9
     1
       .3
       . 3
     2
                  .77927344
     1 .80
     41.21
                             1.4005635
     1 0.6
     3 .30
                  2.2490473
       . 2
     1
10
     7
       . 0
       . 4
     1
     2
       .3
                  3.1697701
     1
       . 6
     6
                  1.217382
                              1.888884
     4.08026743
                             +1.888884
     6
                 1,217382
                              1.888884
     6
                 1.217382
                              0.944442
     4.040133715
                             +0.944442
     6
                 1.217382
                              0.944442
     6
                 1.217382
                              1.888884
     4
      .08026743
                             +1.888884
     6
                 1.217382
                             1.888884
     6
                 1.217382
                             1.888884
     4.08026743
                             -1.888884
     6
                 1.217382
                             1.888884
     б
                 4.869526
                             0.944442
     4.16053486
                             -0.944442
     6
                 4.869526
                             0.944442
     6
                 1.217382
                             1.888884
     4.08026743
                            -1.888884
     6
                 1.217382
                             1.888884
     6
                 1.217382
                             1.888884
     4.08026743
                            +1.888884
     6
                 1.217382
                             1.888884
     6
                 4.869526
                             0.944442
     4.16053486
                            +0.944442
     6
                 4.869526
                             0.944442
     6
                 1.217382
                             1.888884
     4.08026743
                            +1.888884
    6
                 1.217382
                             1.888884
     6
                 1,217382
                             1.888884
    4.08026743
                            -1.888884
    6
                             1.888884
                 1.217382
    6
                 4.869526
                             0.944442
    4.08026743
                            -0.944442
```

ţ

```
-0.944442
489
           4.08026743
                       4.869526
                                   0.944442
490
           6
                                   1.888884
491
           6
                       1.217382
                                   -1.888884
           4.08026743
492
                       1.217382
493
                                   1.888884
                       1,217382
                                   1.888884
494
           6
           4.08026743
                                   +1.888884
495
                       1.217382
                                   1.888884
496
           6
                        4.869526
                                    0.944442
497
           6
                                   +0.944442
           4.16053486
498
499
           6
                       4.869526
                                    0.944442
                                   1.888884
                       1.217382
500
           6
           4.08026743
                                   +1.888884
501
                       1.217382
                                   1.888884
502
           6
                                   1.888884
                       1.217382
503
           6
504
           4.08026743
                                   -1.888884
                                    1.888884
                       1,217382
505
           6
                        4.869526
                                    0.944442
506
           6
                                   -0.944442
507
           4.16053486
                                    0.944442
                       4.869526
           6
508
509
           6
                        1.217382
                                    1.888884
                                   -1.888884
           4.08026743
510
                        1.217382
                                   1.888884
511
           6
                                   1.888884
512
           6
                        1.217382
                                   +1.888884
513
           4.08026743
                        1.217382
                                    1.888884
514
           6
                                    0.944442
515
                        1.217382
           6
           4.040133715
                                   +0.944442
516
                        1.217382
                                    0.944442
           6
517
518
           6
                        1.217382
                                    1.888884
           4.08026743
                                   +1,888884
519
                        1,217382
520
                                    1.888884
           6
           1 .225
521
           8 .0
522
      11
           1 .375
523
           2 .30
                        2.0986011
524
525
           1 .6
                                   1,4005635
                        24.75
526
           6
527
           41.21
                                   1.4005635
                        24,75
                                   1.4005635
528
           6
529
           1 1.35
530
      12
           7 0.
                        0.
531
           1.2
532
            3 .30
                        1.3326668
533
           1 .48
                        4.1891137
534
           2 .3
           1 1.34
535
536
           1 .30
                        3.2901483
537
            3 .3
538
           1 .45
539
            2 .3
                        2.8138162
           11.87759151
540
            11.87759151
541
                        2.8138162
542
            2.3
543
            1 .45
544
            3 .3
                        3,2901483
545
            1 .3
546
            1 1.34
                        4.1891137
547
            2 .3
548
           1 .48
549
            3 .30
                        1.3326668
           1 .2
550
551
      13
            7
              0.
                        0.
552
            1 1.35
 553
            6
                        24.75
                                   1.4005635
 554
            41.21
                                   1.4005635
```

555		6	24.75	1.4005635
556		1 .6		
557		2 .30	2.0986011	
558		1 .375		
559	14	8 .0		
560		1 .225		
561		6	1.217382	1.888884
562		4.08026743		+1.888884
563		6	1.217382	1.888884
564		6	1.217382	0.944442
565		4.04013371		+0.944442
566		6	1.217382	0.944442
567		6	1.217382	1.888884
568		4.08026743		+1.888884
569		6	1.217382	1.888884
570		6	1.217382	1.888884
571		4.08026743		-1.888884
572		6	1.217382	1.888884
573		6	4.869526	0.944442
574		4.16053486		-0.944442
575		6	4.869526	0.944442
576		6	1.217382	1.888884
577		4.08026743		-1.888884
578		6	1.217382	1.888884
579		6	1.217382	1.888884
580		4.08026743		+1.888884
581		6	1.217382	1.888884
582		6	4.869526	0.944442
583		4.16053486		+0.944442
584		6	4.869526	0.944442
585		6	1.217382	1.888884
586		4.08026743		+1.888884
587		6	1.217382	1.888884
588		6	1.217382	1.888884
589		4.08026743		-1.888884
590		6	1.217382	1.888884
591		6	4.869526	0.944442
592		4.08026743		-0.944442
593		4.08026743		-0.944442
594		6	4.869526	0.944442
595		6	1.217382	1.888884
596		4.08026743		-1.888884
597		6	1.217382	1.888884
598		6	1.217382	1.888884
599		4.08026743		+1.888884
600		6	1.217382	1.888884
601		6	4.869526	0.944442
602		4.16053486	4 050505	+0.944442
603		6	4.869526	0.944442
604		6	1.217382	1.888884
605 606		4.08026743	1 017000	+1.888884
		6	1.217382	1.888884
607		6	1.217382	1.888884
608		4.08026743		-1.888884
609		6	1.217382	1.888884
610		6	4.869526	0.944442
611		4.16053486	4 000000	-0.944442
612		6	4.869526	0.944442
613		6	1.217382	1.888884
614 615		4.08026743	1 01700	-1.888884
616		6 6	1.217382	1.888884
617		4.08026743	1.217382	1.888884
618		6	1 217202	+1.888884
619		6	1.217382 1.217382	1.888884
620		4.04013371		0.944442
020		4.040T001T	J	+0.944442

621		6	1.217382	0.944442	
622		6	1.217382	1.888884	
623		4.08026743		+1.888884	
624 625		6 1 .6	1.217382	1.888884	
626		2 .3	3.1697701		
627		1.4			
628	15	7 .0			
629		1 .2			
630 631		3 .30 1 0.6	2.2490473		
632		1 0.6 41,21		1.4005635	
633		1 .80		1.4005655	
634		2 .3	.77927344		
635		1 .3			
636	16	7 .0			
637		1 .3			
638		3 .3	2.3339084		
639 640		1 .4 2 .3	.94342508		
641		1 .375	.94542500		
642		1 ,25			
643		1 .375			
644		4 1.45		-9.4954552	
645		17 .035	020		
646 647		16 .05875 1 .455	004375		,
648		14 .3		74381854	1. 1.
649		14 .54		-1.4876371	1.
650		14 .3		74381854	1.
651		1 1.205			1,
652		14 .3		.3	1,
653 654		14 .35		. 6	1.
655		14 .0135 12 .0	.08372863	.6 .2537126	1. 1.
656		14 .027	.00372003	.6	1.
657		12 .0	.08372863	.2537126	1.
658		14 .027		.6	1.
659		12 .0	.08372863	.2537126	1.
660 661		14 .027 12 .0	00270062	. 6	1.
662		14 .027	.08372863	.2537126 .6	1. 1.
663		12 .0	.08372863	.2537126	1.
664		14 .027		.6	1.
665		12 .0	.08372863	.2537126	1.
666		14 .027		.6	1.
667 6 6 8		12 .0	.08372863	.2537126	1.
669		14 .027 12 .0	.08372863	.6	1.
670		14 .027	.00372003	.2537126 .6	1. 1.
671		12 .0	.08372863	.2537126	1.
672		14 .027		. 6	1,
673		12 .0	.08372863	.2537126	1.
674		14 .0135		.6	1.
675 676		14 .15 14 .0175		.6	1.
677		13 .0	.2117246	.6 .1768889	1. 1.
678		14 .035		.6	1.
679		13 .0	.2117246	.1768889	î.
680		14 .035		. 6	1.
681 682		13 .0 14 .035	.2117246	.1768889	1.
683		14 .035 13 .0	.2117246	.6	1. 1.
684		14 .035	.211/240	.1768889 .6	1. 1.
685		13 .0	.2117246	.1768889	1.
686		14 .035	-	. 6	$\overline{1}$.

687	13 .0	.2117246	.1768889	1.
688	14 .035	0445046	.6	*•
689	13 .0	.2117246	.1768889	1.
690	14 .035	04.004.5	.6	1.
691	13 .0	.2117246	.1768889	1.
692	14 .035		.6	1.
693	13 .0	.2117246	.1768889	1.
694	14 .035		.6	1.
695	13 .0	.2117246	.1768889	1.
696	14 .0175		.6	1.
697	14 .17		. 6	1.
698	14 .01		.6	1.
699	12 .0	.069679270	.1042305	1.
700	14 .02		.6	1.
701	12 .0	.069679270	.1042305	1.
702	14 .02		. 6	1. 1.
703	12 .0	.069679270	.1042305	1.
704	14 .02		. 6	1.
705	12 .0	.069679270	.1042305	1.
706	14 .02		. 6	1.
707	12 .0	.069679270	.1042305	1.
708	14 .02		. 6	1.
709	12 .0	.069679270	.1042305	1.
710	14 .02		. 6	1.
711	12 .0	.069679270	.1042305	1.
712	14 .02		. 6	1.
713	12 .0	.069679270	.1042305	1.
714	14 .02		.6	1.
715	12 .0	.069679270	.1042305	1.
716	14 .02		. 6	1.
717	12 .0	.069679270	.1042305	1.
718	14 .01		. 6	1,
719	14 .46		.6	1.
·	= - • - •			

MILE 0.33114 0.22331 0.21420 0.20799 0.20084 1.19943 0.19082 0.18699 0.18391 0.18188 0.17988 9-17007 1-17849 0.12070 9.17947 0.10079 0.16062 9-18696 6-18774 1.12294

0.18459

APPENDIX B - OUTPUT FILE

CROMOVETERNO NATURALE: CE: -9.0000 CE : -20.4000

CHONATISMO COM I SCLI SESTUPOLI PISSI: CS: -0.5351 CE: -10.2286

CROMATIBHO CON TUTTE I RESTURBLE: COM 0.0000 CE x -0.0002

SFe 5.9694 n-2 SS= -0.4294 n-2

PEL	HIER	TYP	RETRA	RETRE	ETAIL	QK.	gs	K0(n=2)
82	1	7	8.770	11.487	0.371	0.186	0.447	-1.000
10	2	7	1.630	4.628	1.949	0.342	8.738	-0.425
143	3		4.207	1.269	1.136	9.694	1.150	5.989
172	4		11.832	4.230	0.000	0.777	1.310	0.000
149	5		11-832	4.230	0.000	1.560	1.764	0.000
199	6		4.207	1.249	1.136	1.643	1.924	5.182
248	7	,	1.438	4.629	1.449	1.956	2.337	-8.428
279		,	5.778	31.486	1.375	2.153	2.408	-1.800
445	9		7.363	11.949	-0.585	2.541	3.751	
453	1.0	2	1.196	5.553	1.549	2.645		3.800
522	11		19.332	1.249	1.290	3.046	3.814	-8.300
530	12	,	9.769	8.459	0.800		4.225	5.900
551	13	7	0.769	9.459		3.246	4.347	0.000
559	14				0.800	4.252	4.458	0.004
			10.332	1.269	1.290	4.451	4.999	5.964
628	15	Ŧ	1.194	5.552	1-945	4.852	5.489	-6.300
434	16	٠	7.363	11.967	-9.545	4.974	5.473	3.000

00/9	X-00	W0							
		X9-00	E-00	EP-00		29/9	QK.	QE.	MIT.
