

INFN - LNF, Accelerator Division

Frascati, June 8, 1994 Note: L-17

OPTIMIZATION OF THE DAY-ONE INTERACTION REGION

C. Biscari

A new layout for the DAY-ONE Interaction Region (IR) is proposed. Relaxing slightly the transparency conditions it is possible to decrease the vertical chromaticity which in the previous version¹ was higher than in KLOE and FI.NU.DA. IRs.

66 "Accumulator-type" quadrupoles will be now probably purchased from Tesla Engineering Ltd. We need 54 such quads in the DA Φ NE lattice. In addition, if the γ - γ tagging experiment will run together with the KLOE experiment, it will need 4 "large" quads, thus leaving 4 more "Accumulator-type" quads available. We can therefore use 12 or 16 of these quads for the DAY-ONE IR, plus four quadrupoles coming from the ADONE ring. The characteristics of these quads are summarized in Table I.

	Magnetic	Maximum	Gap between
	length	Gradient	poles
	(mm)	(T/m)	(mm)
Type 1 (Accumulator)	300	12	100
Type 2 (ADONE)	532	3	220(h) x 90(v)

TABLE I - IR quadrupoles general characteristics

Along the IR the beam vacuum chamber is common to both rings; due to the crossing angle at the Interaction Point (IP) the Beam Stay Clear (BSC) increases along the IR away from the IP: the aperture of the magnetic elements must follow its shape. Type 1 quads have a small aperture and for this reason they can be used only within \sim 1 m from the IP, while the ADONE quadrupoles are large enough to be used in any place in the IR.

It has been chosen to add one more quadrupole to each IR triplet, as in the present FI.NU.DA. design², so that one more free parameter is available to adjust IR phase advances or optical functions.

The ADONE quad is used as the last one of the quadruplet. Since the other three quadrupoles cannot be placed within 1 m, one quadrupole can be placed exactly centered at the IP, thus saving space and still leaving four free parameters.

The IR layout is described in Table II. Figure 1 shows the optical functions and the separation along half IR. Half IR transport matrix is given in Table III. The main IR optics parameters are listed in Table IV. The separation and its slope are the nominal ones. The tunes have been chosen similar to those of the present KLOE design³, but there is flexibility enough to change them by about 10%, without affecting the matching to the arcs. The vertical chromaticity for half IR is smaller by one unity with respect to previous design, thus decreasing by 4 units the total ring vertical chromaticity. The BSC, computed with the usual assumptions⁴ is plotted in Fig. 2, and is compared to the actual apertures of the magnets.

	Length (m)	Position (m from IP)	Center position (m from IP)	K2 (m ⁻²)	G (T/m)
Q0	0.150	0.000	0.000	2.866310	4.873
Drift	0.290	0.150			
Q1	0.300	0.440	0.590	-0.896576	1.524
Drift	0.300	0.740			
Q2	0.300	1.040	1.190	-4.967798	8.445
Drift	0.340	1.340			
Q3	0.532	1.680	1.946	1.550163	2.635
Drift	2.838	2.120			
End IR		5.050			

TABLE II - DAY-ONE IR elements for half IR

Fig. 1 - Optical functions and beam separation for half IR

r		l	
0.820717	4.700000	0.000000	0.000000
-0.151649	0.350000	0.000000	0.000000
0.000000	0.000000	-5.062550	0.125243
0.000000	0.000000	-1.645972	-0.156809

TABLE III - Half IR first order transport matrix

@IP	
$\beta_{\mathbf{x}}$ (m)	4.5
$\alpha_{\mathbf{x}}$	0.0
β _v (m)	0.045
$\dot{\alpha_v}$	0.0
$\Delta \mathbf{x}(\mathbf{m})$	0.0
∆x'(mrad)	12.5
@ splitter input	
β _x (m)	7.9400
$\alpha_{\mathbf{x}}$	0.1945
β _v (m)	1.5019
$\alpha_{\mathbf{x}}$	0.6145
$\Delta \mathbf{x}(\mathbf{cm})$	5.8750
$\Delta \mathbf{x}'$ (mrad)	4.375
D _x (m)	-0.040
D_x '	-0.020
For Half IR	
$\Delta \mathbf{Q_x}$	0.144
$\Delta \mathbf{Q_v}$	0.420
Horizontal chromaticity	- 0.37
Vertical chromaticity	- 2.46

TABLE IV - IR optic parameters

Fig. 2 - Quadrupole apertures, BSC apertures (solid lines) for 10,12.5,15 mrad crossing angles, and corresponding beam central trajectory (dotted lines)

The IR has been matched to the ring (D19 optics). The total ring main parameters are listed in Table V. Figure 3 shows the optical functions in the short and in the long arc. The quadrupole gradients and the optical functions are listed for the short and long arc in the Appendix I. The dynamic aperture computed with the DA Φ NE code⁵ is shown in Fig. 4; it is larger with respect to the previous one by about $4\sigma_x$ in the horizontal plane; the tune behaviours with momentum and amplitude are given in Fig. 5.

Q _x	5.18	Qy	6.15
$\delta Q_{\mathbf{X}}^{*}$ (hshort)	1.1896	$\delta \hat{Q}_{y}^{*}$ (hshort)	1.5599
δQ _x *(hlong)	1.4004	δQ _y **(hlong)	1.5154
$\beta_{\mathbf{X}}^{**}$ (short) (m)	6.19	$\beta_{\mathbf{y}^{**}}$ (short) (m)	0.66
$\beta_{\mathbf{X}}^{**}$ (long) (m)	8.20	$\beta_{\mathbf{y}}^{**}$ (long) (m)	1.32
C _x	-8.5	, Č _v	-18.8
α_{c}	0.0062	Sextupoles families	8

TABLE V- General lattice parameters

* From IP to midpoint of straight section ** At straight section midpoint

Fig. 3 - Optical functions in the short and in the long arc

Fig. 4 - Dynamic aperture of the lattice for $\Delta p/p = -0.5\%$, 0., 0.5%

Fig. 5 - Tune behaviour with amplitude in units of σ 's for $\Delta p/p$ = - 0.5%, 0., 0.5%

Fig. 6 - Fractional part of tune versus momentum

Compatibility with the compensators

The superconducting solenoids which will be used to compensate the solenoidal field of $KLOE^6$ and $FI.NU.DA^2$. detectors can be installed in the DAY-ONE IR since they are compatible with the quadrupole layout and vacuum chamber apertures; this will make installation and commissioning of both experiments easier.

The compensators can be also turned up to study the effect of the solenoidal field, of the residual coupling and of errors in the compensation on the machine and on beam dynamics.

