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1. INTRODUCTION

An improved version of the DAΦNE high emittance lattice is
presented. The basic criteria of the design are the same as in L-1 [1], but the
structure of the arcs has been slightly modified in order to achieve a better β
separation at the location of the chromaticity correcting sextupoles, and a
higher momentum compaction. Moreover, a new working point has been
chosen in order to improve the dynamic aperture and a more realistic model
for the wiggler magnet has been adopted. Let us remind that each ring is
divided in a long half and a short half, for simplicity called hereafter Long
and Short.

2. THE STORAGE RINGS

The layout of the two rings is shown in Fig. 2.1. In the following we
summarize the main differences with respect to the previous structure:

a) The two arc dipoles are of a different type: the first one nearer to the IP is
a sector type dipole, while the second is a rectangular type (parallel end)
one. The bending angle is however the same for both.

b) A more realistic model than the rectangular one has been adopted for the
wiggler magnet. Each pole is divided in three pieces: a central part with
the maximum field value B=B0 and two sidepieces with B=B0/2 and
length equal to twice the gap. the self-β in the vertical plane is ~ 1.2 m.

c) Small changes in the quadrupole arrangement have also been done:
- a quadrupole has been added in the matching section between the IR

and the first dipole;
- only one quadrupole, instead of two has been left between the wiggler

and second dipole;
- the number of quadrupoles in the injection and RF straight sections

has been increased by one (respectively from 7 to 8 and from 6 to 7).
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In summary, the total number of quadrupoles is now 39 for each ring
plus 12 for the low-β insertions. The circumference has been thus slightly
increased (97.69 m). In Tables 2.I and 2.II the output of the LEDA code
with the list of the elements, respectively for half of the Long and Short
sections, is given. The single ring parameters are listed in Table 2.III.

Table 2.I
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Table 2.II
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Table 2.III - DAΦNE single ring parameters list

Energy  (MeV) 510
Circumference (m) 97.69
Dipole bending radius (m)        1.400
Wiggler bending radius(m) 0.94
Wiggler length (m) 2.0
Wiggler period (m) .66
Horizontal  β-tune           4.87
Vertical β-tune          4.85
Natural chromaticities:   Horizontal -6.9

        Vertical             -16.9
Momentum compaction             .017
I2  (m-1)  9.76
I3

  (m-2) 8.07
Energy loss/turn  (KeV): Bend.magnets 4.27

       Wigglers 4.96
Total 9.3

Damping times (msec): τs 17.8
τx 36.02
τy  35.73

βy  @ IP (m)                 .045
βx  @ IP (m)                   4.5
σy  @ IP (mm)                .021
σx  @ IP (mm)                  2.11
κ  .01
Emittance (m-rad)        10-6

Natural relative rms energy spread σp* 3.97 10-4

Natural bunch length  σz (cm)           .81
Anomalous bunch length  σz (cm)           3.0
Crossing half angle (mrad) 10.0
RF frequency (MHz) 368.25
Harmonic number                120
Number  of bunches 1 ÷ 120
Maximum number of particle/bunch      9.1010

Maximum bunch peak current (A)       57
Maximum average current/bunch (mA)      44
Maximum total average current (A)      5.3
Maximum synchrotron power/beam (KW) 49
VRF (KV)  @ Z/n = 2 Ω 254

  @ Z/n = 1 Ω       127
Parasitic losses @ σz = 3 cm (KeV/Ω)**            7
                                                             

*  σp ~ 10-3 @ 44 mA/bunch
** L. Palumbo, M. Serio: “Energy Loss due to the Broad-band Impedance in

DAΦNE”, DAΦNE Technical Note G-7, Sept. 2, 1991.

Different lattices have been studied, in order to optimize the lattice
performances in lifetime, injection and chromaticity correction. They all
show good performances, and a detailed description is given in the
Appendix. The lattice chosen presents flexibility, a high momentum
compaction, a larger dynamic aperture - especially for off-energy particles -
and finally a more homogeneous structure between the Short and Long.
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3. BEAM OPTICS

The optical functions of the ring, for half of the Short and Long
respectively, are shown in Figs. 3.1 and 3.2, and the relative MAD outputs
are given in Tables 3.I and 3.II.

The working point, different from the solution presented in L-1, is
below the integer in both planes: this results in a larger dynamic aperture. A
work by M. Bassetti, based on the analysis of experimental data, is in
progress on the influence of the working point choice on the maximum
achievable tune shift.

Table 3.I
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Table 3.II

The total chromaticity is nearly the same as in L-1:

ξx = -6.9 , ξy = -16.9

The low-β insertion is essentially the same as in L-1, with minor
modifications of the lengths and of quadrupole strengths. The calculations
are performed using on axis quadrupoles for the triplet, therefore the
dispersion is zero in the IR. Taking into account the displacement of the
quadrupole axis gives a negative dispersion of a few centimetres.

In Fig. 3.3 the half separation ∆x between the two beams in the low-
β insertion and the horizontal and vertical beam sizes in the same region
are plotted.
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In Table 3.III,  the ascissa s, ∆x, βx, βy and the linear tune shifts ξx
and ξy, with respect to the maximum ξ = .04 at the IP, are shown,
computed at the parasitic crossing points  for a frequency of 368.25 MHz
(h=120).

