

DA Φ **NE TECHNICAL NOTE**

INFN - LNF, Accelerator Division

Frascati, November 8, 1994 Note: L-19

DAY-ONE AND FI.NU.DA. INTERACTION REGIONS UPDATE

C. Biscari

The Day-One and FI.NU.DA. Interaction Regions contain a common quadrupole type (Q3 in Day-One¹ and Q3, Q4 in FI.NU.DA.²) whose magnetic length has been changed to 40 cm to decrease the effect of the fringing field on the off-axis trajectory³.

The new optics are described in the following tables and figures.

DAY-ONE

The DAY-ONE IR optics is very similar to the one described in Ref. 1. Q0, Q1, Q2 quadrupoles are 30 cm long. Q4 is 40 cm long. Table I and Fig. 1 represent the linear optics with the rectangular model.

The linear optics has been computed also substituting the rectangular model by 1 cm long rectangular slices whose gradient follow the real field profile. Figure 2 represent this optics and it can be noticed that the difference is negligible. Figures 3 and 4 represent the linear optics with the field profile model and the compensator on corresponding to rotation angles of 11° and 22°. Table II summarizes the quadrupole gradients computed from the integrated value using the field profile model.

Table III gives the transport matrix of half IR in the three configurations computed with the field profile model. Table IV is a summary of the corresponding main optics parameters in the IR.

The optics is flexible enough in all the configurations to change the phase advances up to 20% of the nominal values. The presented configurations are an example of how the IR is compatible with the compensator, and are used to determine the maximum gradients needed for each quadrupole (bold in Table II).

	Length (m)	Position (m from IP)	Center position (m from IP)	K2 (m ⁻²)	G (T/m)
Q0	0.15	0.00	0.00	2.90829	4.944
Drift	0.30	0.15			
Q1	0.30	0.45	0.60	-1.01394	1.724
Drift	0.30	0.75			
Q2	0.30	1.05	1.20	-4.86841	8.276
Drift	0.40	1.35			
Q3	0.40	1.75	1.95	2.03261	3.455
Drift	2.90	2.15			
End IR		5.05			

TABLE I - DAY-ONE IR elements for half IR - rectangular model

Fig. 1 - Optical functions and beam separation (θ_{cross} = ±12.5 mrad) for half IR - rectangular model

Fig. 2 - Optical functions for half IR - field profile model

Fig. 3 - Optical functions in half IR with compensator on and $\Theta_{rot}\text{=}11^\circ$

Fig. $\,$ 4 - Optical functions in half IR with compensator on and $\Theta_{rot}\text{=}22^\circ$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Compensator	off	on	on
$K^2 (m^{-2})$ 2.9116 3.4306 3.4306 Q1 2.9116 3.4306 3.4306 Q2 -1.0152 -0.8804 -0.8807 Q3 -4.8686 -4.8508 -4.7319 Q4 2.0313 1.9262 1.6897 $K^2 L (m^{-1})$ V V V Q1 0.4367 0.5146 0.5146 Q2 -0.3045 -0.2641 -0.2642 Q3 -1.4606 -1.4552 -1.4196 Q4 0.8125 0.7705 0.6759 G (T/m) V V V V Q1 4.9497 5.8320 5.8320 Q2 1.7258 1.4967 1.4972 Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725	Θ_{rot}	0	11°	22°
$K^2 (m^{-2})$ 2.9116 3.4306 3.4306 Q1 2.9116 3.4306 -0.8807 Q2 -1.0152 -0.8804 -0.8807 Q3 -4.8686 -4.8508 -4.7319 Q4 2.0313 1.9262 1.6897 $K^2 L (m^{-1})$ V V V V Q1 0.4367 0.5146 0.5146 Q2 -0.3045 -0.2641 -0.2642 Q3 -1.4606 -1.4552 -1.4196 Q4 0.8125 0.7705 0.6759 G (T/m) V V V V Q1 4.9497 5.8320 5.8320 Q2 1.7258 1.4967 1.4972 Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$K^{2}(m^{-2})$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q1	2.9116	3.4306	3.4306
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q2	-1.0152	-0.8804	-0.8807
Q4 2.0313 1.9262 1.6897 $K^2 L (m^{-1})$ 0.4367 0.5146 0.5146 Q1 0.4367 0.5146 0.5146 Q2 -0.3045 -0.2641 -0.2642 Q3 -1.4606 -1.4552 -1.4196 Q4 0.8125 0.7705 0.6759 G (T/m) 4.9497 5.8320 5.8320 Q2 1.7258 1.4967 1.4972 Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725	Q3	-4.8686	-4.8508	-4.7319
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q4	2.0313	1.9262	1.6897
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$K^2 L (m^{-1})$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q1	0.4367	0.5146	0.5146
Q3 -1.4606 -1.4552 -1.4196 Q4 0.8125 0.7705 0.6759 G (T/m) 4.9497 5.8320 5.8320 Q2 1.7258 1.4967 1.4972 Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725	Q2	-0.3045	-0.2641	-0.2642
Q4 0.8125 0.7705 0.6759 G (T/m) 4.9497 5.8320 5.8320 Q1 4.9497 5.8320 5.8320 Q2 1.7258 1.4967 1.4972 Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725	Q3	-1.4606	-1.4552	-1.4196
G (T/m) 4.9497 5.8320 5.8320 Q1 4.9497 5.8320 5.8320 Q2 1.7258 1.4967 1.4972 Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725	Q4	0.8125	0.7705	0.6759
G (1/m) 4.9497 5.8320 5.8320 Q1 4.9497 5.8320 5.8320 Q2 1.7258 1.4967 1.4972 Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725				
Q14.9497 5.8320 5.8320Q2 1.7258 1.49671.4972Q3 8.2766 8.24648.0442Q4 3.4532 3.27452.8725	G(1/m)			
Q21.72581.49671.4972Q38.27668.24648.0442Q43.45323.27452.8725	Q1	4.9497	5.8320	5.8320
Q3 8.2766 8.2464 8.0442 Q4 3.4532 3.2745 2.8725	Q2	1.7258	1.4967	1.4972
Q4 3.4532 3.2745 2.8725	Q3	8.2766	8.2464	8.0442
	Q4	3.4532	3.2745	2.8725