In this case the two compensators installed in the same IR should be powered with opposite currents, so that coupling is canceled outside the IR. In between the two solenoids, the seven quadrupoles should be rotated by the same angle, corresponding to the total rotation introduced by each solenoid:

$$\Theta_{\rm rot} = \frac{\int B_{\rm s} \, ds}{2B\rho}$$

Due to the focusing effect of the solenoids the optics inside the IR changes; two solutions are presented, one for the nominal current of the solenoids, corresponding to $\Theta_{rot} \sim 22^{\circ}$, and one for half its value. The gradients of the quadrupoles with the IR layout are listed in Tab. VI, the optical functions shown in Figs. 7 and 8; the optical parameters are given in Tab. VII.

	Length (m)	Center position (m from IP)	K2 ($\Theta_{rot}=11^\circ$) (m ⁻²)	K2 ($\Theta_{rot}=22^\circ$) (m ⁻²)
Q0	0.150	0.000	3.20	3.35
Drift	0.290			
Q1	0.300	0.590	-0.85	-0.80
Drift	0.300			
Q2	0.300	1.190	-4.86	-4.70
Drift	0.340			
Q3	0.532	1.946	1.38	1.15
Drift	1.273			
Compensator	1.150	4.060		
Drift	0.415			
End IR		5.050		

TABLE VI - DAY-ONE IR elements for half IR with compensator on

Θrot	11°	22°
@IP (normal modes in the rotated plane)		
$\beta_{\mathbf{x}}$ (m)	4.5	4.5
$lpha_{\xi}$	0.0	0.0
$\beta_{v}(m)$	0.045	0.045
$\alpha_{\rm v}$	0.0	0.0
$\Delta \mathbf{x}(\mathbf{m})$	0.0	0.0
$\Delta x'(mrad)$	12.5	12.5
@ splitter input		
$\beta_{\mathbf{x}}$ (m)	8.7228	9.8601
$\alpha_{\mathbf{x}}$	-0.1047	0.1702
β _v (m)	1.3421	0.9840
$\dot{\alpha_x}$	0.1703	0.2717
$\Delta \mathbf{x}(\mathbf{cm})$	6.4902	6.6924
$\Delta \mathbf{x}'(\mathbf{mrad})$	5.5388	2.8920
D _x (m)	-0.032	-0.029
D_{x}'	-0.020	-0.030
For Half IR		
$\Delta \mathbf{Q}_{x}$	0.159	0.164
$\Delta \mathbf{Q}_{\mathrm{v}}$	0.415	0.421
Horizontal chromaticity	- 0.32	-0.45
Vertical chromaticity	- 2.48	-2.52

TABLE VII - IR optical parameters with compensator on

Fig. 7 - Optical functions and horizontal projection of beam trajectory for ± 12.5 mrad crossing angle in half IR with compensator on and $\Theta_{rot}=11^{\circ}$

The BSC with the compensator on are compatible with those corresponding to the layout without compensator. Fig.9 shows the BSC corresponding to the case with maximum compensator field ($\Theta_{rot} = 22^{\circ}$) (solid lines), compared to the BSC without compensator (dotted lines), already reported in Fig. 2. Both are computed for a crossing angle of ±15 mrad and a vertical bump of 2.5mm at the IP.

Fig. 8 - Optical functions and horizontal projection of beam trajectory for ± 12.5 mrad crossing angle in half IR with compensator on and $\Theta_{rot}=22^{\circ}$

Fig.9 - BSC with compensator on $(\Theta_{rot}=22^{\circ})$ (solid lines) and BSC without compensator (dotted lines)

REFERENCES

- [1] M.E.Biagini, C.Biscari, S.Guiducci, J.Lu, M.R.Masullo, G.Vignola "Review of DAΦNE Lattices" DAΦNE Technical Note - L-9, October 1993.
- [2] C.Biscari- "FI.NU.DA. Interaction Region" DAΦNE Technical Note L-15, May 1994.
- [3] M.E.Biagini private communication.
- [4] C.Biscari "DAΦNE Stay-Clear apertures" DAΦNE Technical Note L-6, March 1993.
- [5] M.E.Biagini "DAΦNE: a tracking program for the Frascati Φ-factory" DAΦNE Technical Note L-7, May 1993.
- [6] M.E.Biagini "KLOE Interaction Region Update" DAFNE Technical Note L-13, March 1994.

