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Introduction

DAΦNE day-one single bunch luminosity exceeded 1030
 cm-2 sec-1 . After KLOE installation

single bunch luminosity never exceeded 2÷3 1029 cm-2 sec-1. A non-perfect coupling correction can
be responsible for this luminosity saturation.

In the following we analyze the effect of some coupling errors at IP1.

General definitions

Let us remind some definitions concerning the coupling matrix analysis1.

The 4x4 one-turn transport matrix T is written in the normal mode form as:

T
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Where m n 0= =  for a fully decoupled point in the machine. The matrix U is the normal modes
one-turn transport matrix:
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With A and B the one-turn matrices for the two normal-modes and
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With + denoting the symplectic conjugate. γ  is a function of s along the ring:
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This is the matrix that in MAD is denoted as R matrix in the output of the command TWISS
when the COUPLE option is specified:
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The normal mode coordinates a = ( , ' , , ' )a a b b  are related to the laboratory frame via:

a V x1= −
(10)

and naturally viceversa:

x Va= (11)

The motion in the normal mode system is decoupled. The coordinates of any particle can be
written as linear combinations of the eigenvectors of the normal system:
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Tracking two particles with a and b= =1 1, which correspond respectively to the vectors:
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in the laboratory system, shows the motion of the two normal modes or its projection on the
laboratory frame. The motion of the whole beam is the combination of these two normalized motions
multiplied by the emittances εa and εb of the two normal modes.

The motion of a particle oscillating in one mode is a line in the plane (a,b) and an ellipse in the
plane (x,y), except for the case in which C C12 21 0= = , in which the motion is still a line also in the
real space plane. This is the case for example in the presence of solenoids and no skew quadrupoles,
in which the coupling reduces to a simple rotation of the transverse plane.
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For small coupling the first (second) mode is pseudo horizontal (vertical). The ratio:

κ ε
ε

= b

a

(14)

is a characteristic of the whole ring, and is determined by the behaviour of the C matrix around the
whole ring, and of the vertical and horizontal dispersion function. In each point of the ring the
dimensions in the real space (x,y) are given by the quadratic contribution of the two modes:

σ σ σ2 2 2= +a b (15)
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(α β γa b a b a b, , ,, ,  are the Twiss parameters of the two normal modes). We neglect here the contribution
of the energy oscillation, i.e. in the hypothesis of zero dispersion.

In a flat beam ring and in the case of small coupling ε εa b>> ; therefore the contribution of the
second mode to the horizontal dimension can be neglected, while the contribution of the first mode to
the horizontal dimension can be as large as or even larger than the second mode one: since the vertical
dimension is modulated by βb  for what concerns the second mode oscillation, in the low-β region
the term proportional to the first mode invariant can be dominating, if the elements C12 and C22 of the
coupling matrix are not zero.

Another significant parameter is the angle between the axis of the normal mode oscillations and
the real space.

The angle between the principal axis of the modes and the real plane are:
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In the waist position the angle is defined only by the diagonal elements, and if C C11 22=  the two
modes are orthogonal.

Application to DAΦNE

Let us consider the case of DAΦNE around IP1 (KLOE). In the nominal case the coupling at
the IP is fully corrected and the matrix C 0= . Near the IP, in between the low-β triplets, the coupling
is determined only by the KLOE solenoidal field.
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The ring is described in the MAD format by the decoupled KLOE interaction region and the
decoupled ring. Nominal IP parameters and tunes are considered. The emittances are computed by
MAD. All the parameters and the matrix C at the IP are summarized in Table I.

Table I - Nominal parameters

Mode 1 2
ε  (mm mrad) 0.8175 0.4021e -09
κ  (%) 0.00
β∗  (m) 4.500 0.045
α∗ 0.000 0.000
Q 5.150 5.210

C11 = 0 C12 = 0
C21 = 0 C22 = 0

Figure 1a shows the projection in the real plane (x,y) of the first mode motion of a particle
having the invariant of 1mm at the IP, followed in nine points along z (from z = -12 cm to z =12 cm)
in steps of 3 cm. Figure 1b corresponds to the second mode projection of a particle having an
invariant of 0.01 mm. In the figures the vertical scale is 1/100 of the horizontal one. The projections
of the two mode motions on the real plane lay in this case on two perpendicular lines and follow the
rotation of the transverse plane induced by the solenoid (in this scale the diagonals of each square
have an angle of ±0.57°).