Table 3.III

s ∆x βx βy ξx
p ξy

p 
(m) (mm) (m) (m)

.4 4.0 4.54 3.56 .0028 .0022

.8 7.0 3.02 18.26 .0006 .0037
1.2 14.5 5.06 16.71 .0002 .0008
1.6 20.7 7.27 11.28 .0002 .0003

In Table 3.IV the maximum allowable diameter, the horizontal beam
size and the half separation ∆x between the beam centers are given at the
edges of each quadrupole.

Table 3.IV

s Øout σx ∆x
(m) (mm) (mm) (mm)

Q1 .45 134 2.13 4.50
.63 187 1.99 5.94

Q2 .76 226 1.79 6.71
1.10 326 1.98 11.9

Q3 1.23 364 2.33 15.3
1.51 448 2.71 20.1

Splitter 5.0 __ 2.64 42.7

In the achromat, the D quadrupole near to the second bending
magnet has been eliminated and the vertical focusing is given by the parallel
faces of the dipole. This gives a very good separation of the β-functions at
the sextupole locations.

Moreover the lattice has been modified in order to have the optical
functions of the Short and Long as similar as possible, and therefore to put
the F and D sextupoles respectively in the same locations. This is one
reason for having a third quadrupole in the matching section and the same
angle for the bending magnets of each arc.

The main modification for the Long straight section is the decision
to allow a non-vanishing, negative dispersion in the injection region, in
order to obtain a higher value of the momentum compaction. Increasing the
dispersion to nearly one meter, the value of the momentum compaction is
changed from .0068 to .017. This is an example of the lattice flexibility: in
fact the value of the momentum compaction plays an important role on
considerations on the instability thresholds and on the RF parameters.
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Due to the low value of the energy spread of the beam coming from
the accumulator (~10-3)  the injection efficiency should not be affected by a
dispersion of about one meter at the injection point.

The horizontal betatron phase in the Long is related to the value of
the dispersion in the injection section, therefore to easily tune the betatron
wavenumber of the ring in both planes a quadrupole has been added in the
Short (which still has zero dispersion in the RF straight section).

4. THE DYNAMIC APERTURE

One of the main problems of the previous lattice was the small dy-
namic aperture - in the horizontal plane 10 σx maximum, corresponding to
20. mm, - which was still reduced for the off-energy particles. In particular,
due to the high chromaticity and the small β separation, together with the
lack of good locations available for the sextupoles, the tunes behaviour with
∆p/p was badly corrected, and the maximum ∆p/p, where a fairly good
dynamic aperture was achievable, was .5%. Attempts to correct the
harmonic behaviour of the lattice with a specific code (CATS)[2], didn't lead
to improvements.

The new lattice presented here has three main features:

- The better separation of the optical functions in the arcs allows a more
efficient chromaticity correction, with lower sextupole strengths and
therefore less sensitivity to the resonances and a better dynamic aperture.

- The total tunes, 4.87 for the horizontal and 4.85 for the vertical one, are
quite far from the integer. The tune diagram is shown in Fig. 4.1. The
resulting tune dependence from the energy is very much improved, as
shown in Fig. 4.2, so that the dynamic aperture doesn't change very
much also for particles with a momentum deviation of 1%, a very good
result for the Touscheck lifetime. The beta functions behaviour with
energy, shown in  Fig. 4.3, is good too.

- The tracking performed, with the code PATRICIA[3], for several tune values
has shown that the best results are obtained when, keeping constant the
total tunes, the vertical tunes of the Short and Long are quite far away
one from the other, that is when νy(short) is larger than νy(long), since the
phase advance between the sextupoles is more favourable. The best
dynamic aperture was obtained for lattices with a tune difference ∆νy of
.39, but also for a ∆νy of .33, as in the chosen lattice, there is a
substantial improvement.
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The best sextupole configuration, presented in Table 4.I, - where the
SF's have negative strengths and SD's have positive ones - consists of six
families (12 multipoles per ring) - four in the achromats of the Short and
Long, and the last two respectively one before the first bending of the Long
and the other in the injection section. In Table 4.I the last column lists the
sextupole gradient values at 510 MeV assuming .2 m long sextupole. They
give a very good tunes behaviour as a function of the particle amplitude, see
Figs. 4.4 and 4.5, even if there are no sextupoles in the dispersion free
region.

Table 4.I

The resulting dynamic aperture, 16 σx maximum - corresponding to
34 mm in the horizontal plane - is very good in the vertical plane too, as
shown in Fig. 4.6, where the L-1 dynamic aperture is plotted for com-
parison.

Fig. 4.7 shows the results for the off-energy particles, compared to
the unperturbed ones. The situation remains mainly unchanged: a small
reduction for positive energy deviations and an increase for the negative
ones. For comparison the physical aperture is shown on the same scale. In
Figs. 4.8 and 4.9 the off energy dynamic apertures (for ∆P/P = .7%) are
compared to the L-1 ones. It has to be noted that the previous structure was
unstable for values of ∆P/P larger than .7%. In Fig. 4.10 is plotted the
dynamic aperture as computed by CATS, at the symmetry point of the Long,
compared to the stability boundaries due to the main third order
resonances. It is clear from this picture that no low-order resonance is
limiting the dynamic aperture.