APPENDIX I

Short arc

EL.	TIF	BETX	ALFX	BETY	ALFY	DX	DPX	QX	QY	CX	сY
٥	0	7.9400	0.1945	1,5019	0.0614	-0.040000	-0.020000	0.000000	0.000000	0.000000	0.000000
11	4	7.4736	0.1246	2.7290	-0.9077	0.042074	0.132985	0.030019	0.127064	0.010023	0.003433
12	1	7.3993	0.0737	3.5038	-1.1583	0.091943	0.132985	0.038049	0.146413	0.010023	0.003433
13	1	7.3993	0.0737	3.5038	-1.1583	0.091943	0.132985	0.038049	0.146413	0.010023	0.003433
14	1	7,3710	0.0397	4.1247	-1.3254	0.125190	0.132985	0.043437	0.156887	0.010023	0 003433
15	1	7.3710	0.0397	4.1247	-1.3254	0.125190	0.132985	0.043437	0.156887	0.010023	0.003433
16	1	7.3603	-0.0113	5.2127	-1.5760	0.175059	0.132985	0.051544	0.169772	0 010023	0.003433
17	Ż	5.6117	2.4162	6.6738	-4.1588	0.204872	0.063975	0.058268	0.177897	D 213650	-0 154020
18	1	4.8442	2.0025	10.6266	-5.2234	0.230462	0.063975	0.069526	0.185348	0 213659	-0.100020
19	3	4.7934	-1.8199	11,1670	3.5676	0.278465	0.262376	0.079840	A 189550	-0.070339	-0.100020
20	1	5.5573	-1.9998	9.7892	3.3218	0.330940	0.262376	0.086009	0 192604	-0.079338	0.55.727
21	1	6.3932	-2.1797	8.5096	3.0759	0.383415	0.262376	0,091351	0 196092	-0.070338	0.001777
22	1	7.3011	-2.3596	7.3285	2.8300	0.435890	0.262376	0.096010	0 200123	-0.039338	0.551020
23	2	7.8338	0.6560	6.5292	-0.0591	0.486892	0.074196	0.102198	0 207169	0.079338 0 169670	0.331777
24	1	6.9011	0.5099	6.7221	-0,1820	0.546249	0.074196	0 119550	0.226434	0.169672	0.3337/23
25	4	3.4360	2.3868	7.2332	-0.3342	0.818425	0.452569	0.149454	0 249107	V.1000/2	0.333723
26	1	1.2734	1.2174	7.6896	-0.4264	1,089966	0.452569	0 195757	0.243107	0.439130	0.480325
27	3	0.9059	0.0902	6.4548	4.2574	1.343930	1 269315	0.242400	0.201925	0.439/56	0.480325
28	1	0.9143	-0,1323	4.8704	3.6648	1 597793	1 269215	0.222409	0.2004/0	0.383590	0.877356
29	1	0.9143	-0.1323	4.8704	3.6648	1.597793	1 260315	0.277632	0.274153	0.383590	0.877356
30	ì	1,1982	-0.5775	2.4126	2 4796	2 105510	1.269313	0.2//6/2	0.274153	0.383590	0.877356
31	2	1,3361	0.1532	1.566)	0.5519	2.103319	1.209313	0.340080	0.292768	0.383590	0.877356
32	1	1.4280	-0.3064	1.2037	0.0521	1 507110	-0.401759	0.376731	0.318379	0.461936	0.76356)
33	з	1.4280	-0.3225	1.2037	0.0656	1 997110	-0.401739	0.448247	0.390358	0.461936	0.763561
34	4	1.4821	-0.3512	1.1985		2.997110	-0.379291	0.448/4/	0.390358	0.460658	0.764639
35	3	1.4821	-0.3679	1.1985	0 0121	1 966577	-0.361382	0.457030	0.401002	0.458935	0.7590×B
36	3	1.4821	-0.4012	1.1985	0.0391	1.900,77	-0.339238	0.457030	0,401002	0.457608	0.760091
37	4	1.5129	-0.3646	1.1968	0.0056	1.966577	-0.315008	0.457030	0.401002	0.454955	0.762237
38	3	1.5129	~0.3986	1 1968	0.0000	1,953015	-0.360701	0.461295	0.406337	0.455955	0,752330
39	3	1,5129	-0.4156	1 1969	0.0323	1.953015	-0.316757	0.461295	0.406337	0.453246	0.754273
40	4	1.5818	-0.4473	1 1948	-0.0212	1.933013	-0.294785	0.461295	0,406337	0.451892	0.755344
41	з	1.5818	-0.4601	1 1948	-0.0212	1.929303	-0.295961	0.469555	0.417028	0,450398	0,749810
42	3	1.5818	-0.4779	1 1946	-0.0078	1.929303	-0.2/4256	0.469555	0.417028	0.448982	0,750880
43	4	1.6605	-0 5029	1.1940	0.0056	1.929303	-0.252550	0.469555	0.417028	0.447565	0.751949
44	3	1,6605	-0.5025	1.1993	-0.0615	1.905590	-0.338195	0.477438	0.427709	0.454563	0.761750
45	3	1.6605	-0.5213	1.1993	-0.0481	1.905590	-0.316757	0.477438	0.427709	0.45307)	0.762023
46	4	1,0005	-0.0713	1.1993	0,0601	1.905590	-0.144861	D.477438	0.427709	0.441157	0.771432
47	-	1.8467	-0.4773	1,2015	-0.0742	1.841374	-0.653249	0.491979	0,449057	0.484253	0.844347
48		1.0407	-0.6439	1.2015	0.0342	1.841374	-0.487146	0.491979	0.449057	0.470997	0.852972
49	4	1.0407	-0.004/	1.2015	0.0477	1.841374	-0.466430	0.493979	0.449057	0.469343	0.854047
50	3	1.9550	-0.0034	1.1992	-0.0193	1.800578	-0.549904	0.498702	0.459708	0.475262	0,863363
51	7	1.9550	-0.7034	1.1992	-0.0058	1.800578	-0.529647	0.498702	0.459708	0.473511	0.864434
52	4	2 0731	-0.7274	1.1992	0.0077	1,800578	-0.509390	0.498702	0.459708	0.47176]	0.865508
53	3	2 0731	-0.7660	1.2034	-0.0592	1.759783	-0.506944	0.505047	0.470350	0.473162	0.860526
54	3	2 0731	-0.9530	1.2034	-0.0457	1.759783	-0.487146	0.505047	0.470350	0.471306	0.862603
55	4	2.0701	-0 6794	1.2034	0.0629	1.759783	-0.328402	0.505047	0.470350	0.456425	D.870242
56	1	2.3377	-0.0704	1.2047	-0.0711	1.695566	-0.469707	0.516608	0.491634	0.473477	0.836207
57	1	2,3377	-0.8892	1.2047	0.0376	1.695566	-0.316757	0.516608	0.491634	0.456696	0.844855
5.0	د ۱	2.33/1	-0.9155	1.2047	0.0512	1.695566	-0.297681	0.516608	0.491634	0.454603	0.845934
20	4	2,4853	-0,9227	1.2018	-0.0156	1.671854	-0.293064	0.521907	0.502259	0.456214	0.641462
59	3	Z.4853	-0,9507	1.2018	-0.0021	1.671854	-0.274256	0.521907	0.502259	0.453989	0.842536
60	3	2.4853	-0.9787	1.2018	0.0114	1.671854	-0.255447	0.521907	0.502259	0.451764	C.843614
61	4	2.6429	-0.9824	1.2054	-0.0554	1.648141	-0.335299	0.526891	0.512880	0.458889	0.852377
62	3	2.6429	-1.0122	1.2054	-0.0418	1.648141	-0.316757	0.526891	0.512880	0.456523	0.853457
63	3	2.6429	-1.2506	1.2054	0.0669	1.648141	-0.168084	D.526891	0.512880	0.437552	0.862109

