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Introduction
DA®NE day-one single bunch lumi nosty exc&ded 10 cm® sec™ . After KLOE ingtallation

single bunch luminosity never exceeded 2+3 10%®° ecm? sec™. A non- perfect coupling correction can
be responsible for thisluminosity saturation.

In the following we analyze the effect of some coupling errors at 1P1.

General definitions

L et us remind some definitions concerning the coupling matrix analysist.

The 4x4 one-turn transport matrix T iswritten in the normal mode form as:

_IMomo_ e
T_En NE_VUV Q)

Where m =n =0 for afully decoupled point in the machine. The matrix U is the normal modes
one-turn transport matrix:
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With A and B the one-turn matrices for the two normal-modes and
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With + denoting the symplectic conjugate. y isafunction of saong thering:
y*+[Cl =1 (4)
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Thisisthe matrix that in MAD is denoted as R matrix in the output of the command TWISS
when the COUPLE option is specified:

1,1 J (Te[M ~N])
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The normal mode coordinates a = (a,a ,b,b") arerelated to the laboratory framevia
a=V7x (10)
and naturally viceversa

x =Va (11)

The motion in the norma mode system is decoupled. The coordinates of any particle can be
written as linear combinations of the elgenvectors of the normal system:

Xg Oy 0 C, C,0man
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Tracking two particleswith a=1 and b =1, which correspond respectively to the vectors:

oy O Cu0
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0O _ 0O and O 20 (13)
TC. Qy Q

Hc,, o 0

in the laboratory system, shows the motion of the two norma modes or its projection on the
laboratory frame. The motion of the whole beam isthe combination of these two normalized motions
multiplied by the emittances €, and €, of the two normal modes.

The motion of a particle oscillating in one mode isaline in the plane (ab) and an elipse in the
plane (X,y), except for the case in which C, =C,, =0, in which the motion is ill aline also in the
real space plane. Thisisthe case for example in the presence of solenoids and no skew quadrupoles,
in which the coupling reduces to a simple rotation of the transverse plane.
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For small coupling thefirst (second) modeis pseudo horizonta (vertical). Theratio:

K== (14)

Isa characteristic of the whole ring, and is determined by the behaviour of the C matrix around the
whole ring, and of the verticd and horizontal dispersion function. In each point of the ring the
dimensionsin therea space (x,y) are given by the quadratic contribution of the two modes:

o’ =0’ +0; (15)
where:
Ova =YV &B
O = /8 BoChi ~20,C1oCry +¥4,Chy
Oy =V|&B
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(16)

(dap Baps Vap arethe Twiss parameters of the two norma modes). We neglect here the contribution
of the energy oscillation, i.e. in the hypothesis of zero dispersion.

Inaflat beam ring and in the case of small couplinge, >> ¢, ; therefore the contribution of the
second mode to the horizontal dimension can be neglected, while the contribution of the first mode to
the horizontal dimension can be as large as or even larger than the second mode one: since the vertica
dimension is modulated by S, for what concerns the second mode oscillation, in the low-3 region
the term proportiona to the first mode invariant can be dominating, if the elements C,, and C,, of the
coupling matrix are not zero.

Another significant parameter is the angle between the axis of the norma mode oscillations and
the real space.

The angle between the principal axis of the modes and the real plane are:

a
0,=C, +-2C,
aCz+ﬁaC1

6, =Cy _Z_zclz

(17)

In the waist position the angle is defined only by the diagonal elements, and if C;; =C,, the two
modes are orthogonal .

Application to DA®NE
Let us consider the case of DA®NE around IP1 (KLOE). In the nomina case the coupling &

the IPisfully corrected and the matrix C = 0. Near the P, in between the low-[3 triplets, the coupling
is determined only by the KLOE solenoida field.
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The ring is described in the MAD format by the decoupled KLOE interaction region and the
decoupled ring. Nomina IP parameters and tunes are considered. The emittances are computed by
MAD. All the parameters and the matrix C at the IP are summarized in Tablel.