In conclusion, we think that the new lattice seems to have all the
characteristics to assure a good  dynamic aperture, together with a good
beam lifetime.
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5. MULTIPOLE ERRORS SENSITIVITY

The effect of multipole errors in the magnetic elements on the dy-
namic aperture has been simulated with the code Patricia. We have con-
sidered separately the effect of each type of error. The vertical field is written
as:

Bz = B0 ρ ∑
i=0

n

 kn 
xn

n!  .

From this formula we get the strength for the multipolar coefficients
kn, assuming for each one a value of ∆B/B=5 10-4  at 3 cm from the center.
We have considered dodecapoles in the quadrupoles and sextupoles and
decapoles in the dipoles, no multipoles have been added in the low-β
quadrupoles which have been treated separately below. The used multipolar
coefficients are listed in Table 5.I. For each multipole component it has
been computed the dynamic aperture for three different values of the relative
energy deviation (∆p/p = +1%,0 and -1%) and for the positive and negative
sign of the multipole component. In Figs. 5.1 to 5.6, the obtained dynamic
apertures for the three energies are shown on the same plot with the
reference dynamic aperture for the ideal machine.

Table 5.I

Dipoles Q-poles

sextupole k2 (m-3) .7937 __

decapole k4 (m-5) 10.582 __

dodecapole k5 /k1 (m-4) __ 74074.

It has to be noted that the quadrupole design is not very demanding,
because the strengths are quite small, while the design of the bending
magnets is more difficult because of the small bending radius, in fact the
multipolar components in the dipoles depend on the inverse of the bending
radius.

Dodecapoles in the quadrupoles (Figs. 5.1a,b,c): the dodecapole
component has nearly no effect on the dynamic aperture for zero and
positive ∆p/p, while gives a strong reduction for the negative ∆p/p. Anyway
this is not dramatic, first of all because 1% is a very large energy deviation,
near the limit of the required acceptance and we do not need all the
transverse aperture. Besides, the value of the dodecapole component
computed by the magnet design code [4] is well below the value we have
assumed for these simulations.
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Sextupoles in the dipoles (Figs. 5.2a,b,c): the sextupoles in dipoles
have been inserted as isolated multipoles in order to keep constant the
chromaticity correcting sextupoles SF and SD. Their presence does not give
a sensible reduction of the dynamic aperture except for negative energy. For
all the energies the negative sextupolar component (negative sextupoles
correct the horizontal chromaticity) gives a larger dynamic aperture than
the positive one.

Decapoles in the dipoles (Figs. 5.3a,b,c): in this case there is a sen-
sible reduction also for zero energy deviation, and a quite strong reduction
for the negative energy. Therefore the decapole contents of the dipole field
has to be lower than the value used in this simulation.

Dodecapoles in the low-β quadrupoles (Figs. 5.4a,b,c): these
quadrupoles are different from the others because the beam passes through
them off-axis, moreover the design is different because, in order to get a very
small size, they will be permanent magnets. Due to the displacement of the
trajectory with respect to the quadrupole center, a multipolar component
with respect to the center(x=0) produces all the lower order components
respect to a displaced position x0. In Table 5.II for the three quadrupoles
the multipole components corresponding to a dodecapole of ∆B/B=5x10-4 at
3 cm are given. In this case there is a reduction of the dynamic aperture
already for ∆p/p = 0, therefore it is important to reduce the intensity of the
dodecapole component in the quadrupole design. A prototype has been done
for this quadrupoles and magnetic measurements are in progress. As soon
as the measurements will be completed a more realistic simulation will be
done using the measured values of the multipoles. As the dynamic aperture
for the negative ∆p/p (-1%) is very small, it has been computed  also  for
∆p/p =-.5% and the result is ~10σx in the horizontal plane, which is quite
satisfactory (see Fig. 5.5).

Table 5.II

Dodecapoles in low-β quads

  Q1   Q2      Q3

∆x (mm) - quad center 5.316 8.427 18.426
dodecapole k5  (m-6) 3.22x105 5.18x105 2.93x105

decapole k4 (m-5) 1711.75 4369.41 5391.43
octupole k3  (m-4) 4.55 18.41 49.67
sextupole k2  (m-3) .008 .052 .305
quadrupole k1 (m-2) 1.07x10-5 10.9x10-5    140.5x10-5

dipole k0  (m-1) 1.14x10-8 1.84x10-7 5.17x10-6
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Sextupoles in the wigglers (Figs. 5.6a,b,c): thin lens sextupoles
have been inserted at both edges of each pole and half-pole, with alternate
signs. The integrated strength  S2 is obtained from the sextupolar coefficient
k2  at the pole center taking into account the sinusoidal behaviour of the
field:

S2 [m-2] = 
k2 lp
2π  ,  lp = period length. 

The used strengths of the sextupole component in the wiggler:

S2  = 2.89 m-2 for each pole,
and

S2  = 1.44 m-2 for each half-pole,

were computed using a calculated value[4] of the sestupolar coefficient in the
field expansion. Although the strength is quite high and of the same order
of magnitude of the sextupoles used to correct the chromaticity, the effect
on the dynamic aperture is completely negligible.