64	4	2.8298	-1.0734	1.2000	0.0000	1.625308	-0.400500	0.531557	0.523510	0.464293	0.894818
65	4	2.9858	-0.8652	1.2054	-0.0669	1.583924	-0.630025	0.535947	0.534140	0.48683/	0.927347
66	3	2.9858	-1.1346	1,2054	0.0418	1.583924	-0.487146	0.535947	0.534140	0.465404	0.936000
67	3	2.9858	-1.168)	1.2054	0.0554	1.583924	-0.469326	0.535947	0.534140	0.462731	0.937079
68	4	3.1726	-1.1603	1.2018	-0.0114	1.543129	-0.547007	0.540097	0.544762	0.468454	0.945347
69	э	3.1728	-1.1960	1.2018	0.0021	1.543129	-0.529647	0.540097	0.544762	0.465613	0.946423
70	з	3,1728	-1.2317	1.2018	0.0156	1.543129	-0.512286	0.540097	0.544762	0.462773	0.947499
71	4	3.3697	-1.2196	1.2047	-0.0512	1,502334	-0.504047	0.544003	0.555387	0.466742	0.943572
72	3	3.3697	-1.2575	1,2047	-0.0376	1.502334	-0.487146	0.544003	0.555387	0.465725	0,914650
73	j	3.3697	-1.5615	1.2047	0.0711	1.502334	-0.351626	0.544003	0.555387	0.441536	0.953298
74	4	3.7911	-1.0379	1.2034	-0.0629	1.438117	-0.446484	0.551120	0.576671	0,484897	0 926967
75	3	3.7911	-1.3799	1.2034	0.0457	1.438117	-0.316757	0.551120	0.576671	0.457683	0.935605
76	5	3.7911	-1,4225	1.2034	0.0592	1,430117	-0.300577	0.551120	0.576671	0.454289	0 936683
77	4	4.0174	-1.3961	1.1992	-0.0077	1.414404	-0.290168	0.554393	0.587313	0.460183	0.933236
78	3	4.0174	-1.4413	1.1992	0.0058	1.414404	-0.274256	0.554393	0.587313	0.456586	0.934309
79	3	4.0174	-1,4865	1.1992	0.0193	1.414404	-0.258343	0.554393	0.507313	0.452989	0.935383
80	4	4.2537	-1.4550	1.2015	-0.0477	1.390692	-0.332402	0.557482	0.597963	0.461317	0.943113
81	5	4.2537	-1,5020	1.2015	-0.0342	1.390692	-0.316757	0.557482	0.597963	0.457509	0.944189
82	3	4.2537	-1.8865	1,2015	0.0742	1.390692	-0.191308	0.557482	0.597963	0.426974	0.952814
83	4	4.7534	-1.1964	1.1993	-0.0601	1.326475	~0.606802	0.563138	0.619312	0.497428	(.010349
84	3	4.7534	-1.6252	1,1993	0.0481	1.326475	-0.487146	0.563138	0.619312	0.463306	1.0\8958
85	з	4.7534	-1.6787	1.1993	0,0615	1.326475	-0.472222	0.563138	0.619312	0.45905)	1.020031
86	4	5.0192	-1.6302	1.1948	-0.0056	1,285680	-0.544131	0.565753	0.629993	0.465643	1.027262
67	3	5.0192	-1.6867	1.1948	0.0078	1.285680	-0.529647	0.565753	0.629993	0.461150	1.028332
88	з	5.0192	-1.7431	1.1948	0.0212	1.285680	-0.515182	0.565753	0.629993	0.456656	1.029401
89	4	5.2948	-1.6886	1.1968	-0.0460	1.244884	-0.501151	0.568230	0.640684	5.468381	0.026484
90	з	5,2948	-1.7481	1.1968	-0.0325	1.244884	-0.487146	0.568230	0.640684	0.463641	1.027555
91	з	5.2948	-1.8673	1.1968	-0.0056	1.244884	-0.459135	0.568230	0.640684	0.454160	1.029698
92	4	5.4363	-1.6565	1.1985	-0.0391	1.226192	-0.472235	0.569420	0.646019	0.475427	1.024817
93	3	5.4363	-1,7789	1.1985	-0.0121	1.226192	-0.444645	0.569420	0.646019	0.465693	1.026963
94	2	5.4363	-1.8400	1.1985	0.0013	1.226192	-0.430850	0.569420	0.646019	0.460826	1.028036
95	4	5.7267	-1,7759	1.2037	-0.0656	1,192217	-0.415556	0.571709	0.656662	0.472712	1.025309
96	з	5,7267	-1.8403	1,2037	-0.0521	1.192217	-0.402:44	0.571709	0.656662	0.467585	1.026387
97	1	6.5937	-2.0127	1.2693	-0.2395	1.101735	-0.402144	0.577538	0.685795	0.467585	:.326367
9 8	1	6,5937	-2.0127	1.2693	-0.2395	1.101735	-0.402144	0.577538	0.685795	0.467585	1.026387
99	:	8.2109	-2.2999	1.566)	-0,5519	0.950931	-0.402144	0.585653	0.728642	0.467585	1.026387
100	z	8.6422	0.9181	2.1889	-1.6034	0.778271	-0.737839	0.591214	0.755049	0,730395	0.970532
101	:	7.6172	0.7901	4.7003	-2.5822	0.335567	-0.737839	0.602994	0.784997	0.730395	3.970532
102	3	7.6172	-1.2163	4.7003	-1.3441	0.335567	-0.649448	0.602994	0.784997	0.570728	069056
103	4	6.3562	2.2705	7.9468	-1.935Z	0.000001	0.000000	0.623859	0.810892	0.970627	1.242932
104	3	6.3562	0.5962	7.9468	0.1580	0.000001	0.00000	0.623859	0.810892	0.837392	409508
105	1	6.0177	0.5322	7.8636	0.1193	0.000000	0.000000	0.6315 8 2	0.616933	0.837392	1.40950в
106	1	5.8133	0.4896	7.6211	0.0935	c.000000	0.000000	0.636965	0.820992	0.837392	1.409508
107	1	5.5819	0.4362	7.7824	0.0613	0.000000	0.000000	0.643952	0.826093	0.837392	1,409508
:08	з	6.5035	-3.7114	6.2987	4.5482	0.000000	0.000000	0.652149	0.832689	0.526079	1.797071
109	1	9.8362	-4.6202	3.2111	3,1710	0.000000	0.000000	0.660112	0.846863	0.526079	1.797071
110	2	9,8534	4.5682	2.2449	0.3390	0.000000	0.000000	0,664743	0,865514	1.276803	1.608611
111	:	0.5086	-0.3588	3.1873	-0,7636	0.000000	0.000000	0.935276	1.021327	276803	1,608611
112	3	1.1710	-2.0750	2.6939	2,2321	0.000000	-0.000003	1.002415	1.036805	1.213767	1.866670
113	:	5.4311	-4.8604	0,7897	0.8682	-0,000001	-0.000001	1.041571	1.105983	1.213767	
;14	2	6.1933	0.0000	0.6648	5.0000	-0.000001	0,000000	1,045600	1.139900	1.620175	1.818341
						•					

L-17 pg. 12

CROMATI SMO	:	CX =	1.62017	CY ~	1.81834
K*Beta*sin(2(1)	:		0.22680		-0.72696
K*Beta*nos(2fi)	:		1.27947		-0.04969