Figure 1a - Mode 1 projection in the (x,y) plane for the nominal case.
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Figure 1b - Mode 2 projection in the (x,y) plane for the nominal case

The whole beam motion will be a composition of both modes. Figure 2 shows the projection
for the nominal case of the ellipse defined in the normal mode plane by the curve:
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which corresponds to the nominal emittance ratio κ = 0 01. .

At the IP of course the projection is a circle, while around the IP it is an ellipse with axis
modulated by the betatron functions β βa b, . To be noticed that the invariant emittance in the second
mode plane is not induced by any coupling in the ring, since κ = 0 as specified in table I.
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Figure 2 - Projection in the (x,y) plane of the nominal ellipse for the nominal case

Let us consider now the case of a machine with a coupling source, for example in the case of a
solenoidal perturbation, as an asymmetry of the solenoidal compensation in DAΦNE which
introduces a value of κ ≈ 0 01. . We have considered the case in which one of the compensator field
integral is increased by 9%, giving a change in the tunes and a slight mismatch of the betatron
function at the IP1 (see Table II). Figures 3a and 3b represent the two normal modes projections in
the (x,y) plane.The projection of the first mode is not anymore a line, but an ellipse, with variable
modulation. Furthermore the tilt angle is not zero at the IP. The composition of the two modes (see
Fig. 4) shows that the motion is dominated by the first mode. The maximum density is still at the IP,
while the maximum vertical oscillation is a factor two above the nominal one.

Table II - Asymmetric error in the compensation

Mode 1 2
ε  (mm mrad) 0.7806 0.7835E-02
κ  (%) 1.00
β∗  (m) 4.191 0.047
α∗ -0.046 -0.041
Q 5.161 5.219

C11 = -1.083 C12 = -0.001
C21 = -0.074 C22 = -0.013
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Figure 3a - Mode 1 projection in the (x,y) plane for asymmetric compensators

Figure 3b - Mode 2 projection in the (x,y) plane for asymmetric compensators
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Figure 4 - Projection in the (x,y) plane of the transverse ellipse for asymmetric compensators

Effects of different source of coupling at the IP

Let us consider the nominal optics: low-β at the IP (αx = αx = 0) and decoupled one-turn
transport matrix (C 0= ).

Symmetric perturbation

Any source of coupling symmetric around the IP will in this case produce a variation in κ, but
no tilt of the transverse plane at the IP: C C11 22 0= = . This is true for both solenoidal symmetric
fields or anti-symmetric skew-quadrupolar perturbation.

Figure 5 shows the example of the (x-y) plane around the IP in the case of a symmetric tilt
error (0.3°) on the two nearer quadrupoles around the IP giving κ = 1% (see Table III). The beam
size at the IP is increased with respect to the nominal case since the contribution of the first mode is
of the same order of the second one; the derivative of the tilt angle has the opposite sign with respect
to the nominal one (see Fig. 2).
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Figure 5 - Projection of the transverse ellipse in the (x,y) plane for antisymmetric skew perturbation

Table III - Antisymmetric skew perturbation

Mode 1 2
ε  (mm mrad) 0.8046 0.7789E-02
κ  (%) 0.97
β∗  (m) 4.521 0.045
α∗ 0.000 0.000
Q 5.149 5.211

C11 = 0 C12 = 0.043
C21 = -0.264 C22 = 0

No tilt at the waist position will be induced by the KLOE IR optics if the two compensators are
symmetrically powered, if the two triplets are tilted by the same angle, even if not the one giving the
better κ , if the field integral of the KLOE detector is symmetric around the IP. Any of these effects
will on the contrary produce changes in the tilt derivative around the IP.

Asymmetric perturbation inside the IR

Any asymmetry inside the IR will produce a tilt at the IP.