TABLE II - DAY-ONE IR quadrupole parameters

TABLE III - Half IR first order transport matrix

Compensator off

0.8584	4.7629	0.0000	0.0000
-0.1431	0.3711	0.0000	0.0000
0.0000	0.0000	-4.9410	0.1833
0.0000	0.0000	-1.6099	-0.1427

Compensator on - 11°

0.4864	4.8910	0.0000	0.0000
-0.1724	0.3222	0.0000	0.0000
0.0000	0.0000	-4.6042	0.1922
0.0000	0.0000	-1.4502	-0.1567

Compensator on - 22°

0.6004	5.1458	0.0000	0.0000
-0.1912	0.0266	0.0000	0.0000
0.0000	0.0000	-4.1088	0.1362
0.0000	0.0000	-1.0773	-0.2077

TABLE VII - IR optical parameters - field profile model

Θrot	0	11°	22°
@IP (normal modes in the rotated plane)			
$\beta_{\mathbf{x}}$ (m)	4.5	4.5	4.5
$\alpha_{\mathbf{x}}$	0.0	0.0	0.0
β _y (m)	0.045	0.045	0.045
α _y	0.0	0.0	0.0
$\Delta \mathbf{x}(\mathbf{m})$	0.0	0.0	0.0
$\Delta \mathbf{x}'(\mathbf{mrad})$	12.5	12.5	v
@ splitter input			
$\beta_{\mathbf{x}}$ (m)	8.3575	6.3804	7.5067
$\alpha_{\mathbf{x}}$	0.1599	0.0272	0.4862
β _y (m)	1.8452	1.7746	1.1718
$\alpha_{\mathbf{x}}$	0.2232	0.3686	.4292
$\Delta \mathbf{x}(\mathbf{cm})$	5.9536	6.1137	6.4323
$\Delta \mathbf{x}'(\mathbf{mrad})$	4.6385	4.0275	0.3330
For Half IR			
$\Delta \mathbf{Q}_{\mathbf{x}}$	0.142	0.183	0.173
$\Delta \mathbf{Q}_{\mathbf{y}}$	0.390	0.381	0.399

The Beam Stay Clear (BSC) with the compensator on are compatible with those corresponding to the layout without compensator.

Figure 5 shows the BSC corresponding to the case with maximum compensator field ($\Theta_{rot} = 22^{\circ}$) (dotted line), compared to the BSC without compensator (solid lines). Both are computed for a crossing angle of ±15 mrad and a vertical bump of 2.5 mm at the IP.

Table V gives the requested magnetic element apertures of the IR.

Q0	90
Q1	90
Q2	90
Q3	200
Compensator	240

TABLE V - Full aperture (mm) of IR magnets

Fig. 5 - BSC with compensator on $(\Theta_{rot}=22^\circ)$ (dotted line) and without compensator (solid line)

FI.NU.DA.

In the FI.NU.DA. IR optics the quadrupole center position remains unchanged with respect to the one described in Ref. 2. The optics has been designed for the nominal field detector ($\int B \, dl = 2.6 \, T \, m$), and for 80 % of its value. The element characteristics are listed in Table VI for the two configurations and the optical functions plotted in Fig. 6 for the nominal configuration and in Fig. 7 for the reduced field configuration. The first permanent quadrupole Q1 has the same gradient for the two configurations, while a gradient correction of ~3 % is necessary on the second permanent quadrupole Q2 for the second configuration.