-0.0100			-9.35435E-05	9.22729E-03		-0.01000	0.22113	4.04754	0.08754
-0.0099		-8.12750E-01	-9.394938-05	9.130038-02		-0.00900	0.22213	9.18227	0.10214
-8.0080		-9.13691E-01	-0.210016-01	9.898516-63		-6.00000	0.21411	9.31434	0.11399
-9.6670	0.307718-82	-9.12634E-01	-0.214838-05	9-511366-03		-0.00700	0.20499	9.12378	
-9.0960	8.254790-02	-0.12587E-01	-0.197398-06	0.326760-03		-9.00600	0.20074		1.12367
-0.8058	8.20721E-02	-0.12550g-01	-8-171536-09	0-19411E-02		-0.00100		0.13341	0.13134
-0.0048	8.15934E-02	-0.12534E-01	-9-14964E-09	0-10953E-03			0.19534	0.13754	0.33745
-0-9038	0.11363E-02	-0.13597E-01	-0.186696-65	1.146242-04		-0.90489	0.19077	0.14230	0.14224
-0.0020	0.714688-03	-9.13e9eg-01	-9.719482-06			-0.00300	0.28696	9.14504	0.14580
-4.0010	0.332002-03	-9-13494E-01	-0.36654E-66	9.305278-04		-0.00306	0.10390	9.36926	0.14426
1.0000	0.000002+00	9.000008+00		0.4741HE-65	-	-6.06100	0.18155	9.54967	0-14967
0.0810	-0.271679-03		0.900008.89	0.800098489		9.00000	9-17986	0.15054	8.15014
0.0020		-0.12809E-01	6.31600E-86	0.36730E-05		9.00100	9-17007	0.14874	0.16974
0.0030	-0.47414E-03	-0.1283EE-01	6-63581E-04	9-124348-04		0.80288	0.17848	0.14854	9.34052
	-0.55966E-03	-0.128338-61	6.93227E-94	0.238728-04		0.00300	9.17047	0.14659	0.54454
0.0048	-0.44102E-03	-0.135470-01	0.12037E-05	0.30328E-04		9-00400	0.17944	1.16395	0.14381
0.0050	-0.59889E-03	-8.12559E-01	0.16756E-05	9.36798E-06		1.06500	9-18674	0.34049	F.14064
8.0060	-0.65725E-03	-9.12570E-01	9-174478-05	0.327988-04		9.09606	0.18257	0.11684	
8.0670	-0.22423E-03	-9.12577E-01	0.20354E-05	0.161698-84		0.00760	1.18669		0.13678
0.0000	0.10509E-03	-0.12561E-01	9-21461E-05	-0.179968-04				0.13247	0.13348
0.0090	0.530500-03	-0.12560E-01	1.277576-05	-9.751998-94		0.00000	9.18748	0.12762	0.32754
9.8100	8.18554E-02	-0.125750-01	0.33269E-05	-0.14291E-01		0.90900	0.19091	1.13232	0.13324
				-4-14043E-03		6-01800	0.19454	9.31662	0.11698

EFFICIENCY (%) POR DF/P+ -1.00090089000800082-02 IN . 49.36604994191408 Xelo-maximu) -855.5185997554185 650.52045163627e0 Zelo-maximu) -147.5342957654253 143.5819514664999

Nain-max(max) -142.1820429088501 727.8781228277034 Cole-max(max) -176.888338642032 82.01462275142047

49.31442275542947

Taria-maxima) -586.7371266222646 #36.7161766163135 Taria-maxima) -57.73963036921656 114.310128082696

NEL	TYPE	LEN	BETAX	ALFAX	BETAZ	ALFAZ	ETAX	ETAXP	gx	QZ
0	o	0.000	4.500	0.000	0.045	0.000	0.000	0.000	0.000	0.000
1	14	0.460	4.488	-0.037	4.706	-10.110	0.000	0.000	C.016	0.235
2	14	0.470	4.487	-0.038	4.908	-10.325	0.000	G.G00	0.017	0.235
3	12	0.470	4.487	0.273	4.908	-10.665	0.000	0.000	0.017	0.23\$
4	14	0.490	4.474	0.271	5.341	-11.123	ე ერმ	0.000	0.017	0.235
5	12	0.490	4.474	0.501	5.341	-11.494	0.000	0.000	0.017	0.235
6	14	0.510	4.448	0.578	5.807	-11.581	9.000	0.000	0.018	0.236
7	12	0.510	4.448	0.897	5.807	-12.384	0.000	0.000	0.018	0.236
8	14	0.530	4.409	0.981	6.309	-12.903	0.000	0.000	0.U19 0.019	0.237 0.237
9	12	0.530	4.409	1.187	6.309	-13.342 -13.895	0.000 0.000	0.000 0.000	0.019	0.237
10	14	0.550	4.359	1.178	6.849	-13.633	0.000	0.000	0.019	0.237
11 12	12 14	0.550	4.359	1.482	7.431	-14.963	0.000	0.500	0.020	0 237
13	12	0.570	4.297	1.768	7.431	-15.480	Q.000	g.000	0.020	0.237
14	14	0.590	4.224	1.750	8.057	-16.111	0.000	0.000	0.021	0.238
15	12	0.590	4.224	2.044	8.057	-16.672	6.090	0.000	0.021	0.238
16	14	0.610	4.139	2.021	8.731	-17.346	0.000	0.000	0.022	0.238
17	12	0.610	4.139	2.309	8.731	-17.955	0.000	0.000	0.022	0.238
18	14	0.630	4.044	2.279	9.457	-18.675	0.000	6.006	0.622	0.239
19	12	0.630	4.044	2.561	9.457	-19.335	0.000	0.000	0.022	0.239
20	14	0.650	3.940	2.524	10.238	-20.105	0.000	U.00D	0.023	0.239
21	12	0.650	3.940	2.799	10.238	-20.820	0.000	0.000	0.023	0.239
22	14	0.660	3.882	2.777	10.654	-21.232	0.000	0.000	0.024	0.239
23	14	0.830	2.977	2.393	18.932	-28.115	0.000	0.000	0.031 0.032	0.241
24	14	0.847	2.891	2.353	19.910	-28.809 -24.633	0.000	0.000	u.032	0.241
25		0.847 0.882	2.891 2.765	1.748	19.910 21.629	-25.630	0.000	0.000	0.034	0.241
26 27		0.882	2.765	1.119	21.629	-21.087	6.000	0.000	0.034	0.241
28		0.917	2.683	1.092	23.084	-21.738	0.000	c.coa	5.036	0.242
29		0.917	2.683	0.528	23.084	-16.876	U. 00 0	0.000	0.036	0.242
30		0.952	2.661	0.514	34,230	-17.251	0.000	0.000	0.038	0.242
31	13	0.952	2.641	-0.043	24.330	-12.138	0.000	0 000	и.038	0.242
32	14	0.987	2.639	-0.052	25.033	-12.302	0.000	0.000	0.040	0.242
33	13	0.987	2.639	-0.610	25.033	~7.610	0.000	0.000	0.040	0.242
34	14	1.022	2.676	-0.623	25.469	-7.041	0.000	0.000	0.042	0.242
35		1.022	2.676	-1.190	25.469	-1.646	Ų.000	0.000	0.042	0.242
36		1.057	2.754	-1.214	25.526	-1.623 3.794	0.000 6.660	0.000	0.044	0.242
27 38		1.057	2.754 2.875	-1.799 -1.844	25.526 25.202	3.788	0.000	0.000	0.046	0.243
39		1.092	2.875	-2.457	25.202	9.147	0.00J	0.000	0.046	0.243
40		1.127	3.042	-2.532	24.506	9.032	ù.000	0.000	0.048	0.243
41		1.127	3.042	-3.181	24.506	14.253	0.000	0.000	0,048	0.243
42		1.162	3.261	-3.296	23.459	13.951	0.000	0.000	0.050	0.243
43	13	1.162	3.261	-3.994	23.459	18.960	0.000	0.000	0.050	0.243
44	14	1.180	3.398	-4.077	22.771	18.680	0.000	0.000	0.051	0.243
45	14	1.330	4.678	-4.774	17.297	16.266	0.000	0.000	0.056	0.344
4.6		1.343	4.802	-4.835	16.842	16.047	0.000	0.000	0.057	0.244
41		1.343	4.802	-4.436	16.842	14.653	0.000	0.000	0.057	0.244
48		1.370	5.033	-4.537	16.023	14.289	0.000	0.000	0.058 0.058	0.245
45		1.370	5.033	-4.119	16.023	12.959	0.00 0 0.000	0.000 D.000	0.058	0.245
5 (5)		1.397 1.397	5.246 5.246	-4.200 -3.763	15.295 15.295	12.658 11.385	0.000	0.000	0.058	0.245
5		1.424	5.438	-3.827	14.651	11.141	0.006	0.000	0.059	0.245
5:		1.424	5.438	-3.373	14.651	9.919	0.000	0.000	0.059	0.245
S		1.451	5.608	-3.421	14.086	9.725	0.000	0 000	0.060	0.246
5	5 12	1.451	5.608	-2.951	14.086	8.547	0.000	u.000	0.065	0.246
5	6 14	1.478	5.754	-2.986	13.594	398.5	0.000	0.000	0.061	0.246
5	7 12	1.478	5.754	-2.503	13.594	7.256	b.000	0.000	0.061	0.246
5		1.505	5.875	-2.525	13,192	7.143	0.000	5.000	0.061	0.246
5		1.505	5.875	-2.031	13.172	6.036	0.000	0.000	0.061	0.246
6		1.532	5.970	~2.044	12.815	5.955	0.000	0.000	0.062 0.062	0.246 0.246
6		1.532	5.970 6.037	-1.540 -1.546	12.815 12.519	4.875 4.822	0.000 0.000	¢.000 0.000	0.063	0.245
6	2 14	1.359	0.031	-1.580	FC - 21A	.062	V. 500	0.000	V- VV3	A-241

63	12	1.559	6.037	-1.036	12.519	4.763	0.600	0.006	0.063	0.247
64	14	1.586	6.077	-1.037	12.284	3.732	0.600	0.000	0.063	0.247
65	12	1.586	6.077	-0.522	12,284	2 691	0.000	0,000	0.063	9.247
66	14	1.600	6.083	-0.521	12.195	2.683	0.000	0.000	n.064	0.247
67	14	1.950	6.196	-0.495	9.954	2.465	000. ח	0.000	0.072	0.252
68	14	2.250	6.378	-0.520	8.365	2.234	U.000	0.000	0.678	0.256
69	1	3.455	7.665	-0.715	3.979	1.466	0.600	0.000	0.102	0.286
70	14	3.755	8.660	-0.674	3.332	1.303	0.000	0.000	0.107	0.297
71	14	4.295	9.752	0.200	2.196	1.198	9.060	0.000	0.116	0.327
72	14	4.595	9.642	0.308	1.576	0.892	0.000	0.000	0.121	0.353
73	1					0.374	0.000	0.000	0.129	0.412
		5.050	9.385	0.256	1.000					
74	16	5.050	9.385	0.256	1.000	0.374	0.000	0.000	0.129	0.412
75	17	5.050	9.385	0.256	1.000	0.37¢	0.035	0.020	0.129	6.412
76	4	6.500	8.674	0.231	2.312	-1.279	G.174	0.171	0.154	0.613