Table| - Nominal parameters

Mode 1 2

€ (mm mrad) 0.8175 0.4021e-09
K (%) 0.00
B” (m) 4,500 0.045
a” 0.000 0.000
Q 5.150 5.210

Cll =0 C12 =0

C21 =0 C22 =0

Figure 1a shows the projection in the real plane (x,y) of the first mode motion of a particle
having the invariant of 1mm at the IP, followed in nine pointsalong z (from z = -12 cm to z =12 cm)
in steps of 3 cm. Figure 1b corresponds to the second mode projection of a particle having an
invariant of 0.01 mm. In the figures the vertica scale is 1/100 of the horizontal one. The projections
of the two mode motions on the real plane lay in this case on two perpendicular lines and follow the
rotation of the transverse plane induced by the solenoid (in this scale the diagonals of each square
have an angle of £0.57°).
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Figure 1la - Mode 1 projection in the (x,y) plane for the nominal case.
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Figure 1b - Mode 2 projection in the (x,y) plane for the nominal case

The whole beam motion will be a composition of both modes. Figure 2 shows the projection
for the nominal case of the ellipse defined in the normal mode plane by the curve:

a? b?
— 4+ - = 1 1
o’ o (18)
with
o,=1mm (19)
and
0, = = (20)
100

which corresponds to the nominal emittanceratio k = 0.01.

At the IP of course the projection is a circle, while around the IP it is an élipse with axis
modulated by the betatron functions S,, 8,. To be noticed that the invariant emittance in the second
mode plane is not induced by any coupling in thering, sincek = 0 as specified in tablell.



00000

Qa0 :rrrrl'rrrrl'rn'rl'n'rrl'ri‘r?fﬁﬁﬂ:
eBals [ el z— = Do ':'.DDW-'IE
Q00002 f— l:-.n-u-:-eei
Xk Lromd f— 5 Q.DD'Q"D'BE
EeRilil el f— -ﬂ-DD'ﬁ"PJE
Rl f— -ﬂ-DDM-é
-G.ﬂﬂﬂ% i ANIAL

000004 E— Im- o -:'.[:-D-:-'i-é
000002 E— a_m-:-;.:é
e Rali[o e el E— % l:-.n-u-:-eﬁE
R lile v = E— -l:-.n-u-:-eé

o R

prRalalev )

pria L]

LRl v v

~Cu 0000

-0 0000

|

L=

™

=N e Ry

II|IIII|IIII|IIII|IIII|IIII§

Z= 12 m

frlte s

1

00006

ﬁﬁﬁmﬂﬂ fOoe ¢ %Dﬂﬁéﬁ

{Lﬂﬂcﬁﬂ M0 L002 0 D0

= .cooed— =
= 0.0008EE— =
= A
ARG 0 A LU T R R

E— i [Pl O.000H— z= dm —
= c.o0cedE— =
=~ o &
= 0.0000E— =
3 omeg —
A T B T

z = - S OO ==-8 m

ml N

|IIII|IIII|IIII|IIII|IIII'

L-30 pg. 6

DI LO4G 002 2 Q0D Ee? 20,000

Figure 2 - Projection in the (x,y) plane of the nominal ellipse for the nominal case

Let us consider now the case of amachine with a coupling source, for example in the case of a
solenoidal perturbation, as an asymmetry of the solenoidal compensation in DA®NE which
introduces avalue of k = 0.01. We have considered the case in which one of the compensator field
integral is increased by 9%, giving a change in the tunes and a dight mismatch of the betatron
function at the IP1 (see Table I1). Figures 3a and 3b represent the two norma modes projections in
the (x,y) plane.The projection of the first mode is not anymore a line, but an elipse, with variable
modulation. Furthermore thetilt angle is not zero a the IP. The composition of the two modes (see
Fig. 4) shows that the motion is dominated by the first mode. The maximum density is still a the IP,
while the maximum vertical oscillation is afactor two above the nominal one.