Table VII lists the transport matrices for half IR and Table VIII the optical parameters. The requested apertures are listed in table IX, and the BSC are plotted in Fig. 8.

nominai ac							
Element	Lengths (m)	Position (m from IP)	Center position (m from IP)	K2 (m ⁻²)	G (T/m)	Θ (deg)	
S.F.* Q1+ S.F.* S.F.* Q2 + S.F.* S.F.* Drift Q3 Drift Q4 Drift Compensator Drift	$\begin{array}{c} 0.350\\ 0.150\\ 0.150\\ 0.275\\ 0.575\\ 0.550\\ 0.400\\ 0.200\\ 0.400\\ 0.435\\ 1.150\\ 0.415\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.350\\ 0.500\\ 0.650\\ 0.925\\ 1.500\\ 2.050\\ 2.450\\ 2.650\\ 3.050\\ 3.485\\ 4.635\end{array}$	0.425 0.7875 2.250 2.850 4.060	5.79000 -7.02689 1.850001 -1.15020	9.84 11.95 3.15 1.96	9.0137 14.9499 22.6197 22.6197	
Total length	5.050				, ,		

TARIF	VI -	FI		IR	elements	for	half	IR
IADLL	VI -	ΓI,	NU.DA.	III	elements	IUI	Hall	IR.

Nominal detector field

* S.F. = Detector Solenoidal Field

80%	of	detector field	

Element	Lengths (m)	Position (m from IP)	Center position (m from IP)	K2 (m ⁻²)	G (T/m)	Θ (deg)
SE*	0.350	0.000				
01+ S.F.*	0.350	0.000	0.425	5.790	9.84	6.6218
S.F.*	0.150	0.500				
Q2 + S.F.*	0.275	0.650	0.7875	-7.200	12.24	11.6666
S.F.*	0.575	0.925				
Drift	0.550	1.500				
Q3	0.400	2.050	2.250	1.620	2.75	17.5180
Drift	0.200	2.450				
Q4	0.400	2.650	2.850	-0.630	1.07	17.5180
Drift	0.435	3.050				
Compensator	1.150	3.485	4.060			
Drift	0.415	4.635				
Total length	5.050					

Fig. 6 - Optical functions and beam separation (θ_{cross} = ±12.5 mrad) for half IR - nominal detector field

Fig. 7 - Optical functions and beam separation (θ_{cross} = ±12.5 mrad) for half IR - 80% of the detector field

Table VII - Transport matrices for half IR

Nominal field detector

0 9716	1 7187	0.0000	0.0000
0.1265	-1.7-107 0.2610	0.0000	0.0000
-0.1303	0.3019	0.0000	0.0000
0.0000	0.0000	-4.3659	0.1226
0.0000	0.0000	-0.6791	-0.2100

80% of field detector

1.0957	4.5383	0.0000	0.0000
-0.1555	0.2686	0.0000	0.0000
0.0000	0.0000	-5.3824	0.1474
0.0000	0.0000	-1.2158	-0.1525

Table VIII - Beam optic parameters

B detector	100%	80%
@IP		
$\beta_{\mathbf{x}}$ (m)	4.5	4.5
$\alpha_{\mathbf{x}}$	0.0	0.0
$\beta_{\rm v}({\rm m})$	0.045	0.045
$\alpha_{\mathbf{v}}$	0.0	0.0
$\Delta \mathbf{x}(\mathbf{m})$	0.0	0.0
$\Delta \mathbf{x}'$ (mrad)	12.5	12.5
@ splitter input		
$\beta_{\mathbf{x}}$ (m)	9.259	9.979
$\alpha_{\mathbf{x}}$	0.215	0.496
$\beta_{\rm v}({\rm m})$	1.192	1.787
$\alpha_{\mathbf{x}}$	0.439	0.205
$\Delta \mathbf{x}(\mathbf{cm})$	5.933	5.673
$\Delta \mathbf{x}'(\mathbf{mrad})$	4.524	3.358
For Half IR		
$\Delta \mathbf{Q_x}$	0.132	0.118
$\Delta \mathbf{Q}_{\mathbf{y}}$	0.411	0.413

Fig. 8 - BSC in half IR

indiana i un apertare (initi) or invitiagnetis
--

Q1	86
Q2	86
Q3	200
Q4	200
Compensator	240

REFERENCES

[[]1] C.Biscari. 'Optimization of the Day One Interaction Region' - DAΦNE Technical Note L-17, 1994.

^[2] C.Biscari. 'FI.NU.DA. Interaction Region' - DAΦNE Technical Note L-15, 1994.

^[3] C.Biscari. 'Low Beta Quadrupole Fringing Field Effect On Off Axis Trajectory' - Proceedings off the Workshop on "Non Linear Dynamics in Particle Accelerators: Theory and Experiments" Arcidosso, September 4-9, 1994 - to be published.