It has to be noted that for all the examples shown above the negative
∆p/p case is always worse than the other two. The reason for this might be
the fact that the betatron tunes as a function of the energy (see Fig.4.2)
cross each other for ∆p/p ≈ -.9%, therefore the dynamic aperture should be
calculated for smaller values of ∆p/p. Anyway before going on with further
simulations it is better to wait for an estimate of the multipole terms
present in the real magnets.

6. ALIGNMENT TOLERANCES AND ORBIT CORRECTION

In this chapter we report the results of our investigation on closed
orbit distortions due to misalignments and field errors in magnets.  As al-
ready discussed in a previous note (L-3)[5], the idea is to run the machine
without sextupoles at the start-up, operating at low current, to look for the
closed orbit and to perform a first alignment correction. At this stage the
possibility of a quadrupole mechanical displacement, to correct the orbit
distortion, is foreseen. Later on one can operate the machine with all the
sextupoles on and use the appropriate corrector scheme to minimize the
residual closed orbit distortion.

The computer code MAD[6] has been used to study the machine
sensitivity to errors and to look for an optimal corrector  configuration. The
code generates random error distributions with a given standard deviation
in order to assign alignment, field and rotation errors to the magnetic
elements. After that it calculates the closed orbit through all the lattice
(each error distribution corresponds to a different machine configuration).
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In order to study the lattice sensitivity to errors we have assigned
transverse disalignments (∆x,∆y), rotations around the transverse axes (∆θ,
∆Φ) and magnetic field errors (∆B/B) to bendings and quadrupoles
separately. Two values have been considered for each type of error, simu-
lating 5 machines per case. No sextupoles are included in the lattice at this
stage. The error values assumed come from experience in operating
machines:

∆x = ∆y  = 0.1 mm  and  0.2 mm

∆θ = ∆Φ = 0.175 mrad  and  0.25 mrad

∆B/B = 5 x 10-4  and  8 x 10-4

The Tables where the results are summarized contain all the pa-
rameters of interest that can be strongly affected by these imperfections, like
β-function at IP and dispersion.

In Table 6.I/a the average and maximum values for the closed orbit
amplitude in both transverse planes are reported. The Table shows that the
closed orbit is quite sensitive to field errors in bendings (see x-plane) and to
quadrupole displacements. In any case the particle orbit remains inside the
physical aperture of the machine, ± 4 cm in horizontal and ± 3 cm in
vertical (the case with ∆B/B equal  to 8x10-4  is rather extreme).

Because the new lattice is not much different from the previous one,
in this analysis we used a monitor distribution similar to the one described
in L-3; some positions have been changed due to the different locations of
β-function maxima in both planes (see Fig. 6.1 for one quart of the ma-
chine). There are 20 beam position monitors acting in both planes plus
6 only horizontal and 4 only vertical.

No errors have been included in the wigglers, that are to be considered
as a separate problem.

To get an idea of the needed correction in the interaction region,
errors (displacements and tilts) have been simulated also in the low-β
quads.

Table 6.I/b shows the results: these errors roughly double the closed
orbit amplitude in both planes, still leaving the orbit inside the geometrical
aperture of the machine. The data show that we can accept displacement
errors of ±0.2 mm. However, in the following no imperfections have been put
in these quadrupoles, considering, at the first stage, the possibility of
correcting the orbit by just moving the magnetic elements, and that in this
region there is lack of space for correctors and monitors.

Table 6.II shows the values of some machine parameters obtained by
averaging the data from 10 simulated machines.
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TABLE 6.I/a

Closed orbit distortion due to single types of errors
(low-β quads without errors)

Type of error    in quadrupoles   in bending magnets
___________________________________________________________________________

∆x,∆y =.1 mm Xrms (mm) 1.5±.7 .34±.22
Xmax (mm) 3.4±1.5 .81±.51
Yrms (mm) 1.5±1.0 .27±.17
Ymax (mm) 4.3±2.6 .65±.36

∆x,∆y =.2 mm Xrms (mm) 3.0±1.4 .68±.44
Xmax (mm) 6.7±3.0 1.6±1.0
Yrms (mm) 3.0±2.1 .54±.35
Ymax (mm) 8.5±5.2 1.3±.7

___________________________________________________________________________

 ∆Θ,∆Φ =.175 mrad Xrms (mm) .42±.23 .41±.20
Xmax (mm) .86±.39 .85±.44
Yrms (mm) .36±.19 .49±.13
Ymax (mm) 1.08±.45 1.13±.28

  ∆Θ,∆Φ =.25 mrad Xrms (mm) .59±.33 .59±.29
Xmax (mm) 1.23±.56 1.21±.63
Yrms (mm) .51±.28 .70±.19
Ymax (mm) 1.55±.64 1.6±.41

___________________________________________________________________________

 ∆B/B =   5x10-4 Xrms (mm)       8.1±4.4
Xmax (mm) 18.06±9.13

 ∆B/B  =  8x10-4 Xrms (mm) 13.0±6.9
  Xmax (mm) 28.8±14.3

TABLE 6.I/b
including low-β quadrupoles with errors

Type of error    in quadrupoles   
___________________________________________________________________________