 MOMENTUM COMPACTION
 =
 0.2898D-01

 0
 =
 0.6338D-01

 ENERGY SPREAD
 >
 0.3921D-03

 RADIAL EMITTANCE
 >
 0.1000D-05

I	ΤY	LENGTH	DL	STRENGTH	ANGLE
11	4	1.450	1.450	0,000000	0.152705
12	1	1.825	0.375	0.000000	0.000000
13	l	1.825	0.000	0.000000	0.000000
14	1	2.075	0.250	0.000000	0.000000
15	1	2.075	0.000	0.000000	0.000000
16	1	2.450	0.375	0.000000	0.000000
17	2	2.750	0.300	1.200000	0.000000
18	ı	3.150	0.400	0.000000	0.000000
19	3	3.450	0.300	-2.650399	0.000000
20	ì	3.650	0.200	0.000000	0.0000000
21	1	3.850	0.200	0.000000	0.000000
22	1	4.050	0,200	0.000000	0.000000
Z3	2	4.350	0.300	1.345766	0.000000
24	1	5.150	0,800	0.000000	0.000000
25	4	6.140	0.990	0.000000	0.706858
26	1	6.740	0.600	6.000000	0.000000
27	3	7.040	0,300	-2,275187	0.000000
28	1	7,240	0.200	0.000000	0.000000
29	1	7.240	0.000	0.000000	0.000000
30	1	7,640	0.400	0.000000	0.000000
31	2	7,940	0.300	2.516172	0.000000
32	ì	8.540	0,600	0.00000	0.000000
33	з	8.540	0.000	-0.011250	0.000000
34	4	8,620	0.080	0.000000	0.042495
35	3	8.620	0.000	-0.011250	0.000000
36	3	8.620	0.000	-0.022501	0.000000
37	4	8.660	0,040	0.000000	0.042495
38	3	8.660	0.000	-0.022501	0.000000
3 9	З	8,660	0.000	-0.011250	0.000000
40	4	8.741	0.080	0.000000	0.042495
41	3	6,741	0.000	-0.011250	0,000000
42	Э	8.741	0.000	-0.011250	0.000000
43	4	8.821	0.080	0.00000	-0.042495
44	3	8.821	0.000	-0.011250	0.000000
45	3	8.821	0.000	-0.090206	0.000000
46	4	8.981	0.161	0.000000	-0.169979
47	3	8,981	0.000	-0.090206	C.000000
48	3	8.981	0.000	-0.011250	0.000000
49	4	9,062	0.080	U. 000000	-0.042495
50	3	9.062	0.000	-0.011250	0.000000
51	3	9.062	0.000	-0.011250	0.000000
52	4	9.142	0.080	0.00000	0.042495
53	3	9.142	0,000	-0.011250	0.000000
54	3	9.142	0.000	-0.090206	0.000000
55	4	9,303	0.161	0.000000	0.193313

56	3	9.303	0.000	-0.090206	0.000000
57	3	9.303	0.000	-0.011250	C.000000
58	4	9.383	0.080	0.000000	0.042495
59	3	9.383	0.000	-0.011250	0.000000
60	3	9.383	0.000	-0.011250	0.000000
61	4	9.463	0.080	0.000000	-0.042495
62	З	9.463	0.000	-0.011250	0.000000
6.3	з	9.463	0.000	-0.090206	0.000000
64	4	9.543	0.080	0.000000	-0.084989
65	4	9.624	C.080	0.000000	-C.084989
66	3	9.624	0.000	-0.090206	0.000000
67	3	9.624	0.000	-0.011250	0.000000
68	4	9.704	0.080	0.000000	-0.042495
69	3	9.704	0.000	-0.011250	0.000000
70	3	9.704	0.000	-0.011250	0,000000
71	4	9.784	0.080	0.000000	0.042495
72	٦	9 784	0.000	-0.011250	0 000000
73	7	9.784	0.000	-0.090206	0.000000
74		9 945	0.161	0.000000	0 169979
75	3	9 945	0.000	-0.090206	3 000000
76	3	9.945	0.000	-0.011250	0.000000
, v 77	3	10 075	0.000	0.011230	0.040405
70	4	10.025	0.000	0.000000	0.047433
(D	-	10,025	0.000	-0.011250	0.000000
79	د	10.025	0.000	-0.011230	0.000000
80	4	10.105	0.080	0.000000	-0.042495
81	د 	10.105	0.000	-0.011250	0.000000
82	3	10.105	0.000	-G.090206	0.000000
83	4	10.266	0.161	0.000000	-0.169979
84	3	10.266	0.000	-0.090206	0.000000
85	3	10.266	0.000	-0.011250	0.000000
86	4	10.346	0.080	0.000000	-0.047495
87	L L	10.346	0.000	-0.011250	0.000000
88	.3	10.346	0.000	-0,0,1250	0.000000
59	4	10.426	0.080	C.000000	0.042495
90	3	10.426	0.000	-0.011250	0.000000
91	3	10,426	0.050	+0.022501	C.000000
92	4	10.466	0.040	0.000000	0.042495
93	Э	10.466	0.000	-0.0 <u>22501</u>	0.000000
94	3	10.466	0,000	-0.0:1250	0.000000
95	4	10.547	0.080	0.00000	0.042495
96	3	10.547	0.000	-0.011250	0.000000
97	1	10.772	0.225	0.000000	0.000000
98	1	10,772	0.000	0.000000	0.000000
99	1	11.147	0.375	0.00000	0.000000
100	2	21.447	0.300	1.281756	0.000000
101	1	12.047	0,600	0.000000	0.000000
102	3	12.047	0.000	-0.263408	0.000000
103	4	13.037	0.990	0.000000	0.706858
104	3	13.037	0.000	-0.263408	0.000000
105	1	13.337	0.300	0.000000	0.000000
106	1	13.537	0.200	0,00000	0.00000
107	1	13,787	0.250	0.000000	0.00000
108	3	14.087	0.300	-2.233670	C.000C00
109	1	14.487	0.400	0.00000	0.000000
110	2	14.787	0.300	3.049245	0.00000
111	1	17.007	2.220	0.000000	0.000000
112	3	17.307	0.300	-3.494156	0.000000
113	1	17.921	0.614	0.00000	0.000000
114	Z	18.071	0.150	5.736890	0.000000