What is then the relative angle between the two beams? Let us assume that the nominal rings
have the same one-turn transport matrix at the IP, thus meaning they have same tunes, same betatron
functions β1 2,

*  and αx = αx = 0.
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Any perturbation which is in the common part around the IP will produce the same tilt on both
rings, so that the relative tilt will be zero, as long as the above conditions are satisfied.

A perturbation coming from any other point of the rings will act in a different way on the two
beams, even if it comes from the second common IR, since the phase advance from the perturbation
to IP1 will be different for the two rings.

About the KLOE IR

The design parameters of KLOE IR correspond to a value of the longitudinal magnetic field at
the IP of 0.6 T, achievable with a current of 2660 A up.

From the measurements of March 1999 the alignment of the two low-β triplets showed a tilt
error of +0.7° (quads QUAKI101, 2, 3) and -1° (quads QUAKI104, 5, 6), going in both cases in the
direction of lowering the nominal tilt angle. This fact led us to work with a lower field in the KLOE
detector. Even if to completely cancel the tilt error the field should have been lowered by 14% (2330
A, 0.525 T), it was agreed with the KLOE group to work with a field of 0.564 T corresponding to
2500A.

The compensator fields have been empirically set to better correct the coupling at the values of
82 A, corresponding to the 82% of the nominal set, working therefore with an integral field lower
than the KLOE one, as long as the calibrations of the three magnets can be trusted.

Let us now analyze the effects on the coupling of each one of the involved elements, comparing
each case with the completely decoupled case, which corresponds to table I (0.525 T in KLOE, 88 A
on the compensators, assumed equal, tilt errors on the triplets equal on both sides: ± 0.85 and slightly
corrected values of the individual tilt of the quads).

Compensator fields

The effect of changing the field in both compensators symmetrically is shown in Fig. 6.
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Figure 6 - Beam emittance ratio and C Matrix dependence on compensator fields.
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The value of κ (kappa in the plots) remains less than 2% for changes of the order of ~ 15,20%
and is reasonably symmetric for positive or negative changes. This effect has been in fact observed in
DAΦNE when moving the compensator fields by a large amount and not observing big changes in
the emittance value and/or in the minimum tune distance. The diagonal elements of the C matrix at the
IP are zero, (tilt angle zero), C21 changes almost linearly while the value of C12 is very small, which
means that the projection on the vertical plane of the first mode is negligible.

KLOE field

The KLOE field variation is felt stronger from this point of view: fig 7 shows the same
functions; notice that the horizontal scale is half the one in the above figure. The asymmetries in the
curves are due to the presence of the quadrupoles inside the field. The value of κ = 2% is reached
with field variations of -5%, + 7%. In this case the element C12 is not zero, which gives a contribution
in the vertical dimension.
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Figure 7 - Beam emittance ratio and C Matrix dependence on KLOE field

Present working point

Let us see now which is the present situation: Figure 8 corresponds to the variation of the
compensators around the present value and the present KLOE field. The emittance of the second
mode can be even zeroed lowering the compensator field to about 70A. This unfortunately does not
eliminate the vertical component of the motion, since C12 ~ 0.08 and therefore

σ ε
β

ε σy a
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C= ≈ ≈12

2

0 0014 1 8. . (21)
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Figure 8 - Beam emittance ratio and C Matrix dependence on compensator fields
for present value of KLOE field

With the present KLOE field and taking into account the measured tilt angles of the quads, it
can be computed a correction to decouple the machine at the IP, using the skew quads in the short
and long arc around KLOE, and keeping low the value of κ; with this arrangement the vertical
dimension at the IP is determined only by the mode 2 emittance, since the first mode is purely
horizontal.

With the four skew quadrupoles powered as:

QSKEL106 63.4 A
QSKEL103 -2.8 A
QSKES104 13.0 A
QSKES101 2.5 A

and the compensators lowered by 12% ( 73 A) the computed emittances are εa = 0.86 mm mrad and
εb = 0.30E-02, corresponding to κ = 0.3%.

This means that the residual emittance coupling due to the mismatch between the present
KLOE field and the tilt angle of the low-β triplets, if properly corrected, can be smaller than the
nominal design value.
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