∆x,∆y =.1 mm Xrms (mm) 2.86±1.09
Xmax (mm) 6.73±2.46
Yrms (mm) 3.40±1.24
Ymax (mm) 8.53±2.27

___________________________________________________________________________
∆Θ,∆Φ =.175 mrad Xrms (mm) 0.47±0.36

Xmax (mm) 1.08±0.74
Yrms (mm) .74±.45
Ymax (mm) 2.01±1.27
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TABLE 6.II

Closed orbit parameters before and after correction
Monitors: 20 HV, 6H, 4V -- Correctors: 18H, 16V   (sextupoles off)

∆x=∆y =.2mm,  ∆Θ=∆Φ =.25 mrad,  ∆B/B = 5x10-4

ideal machine       before correction             after correction
___________________________________________________________________________

Xrms(mm) 0 8.9±6.4 0.34±0.13
Xmax(mm) 0 18.4±10.9 1.1± 0.4
Yrms(mm) 0 3.5±1.8 0.24±0.06
Ymax(mm) 0 9.53±5.01 0.71±0.13

ηXrms(m) 1.17 1.31±.16 1.1714±.0004
ηXmax(m) 2.16 2.72±.41 2.1603±.0023
ηYrms(m) 0 .41±.26 0.005±.002
ηYmax(m) 0 1.07±.70 0.013±.006

αXrms(mrad) 0 0.46±0.10
αXmax(mrad) 0 1.05±0.27
αYrms(mrad) 0 0.23±0.07
αYmax(mrad) 0 0.64±0.28

Qx 4.87 4.8704±0.0015 4.8705±0.0007
Qy 4.85 4.852±0.003 4.8504±0.0009

βx (m) @ IP 4.5 4.51±0.04 4.49±0.03
βy (m) @ IP 0.045 0.0455±0.0017 0.0452±0.0004

ηX(m) @ IP 0 0.06±0.53 .002±0.004
ηY(m) @ IP 0 0.006±0.034 .0001±0.0003

We assumed the following errors:

∆x = ∆y  =  0.2 mm

∆θ = ∆Φ = 0.25 mrad

∆B/B= 5 x 10-4

in all bends and quads excluding low-β ones, with sextupoles off. We
maintain the same monitor configuration as before adding correctors in
position dictated by high β locations and available space in the lattice. The
proposed layout, see Fig. 6.1, includes 18 correctors acting in horizontal
plane and 16 in vertical one.
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In the Table the data before and after the correction are reported,
compared with the ideal ones. The results are really good, leaving a residual
maximum amplitude of 1.1 mm in the horizontal plane and .71 mm in the
vertical with a maximum  corrector strength  of 1 mrad.

The same work including the sextupoles and adding errors also in
them has been carried out. Table 6.III shows the results obtained averaging
over 10 machines (note that we ran 12 machines, but 2 were unstables). The
data after the correction are about the same as before, showing only an
higher vertical residual dispersion. It has to be mentioned that the residual
dispersion at IP is really negligible. Figs. 6.2 and 6.3 show the plots of the
closed orbit amplitude as measured at monitor locations before and after
correction for horizontal and vertical plane respectively, for one simulated
machine.

TABLE 6.III

Closed orbit parameters before and after correction
Monitors: 20 HV, 6H, 4V -- Correctors: 18H, 16V (sextupoles on)

∆x=∆y =.2mm,  ∆Θ=∆Φ =.25 mrad,  ∆B/B = 5x10-4

ideal machine     before correction                 after correction
_________________________________________________________________________

Xrms(mm) 0 7.7±5.7 0.36±0.11
Xmax(mm) 0 16.8±10.9 1.11± 0.28
Yrms(mm) 0 3.2±1.3 0.29±0.13
Ymax(mm) 0 8.48±3.38 0.83±0.35

ηXrms(m) 1.17 1.31±.39 1.171±.005
ηXmax(m) 2.16 2.52±.89 2.17±.02
ηYrms(m) 0 .32±.24 0.032±.015
ηYmax(m) 0 .84±.49 0.08±.04

αXrms(mrad) 0 0.46±0.10
αXmax(mrad) 0 1.01±0.25
αYrms(mrad) 0 0.23±0.07
αYmax(mrad) 0 0.66±0.28

Qx 4.87 4.871±0.022 4.8704±0.0014
Qy 4.85 4.859±0.038 4.849±0.002

βx (m) @ IP 4.5 4.49±0.58 4.52±0.02
βy (m) @ IP 0.045 0.0456±0.012 0.0450±.0005

ηX(m) @ IP 0 -.18±0.30 -.007±0.031
ηY(m) @ IP 0 -0.009±0.038 -.0009±0.0028

Yc.o. (mm)@ IP 0 -.12±.32 -0.007±0.008
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For the same testing machine we report the plots of the closed orbit,
before and after correction, along the whole structure in Figs. 6.4 and 6.5
for horizontal and vertical plane respectively; the graphics start at one IP
going before trough the Short lattice and then in the Long. The sample case
used respects the medium behaviour of the orbit.