Long arc

EL.	TIP	BETX	ALFX	BETY	ALFY	xC	Nex	ox	OY	CY.	67
0	0	7.9400	D.1945	1,5019	0.0614	0.040000	0.020000	0,000000	0.000000	0.000000	0.000000
8	4	7.4736	0.1246	2.7290	-0.9077	-0.042074	-0.132985	0.030019	0 127064	0.000000	0.000000
9	1	7.3993	0.0737	3,5038	~1,1583	-0.091943	-0.132985	0.038049	0.146433	0.010023	0.00143.3
10	1	7.3993	0.0737	3.5038	-1.1563	-0.091943	-0.132985	0.038049	0 146413	0.010023	0.00.34.33
11	:	7.3710	0.0397	4.1247	-1.3254	-0.125190	-0 132985	0.030047	0.146413	5.010023	0.003433
12	1	7.3710	0.0397	4.1247	~1.3254	-0 125190	-0 :32995	0.043437	0.126887	0.010023	0.003433
13	1	7.3603	-0.0113	5.2127	-1 5760	-0.175050	-0.132985	0.043437	0.156887	0.010023	0.003433
14	2	6,9072	1,4886	6.6105	-3 1845	-0.208820	-0.132983	0.051544	0.169772	0.010023	0.003433
15	1	5.7908	1.3023	9.4277	-1 9596	-0.200020	-0.090859	0.050169	0.177999	0.135246	-0.097867
16	3	6.2119	-7.8005	0 7:00	3.3697	-0.245164	-0.090859	0.068242	0,186066	0.135246	-0.097862
17	:	7.3890	-3 0852	9.7032	2.7602	-0.298889	-0.273401	0.076481	0.190872	-0.179685	0.441929
18	1	B 5800	-3 3600	3.7074	2.5910	-0.353569	-0.273401	0.081100	0.194321	-0.179685	0.44)929
19	1	10 0849	-3.3648	7.7064	2.4138	-0.408249	-0.273401	0.085155	0.198208	-0.179685	0.44.929
20	,	10.0049	-1.6545	6.7763	2,2367	-0.462930	-0.273401	0.088557	0.202613	-0.179685	0.441929
21	2	11.1374	0.2135	6.1997	-0.2435	-0.517843	-0.089280	0.092976	0.210120	0.140468	0.253530
70		10.8758	0.1385	6,6987	-0.3802	-0.589267	-0.089280	0.104544	0.229929	0.140468	0.253530
22	4	4.5018	3.7483	7.8690	-0.5870	0.013189	1.022353	0.128863	0.256578	0.674102	0.756988
2.3	1	1.2073	1.7425	8.6349	-0.6895	0.626601	1.022353	0.170289	0.268173	0.674102	0.756988
24	3	0.6121	0,3861	7.2278	5.0283	1.0:5501	1.618022	0.229243	0.273997	0.624544	1.240379
25	1	0,5494	-0.1771	4.5381	3.9373	1.500907	1.618022	0,315776	0.282338	0.624544	1.240379
26	1	0.5494	-0.1771	4.5381	3.9373	1.500907	1.618022	0.315776	0.282338	0.624544	1.240379
27	1	0.8246	-0.7462	2.5030	2.8464	1.986314	1.619022	0.389298	0.296523	9.624544	1.240379
28	2	1.1447	-0.2291	1.5661	0.5519	2.188701	-0.299193	0.436976	0.321843	0.696744	1.103088
29	l	1.7505	-0.7807	1.2037	0.0521	2.009185	-0.299193	0.506639	0.393822	0.696744	1 101088
30	з	1.7505	-0.8004	1.2037	0.0656	2.009185	-0.276589	0.506639	0.393822	0.695177	1.103000
31	4	1.8018	-0.8333	1.1985	-0.0013	1.986882	-0.279045	0.513678	0.404466	0 693571	1 009450
35	3	1.8818	-0.8545	1.1985	0.0121	1.986882	-0.256697	0.513678	0 404466	0.093341	1.000459
33	3	l.8818	-0.8969	1.1985	0.0391	1.9868BZ	-0.211986	0 513678	0.404466	0.691830	1.0995.32
34	4	1.9518	-0,8475	1,1960	0.0056	1.977436	-0.258684	0.513078	0.404466	0.688487	: 101678
35	3	1.9518	-0.8914	1.1968	0.0325	1.977436	-0 214191	0.517010	0.409801	0.640106	1.091390
36	з	1.9518	-0.9134	1,1968	0.0460	1 977436	-0.214191	0.517010	0.409801	0.686612	1.093533
37	4	2.1000	-0.9415	1.1948	-0.0712	1.961954	0.102744	0.317010	0.409801	0.684864	1.094604
38	3	2.1008	-0.965Z	1.1948	-0.0078	1 961954	-0.134762	0.523319	0.420492	0.683328	1.088949
39	з	2.1008	-0.9888	1 1948	0.0054	1,961954	-0.17:690	0.523319	0.420492	0.681447	090018
40	4	2.2616	-1.0135	1 1993	0.0050	1.9619.34	-3.149617-	0.523319	0.426492	9.679567	1.091088
41	3	2.2616	-1.0390	1 1993	-0.0613	1.946471	-0.236689	0.529180	0.451173	0.666510	1.101014
42	3	2.2616	-1.2430	1,1993	-0.0481	1,9464/1	-C.214191	0.529180	0.431173	0.686485	1.102088
43	4	2.6170	-0 9499	1.1993	0.0601	1.946471	-0.038607	0.529180	0.431173	0.670251	1.110697
44	3	2 6170	-1)850	1.2015	-0.0742	1.898641	-0.555849	0.539639	0.452521	0.730622	1.185047
45	3	2 6120	-1.1009	1.2015	0.0342	1.898641	-0.384580	0.539639	0.452521	0.711836	1.193672
46	4	2 8133	-1.2280	1.2015	0.0477	1.890641	-0.363220	0.539639	0.452521	0.709493	1.194/48
47	1	7 8133	-1.2280	1.1992	-0.0193	1.866076	-0.44B075	C.544346	0.463172	0,717124	1.204314
4.0		2.01.3.3	-1.2596	1.1992	-0.0058	1.866076	-0.427081	0.544346	0.463172	G.714606	1.205388
40	.1	2,8133	-1.2913	1.1992	0.0077	1.866076	-0.406CB7	0.544346	0.463172	0.712087	1.206462
47	4	3.0214	-:.2994	1.2034	-0.0592	1.833510	-0.405207	0.548727	0.473814	0.714838	1.201222
50	3	3.0214	-1.3334	1.2034	-0.0457	1,833510	-0.384580	0.548727	0.473814	0.712133	1.202299
21	د	3.0214	-1.6060	. 2034	0.0629	1,833510	-0.219186	0.548727	0.473814	0.690445	1.210938
52	4	3.4709	-1.1672	1.2047	-0.0711	1.785680	-0.375270	0.556582	0.495098	0.714488	1.174483
53	ذ	3.4709	-1.4803	l.2047	0.0376	1.785680	-0.214191	0.55658Z	0.495098	0.689572	
<u>54</u>	3	3.4709	-1.5194	1.2047	0.0512	1,785680	-0.194102	0.556582	0.495098	0.686465	184209
55	4	3.7144	-1.5123	1.2018	-0.0156	1.770197	-0.191605	0.560139	0.505723	0.688987	1.179352
56	Э	3.7144	-1.5541	1.2019	-0.0021	1.770197	-0.171690	0.560139	0.505723	0.685662	3.18042A
57	3	3.7144	-1.5959	1.2018	0.0114	1,770197	-0.151775	0.560139	0,505723	0.682337	1.181504
58	4	3,9697	-1.5832	1.2054	-0.0554	1.754715	-0.233932	0.563465	0,516344	0.693000	1.190657
59	з	3.9697	-1.6279	1.2054	-0.0418	1.754715	-0.214191	0.563465	0.516344	0.689446	· · · · · · · · · · · · · · · · · · ·
60	3	3.9697	-1.9860	1.2054	0.0669	1.754715	-0.055905	0.563465	0 516344		
									0.010044	0.000400	200389