Tablell - Asymmetric error in the compensation

Mode 1 2
e (mm mrad) 0.7806 0.7835E-02
K (%) 1.00
B” (m) 4191 0.047
a” -0.046 -0.041
Q 5.161 5.219
C;;=-1.083 | C;,=-0.001
Cz]_ =-0.074 C22 =-0.013
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Figure 3a - Mode 1 projection in the (x,y) plane for asymmetric compensators

QUUWWWWWﬂH |||| |||| ||||| |||| TTT ||| s
200004 — I= Do Q.DDoeH— = oo O000sH— z= 12 —

E T I . 3
a0 — DD — ! oveeE— H —

E T i I ' 3
@.aa0ee — ¢.RreRE— : O — E —
~000000 f— -8 ::-[:--:w_éf— i -:-.c-u-c-a-éf— | —f
o.aac0a o pDesd— o.onoed— 3
-‘:‘.'ﬂ'ﬂ :| L o :| ] I:

gL T2 Hon
£.04004 F— —
o.a0000 F— —
0.09000 F— —
-aaooze F— —3
-0, 00004 F— —
.00 bl {H
gEX TR 3 Ak Bea

200004 — z=-12 cm  Q.DDoeEE = -9 OO00SH— z=-8om —
ouaaoee F— ! SLnreE— ! CoeneE— —3

-y 4 o o 3
ouaoon F— E 0.DDoeH— i OO — —

E . o 1 o 3
00000 E— | -0 DDoe— | 0,000 — —3
-0.00004 F— -0 DDeEE— 0 O0eE— —

-0ud MJLM%;HI|IIII|IIII|IIII|IIII|IIII:
c@ummﬂ.wz R rCaie qQaCoE © Culd DI040 002 Q900212041000

Figure 3b - Mode 2 projection in the (x,y) plane for asymmetric compensators
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Figure 4 - Projection in the (x,y) plane of the transverse ellipse for asymmetric compensators

Effects of different source of coupling at the IP

Let us consider the nomina optics: low-3 a the IP (o, = a, = 0) and decoupled one-turn

transport matrix (C =

0).

Symmetric perturbation

Any source of coupling symmetric around the IPwill in this case produce a variation in K, but
no tilt of the transverse plane a the IP: C, =C,, =0. This is true for both solenoidal symmetric
fields or anti-symmetric skew-quadrupolar perturbation.

Figure 5 shows the example of the (x-y) plane around the IP in the case of a symmetric tilt
error (0.3°) on the two nearer quadrupoles around the IP giving k =1% (see Table I11). The beam
Size at the IP isincreased with respect to the nomina case since the contribution of the first mode is
of the same order of the second one; the derivative of the tilt angle has the opposite sign with respect
to the nominal one (see Fig. 2).
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Figure 5 - Projection of the transverse ellipse in the (x,y) plane for antisymmetric skew perturbation

Table 1l - Antisymmetric skew perturbation

Mode 1 2
€ (mm mrad) 0.8046 0.7789E-02
K (%) 0.97
B” (m) 4521 0.045
a” 0.000 0.000
Q 5.149 5.211
Cll =0 C12 =0.043

C21 =-0.264 sz =0

No tilt at the waist position will be induced by the KLOE IR opticsif the two compensators are
symmetricaly powered, if the two triplets are tilted by the same angle, even if not the one giving the
better « , if thefield integral of the KLOE detector is symmetric around the IP. Any of these effects
will on the contrary produce changes in thettilt derivative around the IP.

Asymmetric perturbation insidethe IR

Any asymmetry inside the IR will produce atilt at the I P.

What is then the relaive angle between the two beams? Let us assume that the nomina rings
have the same one-turn transport matrix at the IP, thus meaning they have same tunes, same betatron
functions 3, , and a, = a, = 0.
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Any perturbation which isin the common part around the | P will produce the same tilt on both
rings, so that the relativetilt will be zero, aslong as the above conditions are satisfied.