Finally we have considered monitor alignment errors (±0.1 mm and
±0.2 mm) in both transverse planes. Table 6.IV shows the averaged data
before and after correction using 10 machines for both error values. The
results are satisfactory showing a maximum residual orbit less than 1.5 mm
in the horizontal plane and around 1 mm in the vertical one. The required
corrector strength is always under 1 mrad. The horizontal dispersion @ IP  is
roughly  1 cm.

TABLE 6.IV

Closed orbit parameters before and after correction
Monitors: 20 HV, 6H, 4V -- Correctors: 18H, 16V   (sextupoles on)

∆x=∆y =.2mm,  ∆Θ=∆Φ =.25 mrad,  ∆B/B = 5x10-4

Errors in monitors, ∆x=∆y

ideal machine before cor.                    after correction
                      ∆x=∆y=.1 mm    ∆x=∆y=.2 mm

___________________________________________________________________________

Xrms(mm) 0 7.7±5.7 0.38±0.13 0.44±0.16
Xmax(mm) 0 16.8±10.9 1.24± 0.35 1.35±0.48
Yrms(mm) 0 3.2±1.3 0.31±0.11 0.36±0.09
Ymax(mm) 0 8.48±3.38 0.90±0.28 1.01±0.25

ηXrms(m) 1.17 1.31±.39 1.171±.004 1.171±.005
ηXmax(m) 2.16 2.52±.89 2.17±.02 2.17±.02
ηYrms(m) 0 .32±.24 0.03±.01 0.032±.016
ηYmax(m) 0 .84±.49 0.08±.039 0.078±.039

αXrms(mrad) 0 0.45±0.08 0.46±0.09
αXmax(mrad) 0 0.98±0.17 0.96±0.23
αYrms(mrad) 0 0.26±0.08 0.31±0.09
αYmax(mrad) 0 0.67±0.30 0.72±0.29

Qx 4.87 4.871±0.022 4.8701±0.0016 4.869±0.002
Qy 4.85 4.859±0.038 4.849±0.002 4.849±0.003

βx (m) @ IP 4.5 4.49±0.58 4.52±0.04 4.52.±.006
βy (m) @ IP 0.045 0.0456±0.012 0.0451±.0008 0.0451±.0008

ηX(m) @ IP 0 -.18±0.30 -.011±0.037 -.014±0.046
ηY(m) @ IP 0 -0.009±0.038 -.0008±.0027 -.0006±0.003
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From the performed analysis we can conclude that, with the chosen
error values, the orbit  is always inside the physical aperture and that the
correction can be done by "moving" quads  in both transverse planes at first
approximation. The presence of correctors assure an optimization of the
correction and the control of the beam orbit during the runs. It has to be
mentioned that a good correction has been obtained using correctors with a
maximum strength of roughly 1 mrad.

7. BEAM LIFETIME AND VACUUM CHAMBER APERTURE

Due to the low energy of the machine, the main effect limiting the
beam lifetime is the single Touschek scattering, which gives a lifetime
proportional to the third power of the energy. The momentum deviation
produced in the Coulomb scattering of the particles within the bunch de-
pends on the bunch density and the rms angular divergence σ'x. The
Touschek lifetime has been calculated using the formulae in (ref.Bruck)[7],
assuming that the machine acceptance is limited by the RF bucket height
and by the transverse aperture (physical or dynamic aperture). To obtain the
energy acceptance due to the transverse aperture, for each point si, it is
calculated the quantity:

H(si) = γ(si)Dx
2(si)  + 2α(si)Dx(si)Dx

' (si)  + β(si)D x'
2(si) 

then the maximum oscillation all over the ring for a particle which has lost
an energy ∆p in si is:  

xmax (si)= max 








 
∆p
p   H(si)β(s) + Dx(s)  

The maximum energy acceptance for each point si isobtained for
xmax  = Rx:

∆p
p (si)  = 

Rx

max  H(si)β(s) + Dx(s)
 

where Rx is the vacuum chamber half-aperture.

To see which is the limiting factor, RF acceptance or physical aper-
ture, we have plotted in Figs. 7.1 and 7.2 the Touschek and total beam
lifetimes as a function of the transverse aperture Rx and of the RF voltage
VRF respectively. The other parameters are set at the values given in Table
7.I, which correspond to the design values for the maximum luminosity.
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Table 7.I

VRF (KV) 254.5
RF acceptance εRF 1.23%
N part./bunch 8.9 1010

<I> /bunch (mA) 43.75
Z/n (Ω) 2
bunch length σz  (cm) 3
rel. energy spread 1.46 10-3

coupling factor κ .01
Ry (cm) 3
Rx (cm) 4

With these values we are in the anomalous lengthening regime and
the bunch length has been calculated assuming a vacuum chamber broad
band impedance of 2 Ω.

An Rx value of 2.5 cm, corresponding to ~7σx,  gives already a good
quantum lifetime, but from Fig.7.1 one can see that it is convenient to
choose a larger aperture and that up to 10cm the beam lifetime is still
increasing with the horizontal aperture.

The choice of the aperture is crucial for this machine because we want
a high emittance (for high peak luminosity) and good beam lifetime (for
average luminosity). Therefore we want the largest vacuum chamber
aperture compatible with the technical constraints; moreover also the
dynamic aperture has to be as large as the physical aperture.