77	1	6.875	B.518	Q.185	3.432	-1.706	0.238	0.171	0.161	0.635
78	1	7.125	8.433	0.155	4.356	-1.991	0.281	0.171	0.166	0.645
79	1	7.500	8.334	0.109	6.010	-2.419	0.345	0.171	0.173	0.657
80	2	7.900	7.150	3.649	8.611	-6.662	0.371	-0.001	0.179	0.663
81	1	8.000	5.770	3.248	11.487	-7.716	0.371	-0.001	0.104	0.667
82	7	8.000	5.770	3.248	11.487	-7.716	0.371	-0.001	0.184	0.667
83	1	8.200	4.551	2.848	14.784	-8.770	0.371	-0.001	0.190	0.669
84	3	8.500	3.918	-0.574	16.466	3.612	0.415	0.302	0.202	0.672
85	1	8.800	4.293	-0.676	14.376	3.356	0.505	9.302	0.214	0.675
86	1	9.100	4.729	-0.777	12.439	3.100	0.596	0.302	0.224	0.679
	2				11.231			0.195	0.234	0.683
87		9.400	4.975	-0.032		0.994	0.671			
98	1	10.200	5.155	-0.192	9.753	0.853	0.827	0.195	0.259	0.695
89	4	11.190	3.413	1.648	8.238	0.677	1.142	0.414	0.294	0.713
90	1	11.790	1.827	0.995	7.489	0.571	1.391	0.414	0.333	0.725
91	3	12.090	1.572	-0.101	6.077	1.887	1.629	1.198	0.362	0.732
92	1	12.290	1.638	-0.229	4.628	3.357	1.869	1.198	0.302	0.738
93	7	12.290	1,638	-0.229	4.628	3.357	2.869	1.198	0.382	0.738
94	1	12.690	1.925	-0.486	2.367	2.296	2.340	1.19H	0.418	0.757
95	2	12.990	1.865	0.671	1.566	0.552	2.459	-0.468	0.442	0.783
96	1	13.590	1.340	0.204	1.204	0.052	2.179	-0.469	0.504	0.855
97	6	13.590	1.340	0.189	1.204	0.066	2.179	-0.443	0.504	0.855
98	4	13.670	1.312	0.157	1.199	-0.001	2.143	-0.449	0.514	0.865
99	6	13.670	1.312	0.142	1.199	0.012	2.143	-0.425	0.514	0.865
100	6	13.670	1.312	0.113	1.199	0.039	2.143	-0.377	0.514	0.865
101	4	13.710	1.302	0.140	1.197	0.006	2.127	-0.431	0.519	0.871
102	6	13,710	1.302	0.111	1.197	0.033	2.127	186.0-	ш.519	0.871
	6		1.302							0.871
103		13.710		0.096	1,197	0.046	2,127	-0.359	0.519	
104	4	13.791	1.289	0.063	1.195	-0.021	2.098	-0.364	0.529	0.881
105	6	13.791	1.289	0.049	1.195	-0.000	2.098	-0.346	0.529	Ç.881
106	6	13.791	1.289	0.034	1.195	0.006	2.098	-0.317	0.529	0.881
107	4	13.871	1.286	0.001	1.199	-0.063	2.069	-0.40€	0.539	0.892
108	6	13.971	1.286	-0.014	1.198	-0.048	2.069	-0.383	0.539	0.892
109	6	13.971	1.286	-0.130	1.199	0.060	2.069	-0.196	0.539	0.892
110	4	14.031	1.311	-0.020	1.201	-0.074	1.994	-0.733	0.558	0.913
111	6	14.031	1.311	-0.138	1.201	0.034	1.994	-0.553	0.558	0.913
112	6	14.031	1.311	-0.153	1.201	0.048	1.994	-0.531	0.558	0.913
113	4	14.112	1.338	-0.185	1.199	-0.019	1.948	-0.618	0.568	0.924
114	6	14.112	1.338	-0.200	1.399	-0.006	1.948	-0.596	0.568	0.924
115	6	14.112	1.338	-0.216	1.199	0.008	1.948	-0.574	0.568	0.924
116	4	14.192	1.375	-0.247	1,203	-0.059	1.902	-0.575	0.577	0.935
117	6	14.192	1.375							
				-0.263	1.203	-0.046	1.902	-0.553	0.577	0.935
118	6	14.192	1.375	-0.387	1.203	0.063	1.902	-0.382	0.577	u.935
119	4	14.353	1.479	-0.254	1.205	-0.071	1.827	-0.548	0.595	0.956
120	6	14.353	1.479	-0.387	1.205	8.038	1.827	-0.383	0.595	0.956
121	6	14.353	1.479	-0.464	1.205	0.0%1	1.827	-0.362	0.595	0.956
122	4	14.433	1.546	~0.432	1.202	-0.016	1.798	-0.361	0.604	0.967
123	6	14.433	1.546	-0.449	1.202	-0.002	1.798	-0.340	0.604	0.967
124	6	14.433	1.546	-0.467	1.202	0.011	1.798	-0.320	3.604	0.967
125	4	14.513	1.623	-0.494	1.205	-0.055	1.769	-0.403	0.612	0.977
126	6	14.513	1.623	-6.512	1.205	-0.042	1.769	-0.383	0.612	0.977
127	6	14.513	1.623	-0.658	1.205	0.067	1.769	-0.223	0.612	u.977
128	4	14.593	1.723	-0.574	1.200	0.000	1.741	-0.466	0.619	0.500
	-									V - 700

129	4	14.674	1.837	-0.473	1.205	0.067	1.694	-0.706	0.626	0.998
130	6	14.674	1.807	-0.636	1.205	0.043	1.694	-0.553	0.626	0.998
131	6	14.674	1.907	-0.656	1.205	0.055	1.694	~0.534	0.626	0.998
132	4	14.754	1.914	-0.677	1.202	-0.011	1.648	-0.614	0.633	1.009
133	6	14.754	1.914	-0.698	1.202	0.062	1.640	-0.596	0.633	1.009
134	6	14.754	1.914	-0.720	1.262	0.016	1.648	-0.577	0.633	1.009
135	4	14.834	2.031	-0.738	1.205	-0.051	1.602	0.571	0.640	[.020
136	6	14.834	2.031	-0.761	1.205	-0.438	1.602	-0.553	0.640	1.020
137	6	14.834	2.031	-0.944	1.205	0.071	1.602	-0.409	0.640	1.020
138	4	14.995	2.294	-0.678	1.203	-0.063	1.527	-0.521	0.652	1.041
139	б	14.995	2.294	-0.885	1.283	0.046	1.527	-0.383	0.652	1.041
140	6	14.995	2.294	-0.911	1.203	0.059	1.527	-0.366	0.652	1.041
141	4	15,075	2.441	-0.920	1.199	-0.008	1.498	-9.357	0.657	1.052
142	6	15.075	2.441	-0.947	1.199	0.006	1.498	-0.340	0.657	1.052
143	6	15.075	2.441	-0.975	1.199	0.019	1.498	-0.323	0.657	1.052
144	4	15.155	2.598	-0.981	1.202	-0.048	1.469	-0.399	0.662	1.062
145	6	15.155	2.598	-1.010	1.202	-0.034	1.469	-0.303	0.662	1.062
146	6	15.155	2.598	-1.244	1.202	0.674	1.469	-0.250	0.662	1.062
147	4	15.316	2.940	-0.869	1.199	-0.060	1.394	-0.679	0.671	1.084
148	6	15.316	2.940	-1.134	1.199	0.048	1.394	-0.553	0.671	1.084
149	6	15.316	2.940	-1.167	1.199	0.062	1.394	-0.537	0.671	1.084
150	4	15.396	3.127	-1.161	1.195	-0.006	1.348	-0.611	0.676	1.094
151	6	15.396	3,127	-1.196	1.195	u.ŭūs	1.348	-0.596	0.676	1.094
152	6	15.396	3.127	-1.232	1.195	0.021	1.348	-0.501	0.676	1.094
153	4	15.476	3.324	-1.221	1.197	-0.046	1.302	-0.568	0.879	1.105
154	6	15.476	3.324	-1.259	1.197	-0.033	1.302	-0.553	0.679	1.105
155	6	15.476	3.324	-1.334	1.197	-0.006	1.302	-0.524	0.679	1.103
156	4	15.516	3.427	-1.213	1.199	-0.039	1.281	-0.540	0.681	1.110
157	6	15.516	3.427	-1.290	1.199	-0.012	1.291	-G.511	0.681	1.110
158	6	15.516	3.427	-1.329	1.199	0.001	1.281	0.496	0.681	1.110
159	4	15.597	3.639	-1.312	1.204	-0.066	1.241	-0.482	0.685	1.121
	6		3.639	-1.312	1.204	-0.052	1.241	-0.469	0.685	1.121
160		15.597	4.287	-1.527	1.269	-0.012	1.136	-0.468	Ü.694	1.150
161	1	15.822						-0.469	0.694	1.150
162	8 1	15.822	4.287	-1.527	1.269	-0.240 -0.552	1,136	-0.468	0.706	1.193
163	2	16.197	5.542 6.139	-1.819 -0.110	1.566 2.144	-1.435	0.701	-0.738	0.714	1.220
164 165	1	16.497 17.097	6.330	-0.110	4.380	-2.291	0.336	-C.738	0.730	1.251
166	6	17.097	6.330	-1.876	4.380	-1,137	0.336	-0.649	0.730	1.251
167	4	18.087	6.847	1.445	7.144	-1.655	0.000	0.000	0.752	1.279
168	6	18.087	6.847	-0.359	7.144	0.227	0.000	0.000	0.752	1.279
169	1	18.837	7.478	-0.483	6.887	0.116	0.000	0.000	0.768	1.296
170	3	19.137	9.296	-5.948	5.637	3.789	đ.uoo	0.000	0.774	1.304
171	1	19.337	11.832	-6.731	4.230	3.244	6.000	0.000	י, דד	1.310
										1.310
172 173	1	19.337 19.537	11.832 14.681	-6.731 -7.514	4.230 3.042	3.444	0.000	0.000	3.777 3.780	1.319
174	2	19.837	15.047	6.405	2.293	0.021	5.000	0.000	0.783	1.338
175	1	20.947	4.269	3.305	2.783	-0 463	0.000	0.000	0.805	1.410
176	1	20.967	0.373	0.205	4.349	-0.947	0.000	0.000	0.976	1.462
177	3	22.357	0.611	-1.06B	3.790	2.641	0.000	0.000	1,090	1.473
178	1	22.557	1,179	-1.769	2.818	2.226	C.000	0.000	1.128	1.483
179	1	22.971	3.245	-3.220	1.340	1.348	0.000	u.000	1.120	1.517
	2			0.000	1.146	0.000	0.000			1.537
190		23.121	3.752					0.000	1.169	
181	2	23.271	3.245	3.220	1.340	-1.349	0.000	0.000	1.175	1.557
182	1	23.685	1.178	1.769	2.018	-2.226	0.000	0.000	1.209	1.591
183	1	23.885	0.611	1.068	3.790	-2.641	6.000	0.606	1.247	1.601
194	3	24.185	0.373	-0.205	4.349	0.947	0.000	0.000	1.361	1.612
185	1	25.295	4.269	-3.305	2.783	0.463	0.000	0.600	1.532	1.664
186	1	26.405		-6.405	2.293	-0.021	0.000	0.000	1.554	1.736
187	2	26.705	14.691	7.514	3.042	-2.699	0.000	0.000	1.558	1.755
188	1	26.905	11.832	6.731	4.230	-3.244	0.000	0.000	1.560	1.764