A perturbation coming from any other point of the rings will act in a different way on the two
beams, even if it comes from the second common IR, since the phase advance from the perturbation
to IP1 will be different for the two rings.

About the KLOE IR

The design parameters of KLOE IR correspond to a vaue of the longitudina magnetic field a
thelP of 0.6 T, achievable with a current of 2660 A up.

From the measurements of March 1999 the alignment of the two low-f3 triplets showed a tilt
error of +0.7° (quads QUAKI101, 2, 3) and -1° (quads QUAKI1104, 5, 6), going in both cases in the
direction of lowering the nomind tilt angle. This fact led us to work with a lower field in the KLOE
detector. Even if to completely cancel thetilt error the field should have been lowered by 14% (2330
A, 0.525 T), it was agreed with the KLOE group to work with a field of 0.564 T corresponding to
2500A.

The compensator fields have been empirically set to better correct the coupling a the vaues of
82 A, corresponding to the 82% of the nominal set, working therefore with an integral field lower
than the KLOE one, as long as the calibrations of the three magnets can be trusted.

Let us now anayze the effects on the coupling of each one of the involved e ements, comparing
each case with the completely decoupled case, which correspondsto table | (0.525 T in KLOE, 88 A
on the compensators, assumed equal, tilt errors on the triplets equal on both sides: + 0.85 and dightly
corrected vaues of theindividua tilt of the quads).

Compensator fields

The effect of changing the field in both compensators symmetrically is shownin Fig. 6.

compensators
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Figure 6 - Beam emittance ratio and C Matrix dependence on compensator fields.
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The value of k (kappain the plots) remains less than 2% for changes of the order of ~ 15,20%
and is reasonably symmetric for positive or negative changes. This effect has been in fact observed in
DA®NE when moving the compensator fields by a large amount and not observing big changes in
the emittance value and/or in the minimum tune distance. The diagona €l ements of the C matrix at the
IP are zero, (tilt angle zero), C,; changes aimost linearly while the vaue of Cy, is very smdl, which
means that the projection on the vertical plane of the first mode is negligible.

KLOE field

The KLOE field variation is fet stronger from this point of view: fig 7 shows the same
functions; notice that the horizontal scale is half the one in the above figure. The asymmetries in the
curves are due to the presence of the quadrupoles inside the field. The value of kK = 2% is reached
with field variations of -5%, + 7%. In this case the element C,, s not zero, which gives a contribution
in the vertica dimension.

kloe field
1 T T T T ‘ T T T T f T T T T T T T T \ T T T T \ T T T T ] 008

| e co1f T y .07

0.5 |
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_1iwwww L L
0.85 0.9 0.95

KLOE B/B0

Figure 7 - Beam emittance ratio and C Matrix dependence on KLOE field

Present working point

Let us see now which is the present situation: Figure 8 corresponds to the variaion of the
compensators around the present vaue and the present KLOE field. The emittance of the second
mode can be even zeroed lowering the compensator field to about 70A. This unfortunately does not
eliminate the vertical component of the motion, since C,, ~ 0.08 and therefore

(~2
0, =&, \/% = /0.0014¢, =1.80,, (21)

a
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Figure 8 - Beam emittance ratio and C Matrix dependence on compensator fields
for present value of KLOE field

With the present KLOE field and taking into account the measured tilt angles of the quads, it
can be computed a correction to decouple the machine a the IP, using the skew quads in the short
and long arc around KLOE, and keeping low the vadue of k; with this arrangement the verticd
dimension a the IP is determined only by the mode 2 emittance, since the first mode is purely
horizontal.

With the four skew quadrupoles powered as:

QSKEL106 634A
QSKEL103 -28A
QSKES104 13.0A
QSKES101  25A

and the compensators lowered by 12% ( 73 A) the computed emittances are €, = 0.86 mm mrad and
€p = 0.30E-02, corresponding to k = 0.3%.

This means that the residua emittance coupling due to the mismatch between the present
KLOE field and the tilt angle of the low-f3 triplets, if properly corrected, can be smaller than the
nominal design value.
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