The most critical elements are the low-β quadrupoles, which have a
strict limitation on the outer dimension, the bending magnets which need a
very good field quality on the transverse aperture and the wiggler magnets,
where to the required aperture has to be added the excursion of the
reference trajectory.

We have chosen a value of Rx=4 cm, which is compatible with the
technical constraints in the design of the magnetic elements and is as large
as the dynamic aperture. This gives a Touschek beam lifetime of nearly three
hours.

With this value of the aperture the dependence of the Touschek
lifetime on the RF voltage is shown in Fig. 7.2. The lifetime is growing very
fast up to 100 KV, which correspond to a bucket height of 6σp (the
minimum required for quantum lifetime), then has a maximum around the
design voltage and decreases slightly for higher voltages. This behaviour is
more clear looking at the dependence of the lifetime on the RF acceptance,
for a fixed bunch length, shown in Fig. 7.3.
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The Touschek beam lifetime increases with the RF acceptance up to a
value where the limit is due only to the vacuum chamber aperture and then
saturates. Varying the RF voltage the energy acceptance increases with the
square root of it, but the bunch length gets smaller, giving a higher bunch
density. When the limitation is entirely due to the aperture a further
increase of the RF voltage gives a reduction of the lifetime with the bunch
length.

The above calculations have been done for the extreme values of the
design parameters, in particular the highest bunch current and the
minimum coupling factor, which give the minimum Touschek beam lifetime
expected. If we adopt a larger value of the coupling factor the beam lifetime
increases as shown in Table 7.II.

Table 7.II

κ τ TOUSCHEK τTOTAL

(min) (min)

.01 207 156

.02 289 198

.10 597 307

The dependence of the Touschek and total beam lifetime as a function
of the average beam current in the bunch is shown in Fig. 7.4.

The vertical vacuum chamber aperture has been chosen in order to get
a good value of the gas scattering beam lifetime τSC. The lifetime as a
function of the vertical half-aperture Ry, assuming a gas pressure of 1nTorr
with a nitrogen equivalent gas composition (Z = 8), is shown in Fig. 7.5.
The two curves correspond to an horizontal aperture of 4 cm and 1m (
practically  infinite) respectively, in the last case τSC is simply proportional
to the square of the aperture. Ry is the aperture at the maximum βy
location, in the second of the low-β quadrupoles, therefore we have chosen
a value of 3 cm, which is the maximum feasible with the constraints on the
outer dimensions given by the detector. With this value and 1nTorr pressure
the scattering lifetime is ~17 hours, i.e. five times larger than the Touschek
lifetime, and therefore has a small influence on the total lifetime.

In Table 7.III  the contributions of the various phenomena  to the
beam lifetime for the single beam mode are listed, together with the beam-
beam bremsstrahlung lifetime, for the parameter set of Table 7.I. Here we
want to point out that, due to the choice of many bunches and high
crossing frequency, the beam-beam bremsstrahlung gives a negligible
contribution to the beam lifetime also at the maximum luminosity.
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Table 7.III

In Fig. 7.6 the behaviour of the required aperture along half of the
ring for Rx = 4 cm and Ry = 3 cm is shown. It corresponds to a beam size of
10 σx (off-coupling), 10 σp  and 9 σy (full coupling).

 As a conclusion we can say that the choice of the RF parameters is
not critical for the Touschek lifetime while the aperture choice is de-
terminant. A value of Rx = 4 cm seems to be a good compromise with the
technical constraints and gives a total lifetime greater than 2 hours.
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Fig. 2.1 - Layout of the DAΦNE storage rings.
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Fig. 3.1 - Optical functions for half of the Short section.
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Fig. 3.2 - Optical functions for half of the Long section.
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Fig. 3.3 - Half separation  ∆x  between two beams and beam sizes  σx, σy

in the low-β insertion.
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Fig. 4.1 - Tune diagram.
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Fig. 4.2 - Betatron tunes versus relative energy deviation.

Fig. 4.3- β-functions versus relative energy deviation.
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Fig. 4.4 -  Horizontal betatron tune versus oscillation amplitude.

Fig. 4.5 -  Vertical betatron tune versus oscillation amplitude.
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Fig. 4.6 -  On energy dynamic aperture at I.P. (     )  compared to the L-1 one (- - -).

Fig. 4.7 -  Dynamic aperture for ∆P/P = 1% (- - -) and ∆P/P = -1% (- . - . -  ), compared
with the on energy one and the vacuum chamber aperture (       ).  
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Fig. 4.8 - Dynamic aperture for ∆P/P = + .7%: present lattice (     ),  previous lattice (- - -).