189	8	26.905	11.832	6.731	4.230	-3.244	0.509	0.000	1.560	1.764
190	1	27.105	9.296	5.948	5.637	-3,789	0.000	0.000	1.562	1.771
191	3	27.405	7.478	0.483	6.387	-0.116	0.000	0.000	1.569	1.778
192	1	28.155	6.847	0.359	7.144	-0.227	0.000	0.000	1.586	1.795
193	6	28,155	6.847	-1.445	7.144	1.655	0.000	0.000	1.586	1.795
194	4	29.145	6.330	1.876	4.380	1.137	9.336	0.649	1.608	1.823

195	6	29.145	6.330	0.209	4.380	2.291	0.336	0.738	1.608	1.823
196	1	29.745	6.139	0.110	2.144	1.435	0.778	0.738	1.623	1.855
197	2	30.045	5.542	1.819	1.566	0.552	0.963	0.460	1.631	1.081
198	1	30.420	4.287	1.527	1.269	0.240	1.136	0.468	1.643	1.924
199	8	30.420	4.287	1.527	1.269	0.240	1.136	0.468	1.643	1.924
200	1	30.645	3.639	1.353	1.204	0.052	1.241	0.469	1.652	1.953
201	6	30.645	3.639	1.312	1.204	0.066	1.241	0.482	1.652	
202	4	30.725	3.427	1.329	1.199	-0.COT				1.953
203	6	30.725	3.427	1.290			1.261	0.496	1.656	1.964
204	6	30.725	3.427	1.213	1.199	0.012	1.261	0.511	1.656	1.964
205	4				1.199	0.039	1.281	0.540	1.656	1.964
		30.765	3.324	1.334	1.197	0.006	1.302	0.524	1.658	1.969
206	6	30.765	3.324	1.259	1.157	0.032	1.302	0.553	1.658	1.969
207	6	30.765	3.324	1.222	1.197	0.046	1.302	0.568	1.658	1.969
208	4	30.846	3.127	1.232	4.195	-0.021	1.348	0.581	1.662	1.980
209	6	30.846	3.127	1.197	1.195	-0.008	1.348	0.596	1.662	1.980
210	6	30.846	3.127	1.161	1.195	0.006	1.348	0.611	1.662	1.980
211	4	30.926	2.940	1.167	1.199	-0.062	1.394	0.537	1.666	1.991
212	6	30.926	2.940	1.134	1.199	-0.048	1.494	0.553	1.668	1.991
213	6	30.926	2.940	0.869	1.199	0.060	1.394	0.679	1.666	1.991
214	4	31.087	2.598	1.244	1.202	-0.074	1.469	0.250	1.675	2.012
215	6	31.087	2.598	1.010	1.202	0.034	1.469	0.303	1.675	2.012
216	6	31.087	2.598	0.901	1.202	0.048	1.469	0.399	1.675	2.012
217	4	31.167	2.441	0.975	1.199	-0.019	1.498	0.323	1.680	2.023
218	6	31.167	3.441	0.948	1.199	-0.006	1.498	0.340	1.680	2.023
219	6	31.167	2.441	0.920	1.199	0.008	1.498	6.357	1.600	2.023
220	4	31.247	2.294	0.911	1.203	-0.059	1.527	0.366	1.686	2.933
221	6	31.247	2.294	0.885	1.203	-0.046	1.527	0.303	1.685	2.033
222	6	31.247	2.294	0.678	1.203	0.063	1.527	0.521	1.686	2.033
223	4	31.408	2.031	0.944	1.205	-0.071	1.602	0.409	1.698	
224	6	31.408	2.031	0.761	1.205	0.078	1.602	0.553		2.055
225	6	31.408	2.031	0.738	1.205	0.051	1.602		1.698	2.055
226		31.498	1.914	0.720	1.202	-0.016	1.648	0.571	1.698	2.055
227	6	31.488	1.914	0.699	1.202	-0.002		0,577	1.704	2.065
228	6	31.488	1.914	0.677	1.202	0.002	1.649	0.596	1.704	2.065
229	4	31.568	1.867	0.656	1.202		1.648	0.614	1.704	2.065
230	6	31.568	1.807	0.636		-0.055	1.694	0.534	1.711	2.076
231	6	31.568	1.807	0.473	1.205	-0.042	1.694	0.553	1.711	2.076
232	4	31.648	1.722		1.205	0.067	1.694	0.706	1.711	2 076
233	4	31.729		0.574	1.200	0.000	1.741	0.465	1.719	2.086
234	6		1.623	0.658	1.205	-0.067	1.769	0.223	1.726	2.097
235	6	31,729	1.623	0.512	1.205	0.042	1.769	0.383	1.726	2.097
		31.729	1.623	0.494	1.205	0.055	.1.769	0.403	1.726	2.097
236	4	31.809	1.546	0.467	1.202	-0.611	1.798	0.320	1.734	2.108
237	6	31.809	1.546	0.450	1.202	6.002	1.790	0.340	1.734	2.108
238	6	31.809	1.546	0.432	1.202	0.016	1.798	0.361	1.734	2.108
239	4	31.889	1.479	0.404	1.205	-0.051	1.827	0.362	1.742	2.118
240	6	31.889	1.479	0.387	1.205	-0.038	1.827	0.383	1.742	2.118
241	6	31.889	1.479	0.354	1.205	0.071	1.627	0.548	1.742	2.118
242	4	32.050	1.375	0.387	1.203	-0.063	1.902	0.362	1.760	2.140
243	6	32.050	1.375	0.263	1.203	0.046	1.902	0.553	1.760	2.140
244	6	32.050	1.375	0.247	1.203	0.059	1.902	0.575	1.760	2.140
245	4	32.130	1.338	0.216	1.199	-0.008	1.948	0.574	1.770	2.150
246	6	32.130	1.338	0.200	1.199	0.006	1.948	0.596	1.770	2.15G
247	6	32.130	1.330	0.105	L.199	0.019	1.948	9.618	1.770	2.150
248	4	32.210	1.313	0.153	1.202	-0.048	1.994	0.531	1.779	2.161
249	6	32.210	1.311	0.138	1.202	-0.034	1.994	0.553	1.779	2.161
250	6	32.210	1.311	0.020	1.202	0.074	1.994	0.733	1.779	3.161
251	4	32.371	1.286	0.130	1.199	-0.060	2.069	D.196	1.799	2.182
252	6	32.371	1.286	0.014	1.199	0.048	2.069	0.383	1.799	2.182
253	6	32.371	1.286	-0.001	1 199	0.062	2.069	0.406	1.799	
254	4	32.451	1.289	-0.034	1.195	-0.006	2.098	0.317		2.182
255	6	32.451	1.289	-0.049	1.195	3.008	2.098		2.809	3.193
256	6	32.451	1.289	-0.063	1.199	0.021		0.340	1.809	2.193
257	4	32.531	1.302	-0.096	1.197	-0.946	2.098	0.364	1.809	2.193
258	6	32.531	1.302	-0.111	1.197	-0.046	2.127	0.359	1.819	2.204
259	6	32.531	1.302	-0.140	1.197		2.127	0.365	1.819	2.204
260	4	32.572	1.312	-0.113	1.197	-0.006	3.127	0.431	1.819	2.204
		-			** 107	-0.039	2.143	0.377	1.824	2.209

26		32.572	1.312	-0.142	1.199	-0.012	2.143	0 425	1.624	2.209
26		-	1,312	-0.157	1-199	0.001	2.143	0.449	1.824	2.209
263			1.340	-0.189	1.204	-0.066	2.179	0.443	1.833	2.220
264		32.652	1.340	-0.204	1.204	-0.052	2.179	0.468	1.833	2.220
265			1.865	-0.671	1.566	-0.552	2.459	0.468	1.895	2.292
266			1.925	0.486	2.367	-2.296	2.348	-1.198	1.930	2.317
267			1.638	0.229	4.628	*3.357	1.869	1.198	1.996	2.337
268		33.952	1.638	0.229	4.628	+3.357	2.869	-1-198	1.956	2.337
269		34.152	1.572	0.101	6.077	-3.887	1.629	-1.198	1.976	2.343
270		34.452	1.827	-0.995	7.489	-G.571	1.391	-0.414	2.005	2.350
271		35,052	3.413	-1.648	0.230	-0.677	1.142	-0.414	2.043	2.362
272 273		36.042	5.155	0.192	9.753	~0.85%	0.827	-0.195	2.079	2.379
274		36.842 37.142	4.976	0.032	11.230	-0.994	0.671	-0.195	2.103	2.391
275		37.142	4.729	0.777	12.438	-3.100	0.596	-0.302	2.113	2.396
276		37.742	4.293	0.676	14.375	-3.356	0.505	-0.302	2.124	2.399
277		38.042	3.918	0.574	16.465	-3.612	0.415	-0.302	2.135	2.402
278	1	38.242	4.551	-2.845	14.783	8.769	0.371	100.6	2:147	2.405
279	7	30.242	5.770	-3.248	11.486	7.715	6.371	0.001	2.153	2.408
280	1	38.442	5.770	-3.248	11.406	7.715	0.371	0.001	2.153	2.408
281	2	38.742	7.150	-3.649	8.611	6.662	0.371	0.001	2.150	2.411
282	1	39.117	8.334 8.433	-0.109	6.009	2.418	0.345	-0.171	2.164	2.418
283	1	39.367	8.518	-0.155	4.356	1.991	0.281	-9.171	2.171	2.429
284	1	39.742	8.674	-0.165	3-432	1.706	0.238	-0.171	2.176	2.440
285	4	41.192	9.385	-0.231 -0.256	2.312	1.279	G.174	-0.171	2.183	2.461
286	17	41.192	9.385	-0.256	1.000	.0.374	0.035	-0.020	2.209	2.662
287	16	41.192	9.385	-0.256	1.000	-0.374	0.000	0.000	2.209	2.662
288	1	41.647	9.641	-0.308	1.576	-0.374 -0.892	0.000	0.000	2.209	2.662
289	14	41.947	9.752	-0.200	2.196	-1.198	0.000	0.000	2.216	2.721
290	14	42.487	8.659	0.674	3.332	-1.303	0.000	0.006 0.000	2.221	2.747
291	14	42.707	7.865	0.715	3,979	-1.406	0.000	0.000	2.230	2.777
292	1	43.992	6.377	0.520	8.365	-2.234	9.000	0.000	2.235	2.789
293	14	44.292	6.196	0.495	9.954	-2.465	0.000	U.00u	2.266	2.818
294	14	44.642	6.082	0.521	12.194	-2.683	0.000	0.000	2.274	2.822
295	14	44.655	6.077	0.522	12.283	-2.691	6.000	0.000	2.274	2.827
296	12	44.655	6.077	1.036	13.283	-3.731	6.000	0.000	2.274	2.827
297	14	44.682	6.037	1.036	12.519	-3.765	0.000	0.000	2.275	2.828
298	12	44.682	6.037	1.546	12.519	-4.821	0.000	0.000	2.275	2.628
299	14	44.709	5.969	1.540	12.814	-4.875	u . 000	J.000	2.275	2.828
300	12	44.709	5.969	2.044	12.814	-5.955	0,000	0.000	2.275	2.828
301 302	14	44.736	5.875	2.031	13.171	-6.036	- 0.0cg	0.000	2.276	2.828
303	12 14	44.736 44.763	5.875	2,525	13.171	-7.14.	0.000	0.000	2,276	2.020
