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Introduction 

 

The modified wiggler magnets of the Main Rings have been modeled as a 2 m long sequence of 
hard-edge dipoles alternated with drift sections describing the behaviour of the magnet for the linear 
beam optics. Two additional thin lenses per pole positioned at the edges reproduce the non-linear 
terms of the field. The physical parameters of the model are based on the measurement of the field 
By versus the position (x,z) in the horizontal midplane of the central pole and on the two terminal 
poles, which has been taken on the modified wiggler on August and September 2003 [1]. The model 
is used for simulations of the Main Ring beam optics with the MAD program. 

 

1. Linear properties 
 

For the proper linear modeling of wiggler magnets two conditions require to be fulfilled. The 
deflection angle and the length of each modeled pole must be the same of the actual trajectory. 
Similarly the edge focusing described in the model (the fint parameter used by the MAD modeling 
code) must be the same felt by a particle travelling around the trajectory. The corrections to the 
linear optics due to the wiggling trajectory through multipole field components is considered in a 
following step and added to the model as thin lenses as described in the second section of this note. 
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Figure 1 – The wiggler field along the longitudinal z axis:  

the dashed line is the measured field and the full line the hard-edge model. 
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The trajectory of the nominal particle 
 

The first step is the calculation of the trajectory of the nominal particle along the whole 
wiggler. The magnetic field on the horizontal midplane (y = 0), where the trajectory lies, has only 
the vertical component By(x,0,z), while Bx,z(x,0,z) = 0, therefore a charged particle undergoes the 
Lorentz force according to: 
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The wiggle in Figure 2 is the trajectory along the magnet, for the nominal particle launched at 

the entrance to the pole A with x = -12.5 mm and x’ = 0 rad, obtained by integration of the 
equations above performed as described in Appendix A of this note. 

The length of the wiggling path comes out to be 6.62 mm longer than the longitudinal straight 
line along the axis. 

Once the amplitude, the deflection angle and the length of the trajectory are known, the wiggler 
can be modeled pole by pole. Each pole is represented by a single parallel-end hard-edge dipole 
with length Lh (Figure 1) embedded in two drift sections with length Ld: the total length of the pole 
Lp = Lh+2Ld is fixed equal to the nominal particle path length integrated along the pole. The 
modeling problem consists in the choice of Lh. 
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Figure 2 – The wiggling trajectory: the particle launched from the terminal pole A. 
 

Inner Poles 
 

In the model the inner poles are assumed to be equal among them and the physical parameters 
are obtained from the measurements performed on the central pole. The deflection angle of the 
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central pole comes out to be θC = ±0.2375 rad and the entrance and exit angles are half the 
deflection angle: e1 = e2 = θ/2.  

Since the dipole has parallel ends, in the horizontal plane there is no focusing effect and the 
horizontal transport matrix does not depend on Lh but only on the total pole length Lp that is fixed. 
Therefore the dipole length and the edge focusing parameter fint have been chosen in order to match 
the vertical transfer matrix of the single pole calculated from the measured field map as described in 
Appendix B. The obtained values are Lh = 0.2355 m and fint = 0.315. 

 
End Poles 
 

One of the end poles (B type or "Right”) has a strong sextupole field index useful to improve 
the dynamic aperture: as a consequence the poles A and B, which are powered by the same supply, 
have slightly different field integrals and different deflection angles between them. The supplied 
current is such that the field integral along the wiggler axis vanishes (∫By dz = 0). The deflection 
angle of the right pole is θB = -0.1196 rad and the left one θA = -0.1167 rad. The entrance and exit 
angles are: e1 = 0, e2 = θA,B.  

The end dipole length and the fint parameter chosen with the same procedure followed for the 
central poles are Lh = 0.1368 m and fint = 0.213. 

 
2. Linear and non-linear field perturbations as thin lenses 
 

Finite horizontal pole width in a wiggler magnet creates a roll-off in By(x) which generates 
linear and non-linear perturbations to the particle dynamics [2, 3]. The Figure 3 shows By(x) at the 
wiggler centre fitted from measurements: the 14 cm pole width results in the field rolling off 
quickly at ±50  mm. 
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Figure 3 – Transverse field roll-off at the centre of the wiggler. 

 
The transverse polynomial expansion of the field [1] shows up a small but not negligible 

sextupole term and higher multipoles that give linear and non-linear perturbations to both the 
horizontal and the vertical motion around the trajectory. All these effects are taken in account in the 
model embedding each dipole in two thin lenses with integrated gradients along the trajectory: 
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K1 = (1/Bρ) ∫dBy/dx   ds = (1/Bρ) ∫(∂By/∂x+∂2By/∂x2∙x+∂3By/∂x3∙x2/2+∂4By/∂x4∙x3/6) dz ; 

K2 = (1/Bρ) ∫d2By/dx2 ds = (1/Bρ) ∫(∂2By/∂x2+∂3By/∂x3∙x+∂4By/∂x4∙x2/2) dz ; 

K3 = (1/Bρ) ∫d3By/dx3 ds = (1/Bρ) ∫(∂3By/∂x3+∂4By/∂x4∙x) dz ; 

K4 = (1/Bρ) ∫d4By/dx4 ds = (1/Bρ) ∫∂4By/∂x4 dz . 