61	1	4.2664	-1.7013	1.2000	0.0000	1 740491	-0.298305	0 566566	0.526974	0.702570	1 294787
62	4	4,5133	-1.3676	1.2054	-0.0669	706885	-0 538551	0 569474	0.537604	0.246760	269029
63	3	4.5133	-1,7748	1.2054	0.0418	1.706885	-0.384580	0.569474	0.537604	0 /04462	277642
64	3	4.5133	-1.8255		0.0554	706885	+0 365477	3.589874	3 537694	e yeraar	118.00
65	4	4.8041	41.7945	2018	-0.0114	PIENCA :	-0 445918	1 572217	1	0 09293	18156
66	3	4.8041	-1 B485	2018	0.0075	. 614313	-0 /0708	0.072217	0.548726	. (04940	199633
67		4 8041	-1.0405	1.2018	0.0154	. 674319	-0.421085	0.0122.7	0.040220	A 20070	
68	č	5 1066	-1.9528	1,2018	0.0136	1.674319	-0.402244	0.114.00	0.345220	0.70018	
40	-	5.1066	-1.8649	1.2047	-0.0512	1.64.754	-0.403050	0.574795	0.558651	0.009244	
.10	-	5.1006	-1,9223	1.2047	-0.0376	1.641754	-0.384580	0.574795	0.558851	G. 704672	1.296328
		3.2006	-2.3830	1.2047	0.0711	1.641754	+0.236484	0.574795	0.558851	6.668615	1.504075
71	4	5.7443	-1.5510	1.2034	-0 0629	1.593924	-0.357973	0.579493	G. 180135	1.728121	
12	з	5.7443	-2.0692	1.2034	0.0457	1.593924	-0.214191	0.579498	0.980135	0.056886	1.772986
73	3	5,7443	-2.1336	1.2034	0.0592	1.593924	-0.196259	0.57949)	0.080135	0.661743	11274963
74	4	6.0824	-2.0746	1.1992	-0.0077	1.578441	-0.189448	0.581651	0.590777	0.689721	1.269865
75	3	6.0824	-2.1430	1.1992	C.0058	1.578441	-0.171690	0.581651	0.590177	0.684275	(,270939
76	3	6.0824	-2.2114	1.1992	0.0193	1,578441	-0.153932	0.581651	0.590777	0.678830	1.272012
רר	4	6.4322	-2.1444	1.2015	-0.0477	1,562959	-0.231775	0.583693	0.601427	0.692520	1.280399
78	3	6.4322	-2.2168	1.2015	-0.0342	1.562959	-0.214191	0.583693	0.601427	0.686761	1.281474
79	3	6.4322	-2.7970	1,2015	0.0742	1.562959	-0.073202	0.583693	0.601427	0.640588	1.290099
80	4	7,1640	-1.7174	1.1993	-0.0601	1.515129	-0.521254	0.587439	0.622776	0.755592	1.353013
81	3	7.1640	-2.3637	1.1993	0.0481	1.515129	-0.384560	0.587439	0.622776	0.704166	1.361621
82	3	7,1640	-2.4443	1.1993	0.0615	1.515129	-0.367534	0.587439	0.622776	0.697753	0.062625
83	4	7.5492	-2.3525	1.1948	-0.0056	1.482563	-0.443760	0.589176	0.633456	0.709539	. 370715
84	3	7.5492	-2.4375	1.1948	0.0078	L.482563	-0.427081	0.569176	0.633456	0.702581	1.117.779
85	3	7.5492	-2,5224	1.1948	0.0212	1.482563	-0.410402	0.589176	0.633456	0.695822	1.11/2849
86	4	7.9463	-2.4218	1.1967	-0.0460	1.449998	-0.400893	G.590825	0.644148	0.711606	1.369143
87	3	7.9463	-2.5112	1.1967	-0.0325	1.44999B	-0.384580	0.590825	0 644148	0 704492	1 00215
88	з	7,9463	-2.6900	1,1967	-0.0056	449998	-0.351954	0.590825	0 644148	0 690264	1 372358
69	4	8.1493	~2.3648	1.1985	-0.0391	1.435421	×0.374377	0.591618	0.649482	0.720108	1.2.2000
90	з	8,1493	-2.5481	1.1985	-0.0121	1.435421	-0 342079	0.591618	0 649482	0 705517	1.3683700
91	з	B.1493	-2.6398	1.1985	0.0013	: 435421	-0.325930	5 59161B	0 649482	0.698221	5.9185
92	4	8.5642	-2.5256	1.2037	-0.0656	409677	-0 315437	0 593147	0 660126	0 /14007	
93	з	8.5642	-2.6219	1.2037	-0.0521	4.09677	-0 299578	5.593147	0.660126	0. 706340	10111
94	1	10.2201	-2 8977	1 3099	-0.3020		-0.299570	0.500060		0.700340	
95	1	0.720°	-7 8977	1 3090	-0 3020	:) [0.0 3	0.300579	0.00002	0.0000000	01.000140	
9.6	1	12 0415	-3 1736	. 5661	-0.5519		-0.279070	0.390237	0.090322		tues. s
97	2	12.0112	3 3750	2.0001	-0.1119	229930	-0.233310	0.002330	0.737.56		
0.91	1	9 2099	3.3739	2.2810	-1.9384		-0.922012	0.606426	0.755.72	1.2.306.31	
	-	0.2900	2,7349	5.3942	-3.2303	0.490969	-0.922012	0.516010	0.785530	1.23603.	.087043
100	د •	0.2988	2.0232	5.3942	-1.4548	0.490969	-0.760406	0.616010	0.785530	i.019255	4283.39
100	4	3.6049	2.8392	9.7606	-2.1538	0.000000	0.00000	0.647198	0.812194	1.42723)	1.662178
101	,	3.6049	1.6526	9.7606	1.0595	0.000000	0.00000	0.647198	0.812194	1.332806	1.91/942
102		2.2111	1.1351	8.7560	0,9503	0.000000	0.00000	0.675535	0.920906	1.332806	1.917942
103		1.6231	0.8246	9.2053	0.8851	0.000000	0.000000	0,700845	0.826441	1.332806	91/842
104	1	1.0292	0.2553	7.2975	0.7656	0.000000	0.000000	5.770802	0.837762	1.332806	1.917842
105	3	1.0582	-0.3546	6.2461	2.6332	0.000000	0.000000	0.817932	0.844731	1.308581	2.001975
106	1	2.0327	+1.0783	3.2522	1.7695	0.000000	0.000000	0.894665	0.868635		2.081975
107	2	1.9817	1.2279	3.3475	-2.1238	0.000000	0.000000	0.917144	0.884202	08/80; (0	.789052
108	1	1.3578	-0.8474	4.7412	-4.8235	0.0000000	0.000000	1.170250	0.921704	0.508780	/89052
109	3	2.5506	-3.5190	13.2206	9.3740	0.000000	0.000000	1.197342	0.924956	1,363481	2:961007
110	1	6.7803	-5.8803	6.1452	6.3490	0.000000	0.000000	1.214598	0.932905	1.363481	2.961007
111	2	8.6321	0.2289	3.9901	1.4217	0.000000	0.000000	1.220585	0.942960	1.893202	2.647171
112	1	8.2023	0.0000	1.3206	C.0000	0.000000	0.000000	1.256400	1.095400	1.893202	2.642175