304	12	44.763	5.754	2.502	13,594	-7.256	0.000	0.000	2.277	2.828
305	14	44.790	5.754 5.608	2.985	13.594	-8.396	0.000	0.000	2.277	2.828
306	12	44.790	5.608	2.951	14.086	-8.546	0.000	0.000	2.277	2.829
307	14	44.817	5.438	3.421	14.086	-9.724	0.000	0.000	2.277	2.829
308	12	44.017	5.438	3.827	14.651 14.651	-9.918	υ.υψα	0.000	3.278	2.829
309	14	44.844	5.246	3.763	15.294	-11.141	0.000	0.000	2.278	2.829
310	12	44.844	5.246	4.200	15.294	-11.385	0.000	0.000	2.279	2.829
311	14	44.871	\$.033	4.119	16.023	-12.657 -12.958	0.000	U.000	2.279	2.829
312	12	44.871	5.033	4.537	16.023	-14.288	0.000	0.000	2.280	2.830
313	14	44.898	4.802	4.436	16.841	-14.652	0.000	0.000	2.280	2.830
314	12	44.89B	4.802	4.834	16.841	-16.047	0.000	0.000	2.281	2.830
315	14	44.912	4.678	4.774	17.297	-16.265	0.000	0.000	2.281	2.830
316	14	45.062	3.398	4.077	22.771	-28.679	0.000	0.000	3.281	2.030
317	14	45.079	3.261	3.994	23.458	-18.959	0.060 0.060	0.000 0.000	2.287	2.831
318	13	45.079	3.261	3.296	23.458	-13.951	0.000	0.000	2.288	2.831
319	14	45.114	3.042	3.181	24.505	-14.253	5.000	0.000	2.200	2.831
320	13	45.114	3.042	2.532	24.505	-9.032	0.000	0.000	2.289	2.831
321	14	45.149	2.875	2.457	25.201	-9.147	0.000	0.000	2.289	2.831
322	13	45.149	2.875	1.844	25.201	-3 78R	9.000	0.000	2.291	2.832
323	14	45.184	2.754	1.799	35.525	-3.794	0.000	0.000	2,291	2.832 2.832
324	13	45.184	2.754	1.214	25.525	1.625	0.000	0.000	2.293	2.832
325	14	45.219	2.676	1.190	25.468	1.646	0.000	0.000	2.295	2.832
326	13	45.219	2.676	0.623	25.468	7.041	0.000	0.000	2.295	2.832 2.832

327	14	45.254	2.6.18	0.610	25.032	7.010	0.000	0.090	2.297	2.832
328	13	45.254	2.638	0.052	25.002	12.303	a. 6 00	Ð.00D	2.397	2.832
329	14	45.289	2.641	0.043	24.229	12.137	0.000	0.000	2.299	2.852
330	13	45.289	2.641	-0.514	24.229	17.250	0.000	0.000	2,299	2.832
331	14	45.324	2.682	-0.528	23.083	16.876	9.009	0.000	2.301	2.833
332	13	45.324	2.602	-1.092	23.083	21.737	0.000	0.000	2.301	2.033
333	14	45.359	2.765	-1.119	21.628	21.082	0.000	0.000	2.363	2.033
334	13	45.359	2.765	-1.699	21.628	25,629	ψ.Προ	0.000	2.303	2.833
335	14	45.394	2.891	-1.748	19.409	24.632	0.000	0.000	2.305	2.833
336	13	45.394	2.891	-2.353	19.909	28.308	0.005	0.000	2.305	2.833
337	14	45.412	2.977	-2.393	18.931	28.114	6.000	0.000	2.306	2.833
338	14	45.582	3.882	-2,777	10.653	21.231	0.000	0.000	2.314	2.835
339	14	45.592	3.939	-2.799	10.237	20.819	0.000	0.000	2.314	2.835
340	12	45.592	3.939	-2.524	10.237	20.104	0.000	0.000	2.314	2.835
341	14	45.612	4.044	-2.561	9.456	19.334	0.000	0.000	2.315	2.836
342	12	45.612	4.044	-2.279	9.456	18.674	0.000	0.000	2.315	2.836
343	14	45.632	4,139	-2.309	8.731	17.954	0.000	0.000	2.316	2.836
344	12	45.632	4.139	-2.020	8.731	17.345	G.00C	0.000	2.316	1.836
345	14	45.652	4.224	-2.044	8.057	16.672	0.000	0.000	2.316	2.836
346	12	45.652	4.224	-1.750	8.057	16.110	0.000	0.000	2.316	2.836
347	14	45.672	4.297	-1.769	7.431	15.479	0.000	0.000	2.317	2.837
348	12	45.672	4.297	-1.468	7.431	L4.962	0.000	0.000	2.517	2.837
349	14	45.692	4.359	-1.482	6.845	14.371	0.000	6.660	2.328	2.837
350	12	45.692	4.359	-1.178	6.849	19.895	u.00n	0.000	2.318	2.837
351	14	45.712	4.409	-1.187	6.309	10.341	0.000	ս. այսո	2.319	2.838
352	12	45.712	4.409	-0.801	6.309	12.903	0.000	0.000	2.019	2.838
353	14	45.732	4.447	-0.887	5,807	12.384	0.000	0.000	2.319	2.838
354	12	45.732	4.647	-0.57B	5.807	11.980	0.000	0.000	2.319	2.838
355	14	45.752	4.473	-0.581	5.341	11.493	0.000	0,000	2.320	2.839
356	12	45.752	4.473	-0.271	5.341	11.122	0.000	U.000	2.320	2.839
357	14	45.772	4.487	-0.273	4.908	10.665	0.000	0.000	2.321	2.839
358	12	45.772	4.467	0.038	4.908	10.324	0.000	0.000	2.321	2.839
359	14	45.782	4.483	0.037	4.705	10.110	6.006	0.000	2.321	2.840
360	14	46.242	4.500	0.000	0.045	0.000	0.000	0.000	2.337	3.074
361	16	46.242	4 .500	0.000	0.045	0.000	0.000	0.000	2.337	3.074
362	14	46.702	a.488	-0.037	4.705	-10.110	0.000	0.000	2.354	3.309
363	14	46.712	4.487	-0.038	4.908	-10.324	9.000	0.000	2.354	3.309
364	12	46.712	4.487	0.273	4.908	-10.665	9.000	0.000	2.354	3.309
365	14	46.732	4-473	0.271	5.341	-11.122	0.000	0.000	2.355	3.310
366	12	46.732	4.473	0.581	5.341	-11.493	0.000	0.000	2.359	3.316
367	14	46.752	4.448	0.578	5.807	-11.980	១.១១៦	0.000	2.355	3.310
369	12	46.752	4.44B	0.887	5.807	-12.384	J.000	5.000	2.355	3.310
369	14	46.772	4.409	0.881	6.309	-12.903	0.000	0.000	2.356	3.311
370	12	46.772	4.409	1.187	6.309	-13.341	Ü.0 0 0	0.000	2.356	3.311
371	14	46.792	4.359	1.178	6.849	-13.895	0.000	0.006	2.357	3.311
372 373	15	46.792	4.359	1.482	6.849	-14.372	0.000	0.000	2.357	3 311
374	14	46.812 46.812	4.297	1.460	7.431	-14.962	0.000	0.000	2.358	3.312
375	14	46.832	4.297	1.768	7.431	-15.480	0.000	0.000	2.350	3.312
376	12	46.832	4.224	1.750	8.057	-16.116	0.000	0.006	2.358	3.312
377	14	46.852	4.224 4.139	2.044	8.05?	-16.672	0.000	0.000	2.358	3.312
378	12	46.852		2.020	3.711	-17.345	0.000	0.000	2.359	3.313
379	14	46.872	4.139	2.309	6.731	-17.954	0.000	0.000	2.359	3.323
380	12	46.872	4.064	2.279	9.456	-18.674	0.000	C . Out	2.360	3.313
381	14	46.892	4.044	2.561	9 456	-19.334	0.000	0.00	2.360	3.313
382	12		3.939	2.524	10.237	-20.104	0.000	0.000	J.361	3.313
383	14	46.892 46.902	3.939	2.799	10.237	-20.819	0.000	0.000	2.361	3.313
384	14		3.882	2.777	10.653	-21.231	0.000	0.000	2.361	3.313
385	14	47.072 47.089	2.977	2.393	18.931	-28.115	0.006	0.000	2.369	3.315
386	13		2.891	2.353	19.909	-28.508	0.000	0.000	2.370	3.315
387		47.089	2.891	1.747	19.909	-24.632	0.000	0.000	2.370	3.345
388	14	47.124	2.765	1.699	21.629	-25.629	0.000	0.066	2.372	3.316
389	14	47.124	2.765	1.119	21.629	-21.083	0.000	0.000	2.372	3.316
390	13	47.159	2.683	1.092	23.083	-21.737	a.gng	0.000	2.374	3.316
391	14	47.159 47.194	2.683	0.528	23.003	-16.876	0.000	0.000	2.374	3.316
392	13	47.194	2.641	0.514	24.229	-17.250	0.000	0.000	3.376	3.316
-36		41,194	2.641	-0.043	24.229	-12.137	9.000	0.000	2.376	3.316

393	14	47.229	2.639	-0.052	26.033	-10.302	6.000	0.000	2.378	0.316
394	13	47,229	2.639	-0.610	25.032	-1.009	0.000	0.006	2.378	3.316
395	14	47.264	2.676	-0.623	25.468	+7.046	9.000	0.000	2.380	1.317
396	13	47.264	2.676	-1.190	35.468	-1.64€	6.006	0.000	2.380	1.117
397	14	47.299	2.754	-1.214	25.525	-1.621	0.000	a . 0 <u>a</u> u	2.362	3.317
398	13	47.299	2.754	-1.799	25.525	3.794	0.000	0.000	2.382	1.317
399	14	47.334	2.875	-1.844	25.201	3.788	0.000	0.000	2.384	3.317 د
400	13	47.334	2.875	-2.457	25.201	9.147	0.000	0.006	2.584	1.317
401	14	47.369	3.042	-2.532	24.505	9.032	6.0 6 0	0.000	2.385	3.317
402	13	47.369	3.042	-3.181	24.505	14.253	0.600	0.006	2.385	3.317
403	14	47.404	3.261	-3.29€	33 459	13.95%	0 000	0.000	2.387	3.317
404	13	47.404	3.261	-3.994	23.459	18.960	0.000	0.000	2.387	3.317
405	14	47.422	3.398	-4.077	22.771	18.686	0.600	0.000	2.398	3.317
406	14	47.572	4.678	-4.774	17,297	16.265	6.000	0.000	2.394	3.319
407	14	47.585	4.002	-4.835	16.841	16.047	0.000	0.000	2.394	3.319
408	12	47.585	4.802	-4.436	46.841	14.653	0.000	0.000	2.394	3.319
409	14	47.612	5.933	-4.537	16.023	14.288	0.000	0.000	2.395	3.319
410	12	47.612	5.033	-4.119	16.023	12.95\$	0.000	0.000	2.395	3.319
411	14	47.639	5.246	-4.200	19.295	12.658	V.000	0.000	2.396	3.319
412	12	47.639	5.346	-3.763	15.295	14.395	0.000	0.000	2.396	5.319