The K1 coefficients are chosen fitting the single pole transfer matrices (Appendix B), while K2, 
K3 and K4 come from the magnetic measurements fit ([1] Table I ).  In the model of the inner poles 
the average value among the five poles is taken for each Kn coefficient. Only in the end pole B, 
where the sextupole term is strong and quite constant (see [1] Fig. 32), the sextupole gradient K2 is 
spread out along the whole dipole. 

 
 End Pole A Inner Poles End Pole B 
Lh (m) 0.1368 0.2355 0.1368 
Lp (m) 0.20 0.32 0.20 
Bend Angle (rad) 0.1167 0.2375 0.1196 
fint 0.384 0.317 0.384 
K1 (m-1) 0.0 -0.0022 0.0260 
K2 (m-2) 0.23 ±0.78 34.4 
K3 (m-3) 23.0 -34.4 15.0 
K4 (m-4) -0.0025 ±0.0045 -0.0014 

 
Table 1 – The parameters of the model. 

 
3. Results of the MAD model 
 

The model is able to reproduce with very good accuracy the linear matrix elements calculated 
from measurements (∆m ≈ 10-4). After the whole map of the field on the midplane was measured 
(October 2003), the fint parameters have been further finely readjusted in order to match the whole 
wiggler transfer matrix obtained from the magnetic measurements [1] and are reported below. 

The central pole matrix: 

          1.0007        0.3189        0.0000        0.0000 
          0.0044        1.0007        0.0000        0.0000 
          0.0000        0.0000        0.9647        0.3184 
          0.0000        0.0000       -0.2174        0.9647 
 

The end pole A matrix (travelling towards the inside of the wiggler): 

          0.9928        0.2004        0.0000        0.0000 
          0.0000        1.0072        0.0000        0.0000 
          0.0000        0.0000        0.9981        0.2000 
          0.0000        0.0000       -0.0822        0.9853 
 

The end pole B matrix (travelling towards the inside of the wiggler): 

          0.9989        0.2006        0.0000        0.0000 
          0.0520        1.0115        0.0000        0.0000 
          0.0000        0.0000        0.9923        0.1997 
          0.0000        0.0000       -0.1307        0.9813 
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The whole wiggler from A to B: 

 
          1.1230        2.0465        0.0000        0.0000 
          0.0745        1.0263        0.0000        0.0000 
          0.0000        0.0000       -0.0851        1.1980 
          0.0000        0.0000       -0.8327       -0.0266 
 

The whole wiggler from B to A: 

          1.0263        2.0465        0.0000        0.0000 
          0.0745        1.1230        0.0000        0.0000 
          0.0000        0.0000       -0.0266        1.1980 
          0.0000        0.0000       -0.8328       -0.0851 
 

Notice that due to the asymmetry between the pole A and B, exchanging the direction of 
motion in the case of the whole matrix, diagonal elements are exchanged in the horizontal and 
vertical blocks, while off diagonal ones are unchanged. The total matrix in reference [1] is 
calculated along a length of 2.2165 m while the matrices above corresponds to a 2 m long modeled 
wiggler 

 
4. Final remarks on the model 
 

Two important remarks on the accuracy of the model: the first about the dependence of the 
wiggler optics on the orbit and the second finally on the contribution to the radiation integral. 

As seen in Section 2 the terminal pole B has a strong sextupole, which generates linear 
focusing depending on the horizontal trajectory. A horizontal displacement of the trajectory of the 
order of the r.m.s. orbit value changes the effective K1 coefficient by about ∆K1 ≈ K2 ∆x = 4.7 m-2 
1.5 mm ≈ 0.007 m-1. This variation affects mainly the horizontal dispersion function of the ring, 
which has its maximum right near the wigglers. The model is indeed corrected adding a further thin 
lens with K1 adjusted fitting the measured dispersion. 

The curvature of the poles should reproduce the wiggler contribution to quantum excitation and 
damping of the beam emittance and beam energy spread. The quantum excitation is in first 
approximation proportional to the third power of the curvature (the radiation integrals I3and I5): 
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with a mismatch between model and real wiggler of the 17 % that must be considered. 
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Appendix A: calculation of the Trajectory 
 

On the midplane of the magnet, where the particle trajectory lies, the field is always vertical. In 
the reference system in Figure 6 the particle velocity is: sc ur =& and the magnetic field: B(x,z) = 

By(x,z) uy. 