Fig. 4.9 -  Dynamic aperture for ∆P/P = - .7%: present lattice (     ),  previous lattice (- - -).  
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Fig. 4.10 - On energy dynamic aperture at the symmetry point
of the Long  (CATS code).   
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a)

         ∆p/p=-1%

b)

        ∆p/p =0 %

c)

        ∆p/p =1 %

Fig. 5.1 -  Dynamic aperture with dodecapoles in the quadrupoles.
x off-coupling,    y full-coupling.

          ideal machine, ......  dodecapole >0, ---- dodecapole <0.
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a)

          ∆p/p= -1%

b)

        ∆p/p= 0%

c)

        ∆p/p= 1%

Fig. 5.2 -  Dynamic aperture with sextupoles in dipoles.
x off-coupling,    y full-coupling.

          ideal machine, ......  sextupole >0, ---- sextupole <0.
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a)

             ∆p/p=-1%

b)

             ∆p/p =0 %

c)

             ∆p/p =1 %

Fig. 5.3 -  Dynamic aperture with decapoles in dipoles.
x off-coupling,    y full-coupling.

          ideal machine, ......  decapole >0, ----  decapole <0.
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a)

            

p/p = -1 %

b)

            

p/p = 0%

c)

            

p/p = +1%

Fig. 5.4 -  Dynamic aperture with dodecapoles in low-  quadrupoles.
x off-coupling,    y full-coupling.

          ideal machine, ......  dodecapole >0, ---- dodecapole <0.
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p/p = - 0.5 %

Fig. 5.5 -  Dynamic aperture with dodecapoles in low-  quadrupoles
for  ∆P/P =  -.5%.

x off-coupling,    y full-coupling.
          ideal machine, ......  dodecapole >0, ---- dodecapole <0.
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a)

          
p/p = -1. %

b)

          

p/p = 0 %

c)

           

p/p = 1. %

Fig. 5.6 -  Dynamic aperture with sextupoles in wigglers.
x off-coupling,    y full-coupling.

          ideal machine, ......  sextupole >0, ---- sextupole <0.
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Fig. 6.1 - Arrangement of monitors and correctors in half of the Short and  Long  section.
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Fig. 6.2 -  Horizontal closed orbit amplitude at the monitors before and after correction.
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Fig. 6.3 -  Vertical closed orbit amplitude at the monitors before and after correction.
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Fig. 6.4 -  Graphic of a sample closed orbit along the whole machine
in the horizontal plane: a) before correction;   b) after correction.
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Fig. 6.5 -  Graphic of a sample closed orbit along the whole machine
in the vertical plane: a) before correction;   b) after correction.
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Fig. 7.1 -  Touschek and total beam lifetime as a function
of the vacuum chamber half-aperture.
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Fig. 7.2 -  Touschek and total beam lifetime as a function of the R.F. voltage.
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Fig. 7.3 -  Touschek and total beam lifetime as a function
of  R.F. acceptance for a fixed bunch length (σz = 3 cm).
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Fig. 7.4 -  Touschek and  total beam lifetime as a function of the average bunch current.
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Fig. 7.5 -  Gas scattering beam lifetime as a function of the vertical
vacuum chamber half-aperture for different values

of the horizontal half aperture Rx.
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Fig. 7.6-  Beam envelope along the machine for: 10 σx (off-coupling),
10 σp, 9 σy (full-coupling).
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APPENDIX

In this Appendix a summary of some of the lattices studied for
DAΦNE is presented. All of them have four quadrupoles in the insertion of
the Long (8 in total in the injection section), and the same total tunes. The
horizontal tune difference between Short and Long has been kept constant.
The Short lattice has been kept fixed and only the quadrupole strengths
varied in order to change the vertical tune, to fit the total tune.

In Table A.1 the main differences in the Long are summarized: the
lattice described in detail in this note is called DAF6, the other five are
different in the focusing of the last four quadrupole, in the relative drift
lengths between them and then in the optical functions behaviour.

Table A.1
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For each lattice we list the focusing type of the quadruplet, the
vertical tunes (Short and Long), the absolute chromaticities, the values of
βx,y and Dx at the symmetry point of the Long, the maximum βy after the
last bending, the quadrupole strengths (positive for focusing and negative
for defocusing) - for the Long and Short - and finally the two drift lengths
used to tune the optical functions.

Briefly, we note that:

- out of six lattices, four have a difference  ∆νy of .33 and the last two have
∆νy = .39;

- the high βy after the last bending, as in some of the lattices listed, may
be useful to insert a scraper in order to reduce the background in the
interaction point;

- Touschek lifetime calculations have shown that a high βx at the injec-
tion section is not dangerous.

The optical functions of the Long for the five lattices are plotted in
Figs. A.1 to A.5, and in Fig. A.6 are shown the optical functins of the Short
with different vertical tune (νy = 2.62).

For comparison, the on-energy dynamic apertures of all the lattices
have been computed with the same sextupole configuration as in Table 4.I,
and are presented in Figs. A.7 to A.11.

Fig. A.1 - Long  lattice optical functions for  DAF6B.
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Fig. A.2 - Long  lattice optical functions for  DAF7.

Fig. A.3 - Long  lattice optical functions for  DAF8.
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Fig. A.4 - Long  lattice optical functions for  DAF4.

Fig. A.5 - Long  lattice optical functions for  DAF5.
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Fig. A.6 - Short  lattice optical functions for  DAF4 and DAF5.

Fig. A.7 - DAF6B dynamic aperture.
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Fig. A.8 - DAF7 dynamic apertur.

Fig. A.9- DAF8 dynamic aperture.
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Fig. A.10 - DAF4  dynamic aperture.

Fig. A.11 - DAF5 dynamic aperture.