413	14	47.666	5.438	-3.827	14.651	11-141	0.000	0.000	2.396	3.320
414	12	47.666	5.438	-3.373	14.651	9.919	0.000	0.000	2.396	0.320
415	14	47.693	5.608	-3.421	14.686	5.725	0.600	0.000	2.397	3.320
416	12	47.693	5.608	-2.951	14.086	8.546	0.000	0.000	2.397	3.320
417	14	47.720	5.754	-2.986	13.594	8.396	a.000	0.000	2.398	3.320
418	12	47.720	5.754	-2.500	25.594	7.256	0.500	0.000	2.398	1.320
419	14	47.747	4.875	-2 .525	13.171	7 14.5	0.000	0.000	2.399	3.520
420	12	47.747	5.875	-2.031	13.171	6.036	0.000	0.060	2.399	3,320
421	14	47.774	5.970	-2.044	12.814	5.955	0.000	0.000	2.398	3.321
422	12	47.774	5.970	-1.540	12.814	4.875	0.000	0.000	2.399	3.321
423 424	14	47.801	6.017	-1.546	12.519	4.821	0.000	0.000	3.400	3.32E
		47.901	6.037	-1.036	12.519	3.763	0.000	0.000	2.400	3.331
425 426	14 12	47.828	6.077	-1.037	12.283	3.731	0.000	0.006	2.401	3.321
427	14	47.828 47.842	6.077	-0.522	12.283	2.691	0.000	0.000	2.401	1.321
428	14	48.192	6.083	-0.521	12.194	2.684	0.000	0.000	2.451	3.322
429	14	48.492	6.196	-0.495	9.954	2.465	0.006	0.006	2.409	3.326
430	1	49.697	6.378 7.865	-0.520	8.365	2.004	ù.nun	0.000	2.016	3.331
431	14	49.997	8,660	-0.715	1.979	1.406	0.000	0.000	.0 . 4 4 ()	1.360
432	14	50.537	9.753	-0.674	3.332	1.303	0.000	$0.0(a_0)$	2.445	3.372
433	14	50.837	9,642	0.200 0.308	2.196	1.198	0.000	0.600	3.455	3.402
434	1	51.292	9.385	0.256	1.576	0.892	0.050	u.aac	2.458	1.427
435	17	51.292	9.385	0.256	1.000	0.374	Ü.000	0.000	2.466	.486
436	16	51.292	9.385		1,000	0.374	-0.035	-0.020	2.466	3.486
437	4	52.742	8.674	0.256 0.231	2.000	0.374	-0.035	-0.020	2.466	3.486
436	1	53.117	R.518	0.185	3.312 3.432	-1.279	-0.174	· C.171	2.492	1.638
439	1	53.367	B. 433	0.155	4.356	-1.706 -1.991	-0.238	-6.171	2.499	1.709
440	1	53.742	8.334	0.109	6.040	-2.419	-0.281 -0.445	-0.171 -0.171	2.501	3.719
441	2	54.042	7.595	2.294	8.175	5.002	-0.381		2.510	3.731
442	1	54.442	5.899	1.957	12.686	-6.276	-0.464	-0.968 -0.068	2.516	4.738
443	3	54.742	5.960	-2.177	13.739	4.045	-0.473	-0.468	2.526	3.744
444	ı	55.042	7.353	-2.465	11.969	2.821	-0.585	0.371	2.534	3.748
445	8	55.042	2.353	-2.465	11.969	2.821	u.585	-0.371	2 541	3.751
446	1	55.342	8.919	-2.754	10.344	2.556	- 0.696	-0.371	2.54;	4.751
447	2	55.642	9 968	-0.663	9 524	0.301	-9.762		2.547	3.756
448	1	56.442	11.122	-0.779	9.273	0.333	-0.540	-0.197	3.552	s.760
449	4	57.652	5.932	3.944	4.154	-0.019	0.325	-0.197	2.564	1.774
450	1	58.252	2.204	2.270	9.220	-0.014	0.329 0.35a	1.142	3.585	3.795
451	3	58.552	1.397	0.601	7.530	5.314	0.747	1.142	2.612	1.895
452	1	58.752	1.196	0.400	5.553	4.552	1.649	2.50B	3.646	4.B11
453	7	58.752	1.196	0.406	5.553	4.552	1.049	1.508	2.665	3.816
454	1	59.152	1.027	0.016	2,597	2,987	1.052	1.508	3.66S	1.616
455	2	59.452	0.832	0.569	1 566	0.552	1.854	1.508 -0.199	2.724	11,8 /
456	1	60.052	0.722	-0.385	1.204	0.052	1.794	-0.199	3.774	3.848
457	6	60.052	0.722	-0.394	1.204	0.666	1.734	-0.180	2.919	3.930
459	4	60.132	6.794	-0.504	1.198	-0.001	2.719	-0.176	3.915 2.941	3.930
										1.941

459	٤	60.132	0.794	-0.515	1.148	0.012	1.719	· (0., 255)	2.941	5.941
460	6	60.132	0.794	-0.533	1.198	0.639	1.719	-0.118	2.931	3.941
461	4	60.172	0.836	-0.558	1.197	0.606	1.714	-0.153	2.939	3.946
462	6	60.172	0.938	-0.577	1.197	0.032	1.714	-G.114	2.939	J. 946
463	6	60.172	0.838	-0.566	1.197	0.046	1.714	-0.095	2.939	1.946
464	4	60.252	0.941	-0.694	1.195	-0.021	1.707	-0.091	2.954	1.957
465	6	60.252	0.941	-3.705	1.195	-0.008	1.207	-0.073	2.954	3.957
466	6	60.252	0.941	-0.715	1.195	0.006	1.707	-0.052	2.954	3.957
467	4	60.333	1.064	-0.820	1.199	-0.062	1.699	-0.133	2.966	3.967
468	6	60.333	1.064	-0.852	1.199	-0.048	1.699	-C.114	2.946	1.967
469	6	60.333	1.064	-0.928	1.199	0.060	1.699	0.039	2.966	3.967
470	4	60.493				-0.074				
			1.371	-0.963	1.201		1.667	vol. 435	3.968	3.989
471	6	60.493	1.371	~1.086	l 201	0.034	1.665	-0.284	3.980	3.989
472	6	60.453	1.371	-1-162	1.201	0.048	1.667	$+6.26\omega$	2.988	3.989
473	4	60.574	1.555	-1.196	1.199	-0.019	i.643	0.345	4.996	3.999
474	6	60.574	1.555	-1.214	1.199	-0.006	1.643	0.327	2.996	3.999
475	6	60.574	1.555	-1.231	1.199	0.008	1.643	-0.368	3.996	5.999
476	4	60.654	1.760	-1.322	1.203	-0.059				
							1.618	-0.304	4 . U () 4	4.9]0
477	6	60.654	1.760	-1.342	1 200	-0.046	1.619	-0.284	3.004	4.010
478	6	60.654	1.760	-1.500	1.203	0.063	2.610	-U.14B	3.604	4.010
479	4	60.814	2.229	-1.395	1.205	-U.07j	2.5Bb	-0.257	0.017	4.031
480	6	60.814	2.229	-1.596	1.305	9.030	1.586	-0.114	0.017	4.031
481	6	60.814	2.229	-1.621	1.305	0.061	j 586	0.096	3.017	4.031
482	4	60.895								
			2,496	-1.695	1.203	•û.u16	2.579	~0.08¥	3.622	4.042
483	6	60.895	2.495	-1.723	1.202	-0.002	1.579	J . B7/2	3.622	4.042
484	6	60.895	2.496	-1.751	1.202	Ü.611	1.579	-0 054	4.002	4.042
185	4	60.975	2.783	-1.820	1.265	-0.956	1.571	-0.132	1.027	4.053
486	6	60.975	2.783	-1.851	1.205	-0.042	1.571	-0.114	3.027	4.053
487	6	60.975	2.784	-2.102	1.205	0.067	1.571	0.028	3.027	4.053
488	4	61.055	3.111	-1.978	1.200	0.000	1.565	-0.198		
									3.032	4.063
489	4	61.135	3.415	-1.797	1.205	-0.087	1.540	-0.423	3.036	4.074
490	6	61.135	3.415	-2.105	1.205	0.342	1.540	-0.284	3.035	4.074
491	6	61.135	3.415	-2.144	1.205	0.055	1.546	-9.267	3.035	4.074
492	4	61.216	3,763	-2.191	1.203	-0.011	1.515	-0.344	v. 099	4.084
493	6	61.216	3.763	-2.233	1.202	0.000	1 515	-0.327	1.039	4.084
494	6	61.216	3.763	-2.275	1.202	0.000	1.515	-0.340	3.079	4.084
495	4	61.296	4.131							
				-2.314	1 205	-0.9%1	1.491	-0.302	V.042	4.095
496	6	61.296	4.131	-2.360	1 205	e0.038	1.491	-0.294	3.042	4.095
497	6	61.296	4.131	-2.733	1.20%	9.07:	1.491	-0.190	1.042	4.095
498	4	61.456	4.926	-2.176	1.203	-6.063	1.459	-0.246	3.048	4.116
499	6	61.456	4.926	-2.615	1.203	0.046	1.457	-0.114	U 048	4.116
500	6	61.456	4.926	-2.670	1,203	0.059	1.459	0.098	v. 04 e	4.116
501	4	61.537	5.356	-2.682	1.199	-0.008	1.451	-0.088	3.050	4.127
502	6	61.537								
	-		5.356	-2.743	1.199	0.006	1.451	.0.072	3.050	4.127
503	6	61.537	\$.356	-2.803	1.199	0.019	1.451	-0.955	3.050	4.127
504	4	61.617	5.806	-2.005	1.202	-9.94B	1.444	-0.130	3.063	4 - 138
505	6	61.617	5.006	-2.070	1.202	-0.034	1.444	-0.114	3 - 05 3	4.238
506	6	61.617	5.006	-3.394	1.202	0.074	1.444	0.014	3.053	4.138
507	4	61.778	6.764	-2.514	1.399	-0.060	1.412	0.412	3.057	4.159
508	6	61.778	6.764	-3.124						
					1.199	0.048	1 412	-0.284	3 - 0 5 7	4.159
509	6	61.778	6.764	-3.200	2.199	0.062	1.412	9.259	3.057	4 - 259
510	4	61.858	7.276	-3.170	1.195	-u.006	1.788	-5.34%	3.059	4.176
511	6	61.858	7.276	-3.252	1.195	0.008	1.488	-0.327	3.054	4.170
512	6	61.858	7.276	-3.334	1.105	0.021	1.388	-0.311	9.056	4.170
513	4	61.938	7.808	-3.292	1.197	-0.04ñ	1.363			
								-0.300	3.060	4.180
514	6	61.938	7.909	-3.379	1.197	-0.033	1.363	-0.284	3.060	4.180
515	6	61.938	7.000	-3.555	1.497	-0,006	1.363	-0.254	3.000	4.190
516	4	61.978	8.081	-3.261	1.199	-U.039	1.352	-0.272	3.061	4.186
517	6	61.978	9.081	-3.663	1.199	-0.0Lz	1.352	-0.242	3.061	4.186
518	6	61.978	9.081	-3.534	1,199	5.051	1.252	-0.227	3.061	4.186
519	4	62.058	8.644	-3.474	1.204	-0.066	1.435			
520	6	62.058	8.644					-0.214	3. 06 V	4.196
				-3.571	1.264	-0.652	1.335	·J.149	ા તાલું દ	4.196
521	1	62,283	10.332	-3.929	1.269	-0.239	1.290	-0.194	2,666	4 - 225