 
 

 
Figure 6 – The global and the local coordinate systems along the trajectory. 

 
 

Therefore the equation of motion Brr ×= &&& emγ  becomes: 
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which is the system: 
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where tgθ = dx/dz. 

The derivatives in the system above are done with respect to the time variable t, while the 
magnetic field By(x,z) is known from measurement as a function of the position in the midplane as 
well as θ(z) is expressed as a function of the longitudinal position z. Therefore z is the most suitable 
variable for numerical integration. Considering c dt = ds = [1+(dx/dz)2]½ dz, the second derivative 
is expressed according to: 
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and after the variable change the trajectory equation becomes: 
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and eventually: 
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This differential equation can be numerically integrated from the field measurements table with 

a recursive algorithm with start path x(z) = 0. The spacing between points in the data table is 1 cm, 
both longitudinally and horizontally. The field By(z) is first fitted with a cubic spline curve (a series 
of cubic polynomials connected together) and then integrated with 1 mm longitudinal steps. The 
integration converges after few iterations (2-3) since within the ±12.5 mm horizontal range, where 
the trajectory oscillates, By has little and smooth variations and dx/dz is small (∆B/B < 2∙10−3 and 
dx/dz < 0.12). 

Once the trajectory is known, the path length is calculated from: 
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Appendix B: calculation of the Linear Transfer Matrix 
 

Once the wiggling trajectory was known, the transfer matrix of each single pole has been 
calculated from the table of the field measurements. 

 
Linear Transfer Matrix 
 

On the horizontal midplane of each pole the field is everywhere vertical (Figure 7) therefore in 
a parallel end dipole (neglecting at the moment the finite horizontal width of the magnet) there is no 
focusing effect on the horizontal plane. 

The scenario changes for a particle displaced vertically. In this case it undergoes the 
longitudinal component Bz of the field in the fringing region, which is responsible of the edge 
vertical focusing in a dipole1. Launching a particle with (y, y') = (1, 0) and (y, y') = (0, 1), the 
values of the position y and the divergence y' at the end of the pole are the columns of the vertical 
transfer matrix and the physical problem consists in the tracking of the particle around the trajectory 
previously calculated. The vertical equation of motion is (see Figure 7): 

 

( ) sinθ
0

2

0
zy B

p
ec

p
ecy =×= Br&&&  

 
deriving with respect to z: 
 

sinθθcos
0

2

2
4

zB
p
e

dz
yd

=  

 
Figure 7 – Projections of a parallel-end dipole showing the fringe field. 

                                                 
1 Further considerations are reported in the slides presented in the optics internal meeting held on 26 June 2003, 
available on: www.lnf.infn.it/acceleratori/dafne/report/WigglerModel.pdf 
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and eventually: 
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where dx/dz is the derivative of the horizontal wiggling trajectory. 

For linear modeling the field components at position y can be estimated expanding the 
magnetic field to first order around the midplane (y = 0), where the field is known. Using also 
Maxwell’s equations: 

 

00

00

00

),,(

),0,(),0,(),0,(),,(

),,(

==

==

==









∂

∂
=








∂

∂
=

=







∂
∂

+
∂

∂
−=








∂

∂
+=









∂

∂
=








∂

∂
=

y

y

y

z
z

y

zx

y

y
y

y

y

y

x
x

z
B

y
y

ByzyxB

zxB
z

B
x

B
yzxB

y
B

yzxBzyxB

x
B

y
y

B
yzyxB

 

 
The behaviour of By(x,z) has been measured and fitted and the vertical trajectory can be 

numerically integrated with the same procedure followed for the wiggling trajectory. The dipole 
lengths and the fint parameters are then fixed pole by pole fitting the matrix elements by using the 
matching commands of the MAD program. 

 
Linear perturbations of the Transfer Matrix  
 

The final step is to consider the linear corrections to transfer matrix integrating the complete 
equation of motion that takes in account the horizontal roll off of the field, which generates 
multipole terms. In the model this is realized adding thin lenses at the dipole edges, whose 
integrated gradient values K1 have been found matching again the corrected transfer matrix 
calculated from the equation of motion: 
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which gives: 
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The integrated vertical trajectories through the single poles are shown in Figures 4 and 5 
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Figure 4 – The vertical trajectory (full line) in the central pole entering in the pole 

 with (y, y') = (1, 0); the dashed line is the magnetic field. 
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Figure 5 – The vertical trajectory (full line) in the terminal poles starting with (y, y') = (1, 0): the 
terminal B has an extra-focusing term due to the sextupole; the dashed line is the magnetic field. 
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