522	B	62.283	10.332	-3.929	1.269	+0.3349	1.290	-0.199	3.006	4.235
523	1	62.658	13.502	-4.5,25	1.560	-0.553	1.845	~J_299	3.671	4.369
524	2	62.958	13.629	4.130	2.335	2.171	4.944	-0 922	3.075	4.294

525	1	63.558	9.150	3.535	5.822	- 5.649	0.451	-0.923	V. 9(g) v	4.320
526	6	63.558	9.150	0.324	5.822	1.72)	0.451	-0.760	1,081	4 - 320
527	4	64.768	1.549	3.092	In.99e	2.548	e 600	0.666	1.114	4.344
528	6	64.768	3.549	1.924	10.990	1,06%	9.000	0.000	3.110	4.344
529	1	66.118	0.769	0.136	8.459	G. 866	0.669	0.000	1.366	4.367
530	7	66.118	0.769	6.136	8.459	0.004	u.pón	0.000	3.266	4.367
531	1	66.318	0.767	-0.129	8.144	0.767	u.bay	0.000	1.307	4.371
532	3	66.618	1.071	-0.924	6.798	3.538	0.500	0.000	3.362	4.377
533	1	67.098	2.357	-1.754	3.860	2.584	0.900			
534	2	67.398	2.518	1.284	3,740			0.000	3.411	4.392
535	1	69.738	0.966	-0.125		-2.134	Ç.000	0.000	3.430	4.405
536	1	69.038			12.126	-4.125	6.000	0.000	3.594	4.437
537	3		1.136	-0.441	14.735	-4.570	0.000	0.000	3.640	6.441
538		69.338	1.931	-2.466	13.439	9.365	0.000	0.000	3.674	4.444
539	1 2	69.783	4.893	-4.116	6.083	6.323	a.000	0,000	3.698	4.452
540	1	70.088	6.131	0.342	3.950	1.378	0.500	0.000	3.764	4.462
		71.966	5.489	0.000	1.362	0.000	J. 00V	0.000	3.759	4.612
541	1	73.844	6.131	-0.34.	3.951	-1.379	0.060	0.000	3.811	4.762
542	2	74.144	4.893	4.116	€.084	-6.334	9.000	0.000	5.819	4.772
543	1	74.594	1.931	2.466	13.140	9.356	ម.ព្រំប្	0.000	3.843	4.780
544	3	74.894	1.136	0.441	24.737	4.571	0.000	0.000	3.877	4.784
545	1	75.194	0.966	0.125	12.128	4.125	0.000	0.000	3 - 9 2 3	4.787
546	1	76.534	2.510	-1-294	3.740	2.134	0.00¢	0.600	4.089	4.819
547	2	76.834	2.357	1.754	0.860	-3.594	0.000	0.000	4.10%	4.833
548	1	77.314	1.071	0.924	6.798	-3.5636	0.006	0.000	4.155	4.848
549	3	77.614	0.767	0.129	Н.144	-0.767	ü.00ü	U. Ono	4.210	4.054
550	1	77.814	0.769	-0.13é	8.459	- 0 - 8 0 6	0.000	0.500	4.252	4.858
551	7	77.814	0.769	-0.136	9.459	-0.8(0)	0.000	0.000	4.252	4.858
552	1	79.164	3.549	-1.924	10.990	-1.059	9.000	6.600	4.404	4.890
553	6	79.164	3.549	-3.042	10.990	2.548	0.000	0.000	4.404	4.880
554	4	80.374	9.150	-0.325	5.821	1.72)	6.491	0.780	4.434	4.904
555	6	80.374	9 - 150	-3,375	5.821	3.639	0.491	0.929	4.434	4.904
556	1	80.974	13.639	-4.130	3.335	2.171	1.044	0.920		
557	2	81.274	13.502	4.525	1.566	0.553	1.215		4.442	4.930
558	1	81.649	10.332	3.929	1.269	0.239		0.199	4.446	4.956
559	9	\$1.649	10.332	3.929	1.269	0.239	1.290	0.199	4.451	4.999
560	1	81.874	8.644	3.571	1.204	0.254	1.290	0.199	4.451	4.999
561	6	81.874	8.644	3.474	1.304		1,335	0.199	4-455	5.028
562	4	81.954	8.081	3.534	1.199	0.066	1.335	0.214	4.455	5.028
563	6	81.954	180.8	3.443	1.199	0.012	1.352	0.227	4.456	5.039
564	6	81.954	0.081	3,261	1.194	0.035	1.352	0.242	4.456	5.039
565	4	81.994	7.808	3.559			1.352	0.272	4.456	5.039
566		81.994	7.000		1.197	0.665	1.365	9.254	4.457	5.044
567	6	81.994	7.808	3.379	3.197	0.832	1.360	0.284	4.457	5.044
568	4	82.074		3.292	1 197	0.046	1.353	0.700	4 457	5.044
569	•	82.074	7.276	3.334	1.195	-0.521	1.388	0.211	4 459	5.055
570	,		7.276	3,252	1.13%	-0.002	1.988	6.327	4 459	5.055
571	6	82.074	7.276	3.270	1.195	0.006	1.388	0.343	4.459	5.055
572	4	82.155	6.764	3,200	1.199	-0.062	1.432	0.269	4.461	5.065
	6	82.155	6.764	3.124	1.199	-0.040	3 412	0.204	4.401	5.665
573	6	82.155	€.764	2.514	2 199	0.060	2.432	0.412	4.461	5.065
574	4	82.315	5.806	3.394	1.292	×0.074	1.444	-0.016	4 465	5.087
575	6	82.315	5.806	2.870	1.202	0.034	1.044	0.114	4.465	5.007
576	6	82.315	5.806	2.805	1.202	0.048	1.446	0.130	4.465	5.087
577	4	82.395	5.356	2.803	1.199	-6.019	1.451	0.099	4.467	5.097
578	6	82.395	5.356	2.742	1.144	-0.005	1.451	0.072	4.667	5.097
579	6	82.395	5.356	2.652	2:199	0.000	1.451	9.038	4.467	5.097
580	4	82.476	4.926	2.670	1.203	×0.059	1.459	0.098	4.464	5.108
581	6	82.476	4.926	2.615	1.20%	-0.546	1.45%	0.114	4.409	5.108
582	6	82,476	4.926	2.170	1.203	0.043	1.459	0.248	4.469	5.108
503	4	82.636	4.131	2.733	1.205	-0.071	1.451	0.150	4.475	5.129
584	6	82.636	4.131	2,360	1.205	0.038	1.491	0.284	4.475	5.129
585	6	82.636	4.131	2.314	1.205	0.051	1.491	0.301	4.475	5.129
586	4	82.717	3.763	2.275	1.202	-0.616	1.515	0.35a	4.478	5.140
587	6	82.717	3.763	2.233	1.262	0.002	1.515	0.327	4.478	5.140
588	6	82.717	3.763	2.191	1.202	0.011	1 515	0.344	4.478	
589	4	82.797	3.415	2.144	1,205	-u.055	1 540	0.267		5.140
590	6	82.797	3.415	2.105	1.20%	-U.G4!	1 540	0.287	4.462	5.251
								0.204	4.482	5.151

591	6	82.797	3.41%	1.797	1.205	0.067	1 540	0.423	4.482	5.151
592	4	82.877	3.111	1.978	1.200	u . 00o	1,565	0.198	4.686	5.161
593	4	82.957	2.783	2.102	1.205	-0.067	£ 571	-0.028	4.490	5.172
594	6	82.957	2.703	1.851	1,205	u. N4,:	571	0.114	4.490	5 172
595	6	82.957	2.783	1.820	1.205	0.055	1.871	0.132	4.490	5.172
596	4	83,038	2.49h	1.751	1.202	-0.011	1.579	0.054	4 495	5.182
597	6	83.038	2.496	1.723	1.202	0.002	1.979	0.692	4.495	5.182
598	6	83.038	2.490	1.695						
					1.202	0.016	1.579	\$,089	4 495	5.182
599	4	83.118	2.229	1.621	1.205	-u.051	1.586	0.096	4.500	5.193
600	6	83.118	2.229	1.596	1.205	-0.038	1.5%(0.114	4.500	5,195
601	6	83.118	2.229	1.395	1.205	0.071	1.58€	0.257	4.500	5.193
602	4	83.278	1.760	1.500	1.203	-0.063	1.619	0.138	4.513	5.214
603	6	83.278	1.760	1.342	1.203	0.046	1.618	0.284	4.513	5.214
604	6	83.278	1.760	4.522	1.203	0.059	1.618	0.303	4.513	5.214
605	4	83.359	1.555	1.231	1.199	-0.008	1.043	0.308	4.521	5.225
606	6	83.359	1.555	1.214	1.199	0.006	1.643	0.327	4.52;	5.225
607	6	83.359	1.555	1.196	1.159	0.019	1.643	0.345	4.521	5.225
608	4	B3.439	1.371	1.102	1.202	-0.048	1.667	0.266	4.530	5.236
609	6	83.439	1.371	1.D8n	1.202	-0.634	1.667	0.284	4.530	5.236
610	6	83.439	1.371	0.963	1.202	0.074	1.667	0.435	4.530	5.236
611	4	83.599	1,064	0.928	1.199	-0.060	1.699	-0.039		
612	6	83.599	1.064	0.832			1.699		4.551	5.257
613	6	83.599	1.964		1.199	U.U4H		0.114	4.551	5.257
				0.820	1.194	0.062	1.699	0.133	4.551	5.257
614	4	83.680	0.941	0.715	1.195	-9.006	1 707	0.052	4.564	5.260
615	6	83.680	0.941	0.744	1.195	0.008	1.707	0.072	4.564	5.260
616	6	83.600	0.941	0.694	1.295	0.021	1.707	0.091	4.464	5.260
617	4	83.760	0.838	0.594	1.197	-0.046	1.714	9.095	4.578	5 270
618	6	83.760	0.838	0.577	1.197	-0.00%	1.714	6.114	4.578	5.278
619	6	83.760	0.838	0.559	1.197	-0.005	1.714	6.153	4.578	5.278
620	4	83.800	0.794	0.531	1.199	.0.039	1.719	0.118	4.586	5.284
621	6	83.800	0.794	0.513	1.159	-0.012	1.719	0.157	4.586	5.284
622	6	83.800	0.794	0.504	1.199	0.604	1.719	0.176	4.586	5.284
623	4	83.880	0.723	6.394	1.204	-0.004	1.734	0.180	4.603	5.294
624	6	83.880	0.722	0.385	1.204	-0.652	1.734	0 199	4.604	5.296
625	1	84.480	0.832	-0.569	1.566	-0.552	1.853	0.199	4.764	5.366
626	2	84.780	1.027	-0.016	2.537	-2.987	1.652	1.508	4.754	
627	1	85.180	1.196	-0.406	5.552	-4.551	1.049			5.392
628	7	85.180	1.196	-0.408	5.553			-1.500	4.852	5.409
629	1	85.380				-4.551	2.049	-1.508	4.852	5.409
630	3		1.397	-0.601	7.529	-5 . 3/3/3	0.747	1.508	4.877	5.413
		85.680	2.204	-2.270	9.219	0.084	J 356	-1.142	4.90%	5.419
631	1	86.280	5.932	-3.944	9.157	0.054	-0.329	-1.142	4.937	5.429
632	4	87.490	11.122	0.779	4.272	-0.113	-0.940	0.197	4.953	5.450
633	1	88,290	9.969	0.663	9.523	-0.201	· v . 782	0.197	4.965	5.464
634	2	88.590	8.919	2.754	10.343	-2.596	-0.696	0.371	4.970	5.469
635	1	88.890	7.353	2.465	11.967	2.839	0.589	0.371	4.976	5.473
636	8	88.890	7.353	2.465	11.967	-2.820	-0.585	0.371	4.976	5.473
637	1	89.190	5.960	2.177	13.727	-3.044	-0.473	0.371	4.983	5.477
63B	3	89.490	5.899	-1.957	12.684	6.274	-0.909	9.068	4.991	5.430
639	1	89.890	7.595	-2.284	8.174	5.001	+0.381	C.06%	5.001	5.487
640	2	90.190	8.334	-0.109	6.009	2.418	-1.345	6.171	5.007	5.493
641	1	90.565	H . 4'33	-0.155	4.356	1.991	-0.281	0.171	5.014	5.505
642	1	90.815	N.516	-0.185	4,431	1.706	-9.348	0.171		
643	1	91.190	8.674	~0.231	8.312	1.279	-0.174		9.017	5.515
644	4	92.640	9.385	-0.256	1.000			0.171	5.026	5.537
645	17	92.646	9.385			-0.374	•0.935	0.020	5.051	5.738
646	16			-0.256	000,1	-0.474	0 000	0.950	5 . C 5 I	5.738
		92.640	9.385	-0.356	1.000	-0.374	J. 00U	U 095	5.051	5.738
647	1	93.095	9.642	-0.508	1.576	-0.B93	0.000	0.000	5 (0) 9	5 797
648	14	93.395	9.753	-0.206	2.196	-1.198	0.600	ő , 000	5.064	5.823
649	14	93.935	8.660	0.674	3 - 331	-1.303	2,000	0.000	5.073	5.853
650	14	94.235	7.865	0.715	3.979	-1.406	0.000	6.000	5.073	5,865
651	1	95.440	6.378	0.520	6.465	-2.234	ŭ . G () G	0.000	5.101	6.894
652	14	95.740	6.196	0.495	9.953	-2.404	9.400	ŭ., g g g	5.108	5.898
653	14	96.090	6.033	0.52:	12.193	-2.684	p.,0pp	U . 000	5.116	5.903
654	14	96.104	6.077	0.522	12.282	-2.690	0.000	0.500	5.117	5.903
655	12	96.104	6.077	1.037	12.283	-3.731	J 000	0.000	5.117	
656	14	96.131	6.037	1.036	12.518	-3.763	0.000	0.000		5.903
					-				5.117	5.903

657	12	96.131	6.037	1.546	12.510	-4.621	9.500	0.000	6.117	', 903
658	14	96.158	5.970	1.540	12.813	-4.875	d : 00 û	0.000	5.118	5.904
659	12	96.158	5.970	2.044	12.013	-6.955	J. utu	0.000	5.118	4.904
660	14	96.185	5.875	2.031	13.176	-6.035	9.000	0.096	5.119	5.904
661	12	96.185	5.875	2.525	13.176	-7.343	a . 010	0.000	5.119	5.904
662	14	96.212	5.754	2.503	13.593	-7.255	9.900	0.000	5.115	5.994
663	12	96.212	5.754	2.986	13,593	-8.395	à.uùu	0.000	5.419	5.904
564	14	96.239	5.608	2.951	14.085					
665	12					-8.546	u 090	0.000	5.120	5.905
		96.239	5.608	3.421	14.085	9.724	u . Oftij	0.000	5.126	5.905
666	14	96.266	5.438	3.373	14.650	-9.918	0.000	0.000	5.121	9.905
667	12	96.266	5.438	3.827	14 - 650	-11.140	u.uub	ս. սնե	5.131	5.905
668	14	96.293	5.246	3.763	15.293	-11.304	a.000	u . 6 u u	5.122	5.905
669	12	96.293	5.246	4.200	15.293	×12.657	0.000	0.000	5.122	5.905
670	14	96.320	5.033	4.119	16.021	-12.957	0.000	0.006	5.122	5.905
671	15	96.320	\$ 033	4.537	16:021	-14.287	9.000	0.000	9:123	5.905
672	14	96.347	4.802	4.436	56,840	-34.6%)	0.000	0.000	5.123	5.906
673	12	96.347	4.802	4.835	16.840	-16.046	0.500	0.000	5.123	5.906
674	14	96.360	4.678	4.774	17 295	-16.264	9.000	0.000	5.124	5.966
675	14	96.510	3 398	4.677	28.769	-18.678	0.000	0.000	5.129	5,907
676	14	96.528	3.261	3.994	23,457	-18.95H	9.009	0.000	9.130	5.907
677	13	96.528	3.261	3,296	23.457	-13.950	0.000	0.000	5.130	5.907
678	14	96.563	3.042							
	13			3.181	44.503	×14.253	0 000	à. à0a	5.132	5.907
679		96.563	3.042	2.532	24 .503	-9.03;	0.000	0.000	9:132	5.907
680	14	96.598	2.875	2.457	25.199	-9.146	J.000	0.006	9.134	9.907
681	13	96.598	2.875	1.844	25.194	-3.788	0.000	0.000	5,134	5,997
682	14	96,633	2.754	1.799	25,523	-3.794	0.4009	0.000	5.135	5.908
683	13	96.633	2.754	1.214	25.53 (1.623	0.000	0.000	5.135	5 90B
684	14	96.668	2.676	1.190	25.46в	1.646	0.000	0 000	5.137	5.900
685	13	96.668	2.676	H : 623	35.466	7.040	ຄ.ອຽນ	u.000	5.137	5.908
686	14	96.703	2.639	0.610	25.030	7.909	0.000	0.000	5.140	5.908
687	13	96.703	2.639	0.052	35.030	12.501	0.000	0.000	5.140	5.908
688	14	96.738	2 641	U.04.	24,237	12,136	9.000	0.000	5.142	5.908
689	13	96.738	2.641	-0.514	24.237	17.249	9 000	0.300	5 - 142	5.908
690	14	96.773	2.683	-0.528	23.081	16 874	0.000	0.409	5.144	5.909
691	13	96.773	2.683	-1.092	23.082	21.746	0.600	0.000	4.144	5.909
692	14	96.808	2.765	-1.119	21.627	21.081	0.000	0.000	5.146	5.909
693	13	96.808	2.765	-1-699	21.627	25.637	6.006	0.007	5 146	6 909
694	14	96.843	2.891	-1 747	19.968	24.630	0.609	6.009	5.248	4.909
695	13	96.843	2.891	-2.353	19.808	28.800	0,000	0.000		
696	14	96.860	2.977						5.148	9.909
697	14	97.030		-2.593 5.593	18.929	78.112	0.000	6.000	5 (48	5.909
			3,882	-2.777	10.653	21.220	6.606	0.000	5.156	5.911
698	14	97.040	3,939	-2.799	10.236	20.817	6.000	0.000	5.157	5.511
699	12	97.040	3,939	-2.524	10.236	20.102	1.000	0.600	5 157	5.911
700	14	97.060	4.044	-2.561	9.456	19.344	0.006	0.000	5 157	5.912
701	12	97.060	4.044	-2.279	9.456	18.673	0.000	6.000	5, 157	5.912
702	14	97.080	4.139	52.309	8.935	17.953	0.006	0.000	S.25R	5.912
703	12	97.080	4.139	-2.020	8.730	17.044	0.000	0.000	5.158	5.912
704	14	97.100	4.224	-2.044	8.058	16.670	0.000	9.000	5.259	5.912
705	12	97.100	4.224	-1.750	8.056	16.109	6.000	0.000	5.159	5.912
706	14	97.120	4.297	-1.768	7.430	15.478	ნ. სტნ	9.000	5.160	9.913
707	12	97.120	4.297	-1.468	7.436	14.961	0.000	0.066	5.160	5.913
708	14	97.140	4.359	-1.492	6.848	14.370	0.000	u . 000	5.160	5.913
709	12	97.140	4.359	-1.178	й . £ 4 Н	13.894				
710	14	97.160	4.409	-1.187			0.000 	0.000	9.160	5.913
711	12	97.160	4.409		6.300	13.340	0 300	9.900	5.161	5.914
712				~U.\$61.	6.309	12.902	u. 006	0.000	5.161	5.914
	14	97.180	4.447	-0.887	5.006	12.183	0.000	0.000	5.162	5.914
713	12	97.180	4.447	-0.578	5.800	11.979	0.000	U. 000	5.162	5.914
714	14	97.200	4.473	- G . S S I	5.341	11,492	5.559	0.000	5.163	5.915
715	12	97.200	4.473	-0.271	5.341	11.121	0.000	9.590	5.160	5.915
716	14	97.220	4.487	-0.273	4.908	30.664	0.000	0.000	5.167	9.915
717	12	97.220	4.487	0.038	4.90a	10.324	5.000	0.000	5.163	5.915
719	14	97.230	4.488	0.037	4.765	18.104	5.65a	0.000	5.164	5.916
719	14	97.690	4.500	0.000	0.045	0.000	a 565	9.000	5.180	6.190

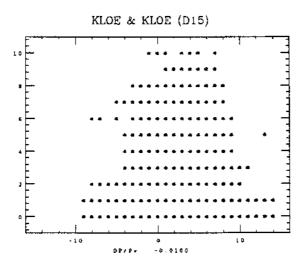


Fig. 1a) - Dynamic aperture for $\Delta p/p=-1\%$

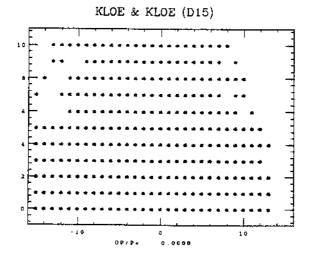


Fig. 1b) - Dynamic aperture for $\Delta p/p=0$

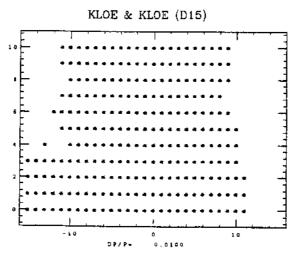


Fig. 1c) - Dynamic aperture for $\Delta p/p = +1\%$

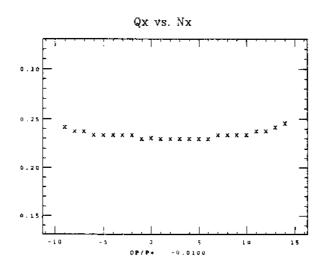


Fig. 2a) - Horizontal tune shift vs. amplitude for $\Delta p/p=-1\%$

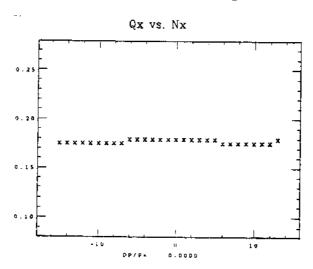


Fig. 2b) - Horizontal tune shift vs. amplitude for $\Delta p/p=0$

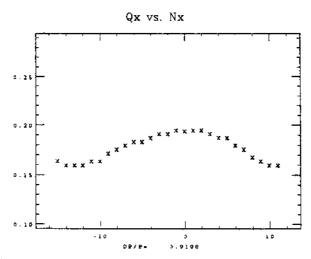


Fig. 2c) - Horizontal tune shift vs. amplitude for $\Delta p/p = +1\%$

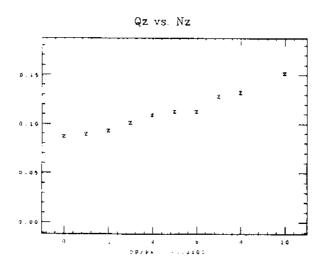


Fig. 3a) - Vertical tune shift vs. amplitude for $\Delta p/p = -1\%$

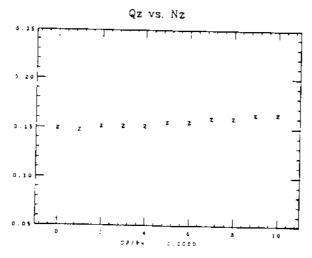


Fig. 3b) - Vertical tune shift vs. amplitude for $\Delta p/p=0$

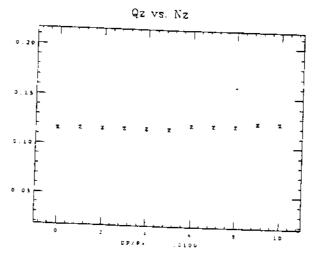


Fig. 3c) - Vertical tune shift vs. amplitude for $\Delta p/p = +1\%$

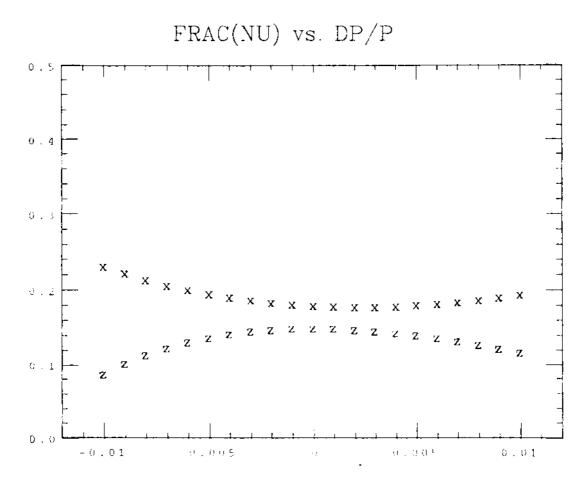


Fig. 4 - Horizontal and vertical tune shifts vs. $\Delta p/p$

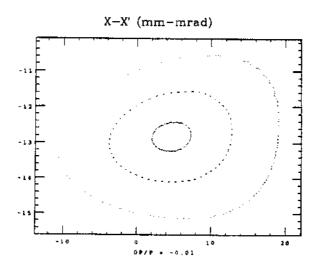


Fig. 5a) - (x,x') phase-space for N_X = 3,6,9, N_Z =0 and $\Delta p/p$ = -1%

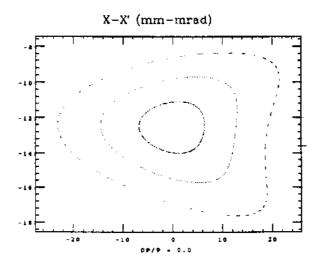


Fig. 5b) - (x,x') phase-space for N_x = 3,6,9, N_z =0 and $\Delta p/p$ = 0

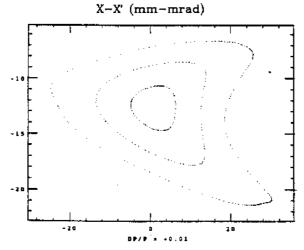


Fig. 5c) - (x,x') phase-space for N_X= 3,6,9, N_Z=0 and $\Delta p/p$ = +1%