CROMATISMO	:	СХ	1,89320	CY =	2.64217
K*Beta*sin(2fi)	;		-0.05798		-0.90930
X*Beta*cos(2fi)	:		1.13246		-0.72745

MOMENTUM COMPACTION =-0.10580-01

D		=-	-0.9357D-01
ENERGY	SPREAD	=	0.4054D-03
RADIAL	EMITTANCE		0.10000-05

1	ΤY	LENGTH	CL	STRENGTH	ANGLE
8	4	1.450	1.450	0 000000	-0.152705
9	1	1.825	0.325	0.000000	0.132705
10	1	1.825	0.000	0.000000	0.000000
11	;	2.075	0.250	0.000000	0.000000
:2	-	2.075	0 000	0.000000	0.000000
13	;	2.450	0 375	0.000000	0.000000
14	z	2.750	0.300	0.300300	0.000000
15	1	3 150	0.400	0.000000	0.000000
16	3	3.450	2, 300	-2 274852	0.000000
17	1	3 650	6 200	2.214032	0.0000000
18	1	3 850	0.200	0.000000	0.000000
19	1	4 050	0 300	0.000000	0.000000
20	2	4,350	0.200	1 230977	0.000000
21		5,150	0.800	0.000000	2.000000
22	4	6.360	1 210	0.000000	A 863938
23	1	6.960	0 600	0.000000	0.000000
24	3	7.260	0.300	-2.462823	0.000000
25	1	7.560	0.300	0 000000	0.000000
26	1	7.560	0.000	0.000000	0.0000000
27	1	7.860	0 300	0.000000	0.000000
28	2	8.160	0.300	2, 992393	0.000000
29	1	8,760	0.600	0 000000	0 0000000
30	з	B.760	0.000	-0.011250	0.000000
31	4	8.840	0.080	0.000000	0.042495
32	3	8.840	c.000	-0.011250	0.000000
33	з	8.840	0.000	-0.022501	0.00000
34	4	8.680	0.040	0.000000	0.042495
35	з	8.880	6.000	-0.022501	0.000000
36	3	8.860	0.000	-0.011250	0.000000
37	4	8.961	0.080	0.000000	0.042495
38	3	8.961	0.000	-0.011250	0.000000
39	з	8.961	0.000	-0.011250	0.000000
40	4	9.041	0.080	0.000000	-0.042495
41	Э	9.041	0.000	-0.011250	0.000000
4 Z	з	9.041	0.000	-0.090206	0.000000
43	1	9.201	0.161	0.000000	-0.169979
44	3	9.201	0.000	-0.090206	0.000000
45	3	9.201	0.000	-0.011250	0.000000
46	4	9.282	0.080	0.000000	-0.042495
47	3	9,282	0.000	-0.011250	0.000000
48	З	9.282	0.000	-0.011250	0.000000
49	4	9.362	0.080	0.000000	0.042495
50	5	9.362	0, 000	-0.011250	0.000000

5:	د.	9.362	0.000	+0.090206	0.000000
52	4	9.523	5.161	0.000000	0.169979
5.3	3	9.523	0.000	-0.090206	0.00000
54	з	9.523	0.000	-0.011250	0.00000
		0.600			
		9.603	0.000	0.000000	0.042495
56	3	9.603	0.000	-0.011250	0.00000
57	3	9.603	0.000	-0.013250	0.00000
58	4	9.683	0.080	0.00000	-0.042495
59	3	9.683	5 005	-0.011250	0.000000
60	2	0.603	5.000		
60	. n	9.683	0.000	-0.040508	0.00000
61	4	9.763	0.080	0.000000	-0.084989
62	4	9.844	0.080	0.000000	-0.084989
63	3	9.844	0.000	-0.090206	0.00000
64	з	9.844	0.000	-0.011250	0.00000
6 1	4	B B34	0.000	0.0000200	
	4	9,924	0.080	5.005500	-0.042495
66	3	9.924	0.000	-0.011250	0.000000
67	З	9.924	0.000	-0.011250	0.00000
68	4	10.004	0.080	0.000000	0.042495
69	3	10.004	0.000	-0.031259	0.000000
70	-	10.004	6.000	0.011200	
,0	2	10.004	5.000	-0.090206	0.000000
71	٩	10.165	0.161	0.00000	0.169979
72	3	10.165	0.000	-0.090206	0.000000
73	3	10.165	0.000	-0.011250	0.000000
74	4	10.245	0.080	0.000000	0.042495
75	2	10 745	0.000	2.000000	
,,,	-	10.245	0.000	-0.011250	0.000000
76	Э	10.245	0.000	-0.011250	0.000000
77	4	10.325	0,080	0.000000	-0.042495
78	з	10.325	0.000	-0.011250	0.000000
79	з	10,325	0,000	-0.090206	0.000000
80	4	10 496	0 16)	2 000000	0.140030
	4	10,400	0.161	0.000000	-0.169979
81	З	10.486	0.000	-0.090206	C.000000
82	з	10,486	C.00C	-0.011250	0.000000
83	4	10.566	0.080	0 000000	-0 042495
51 A	7	10 564	0.000	B (11) 21/2	5 222220
		10.300	0.000	-0.011250	0.0000055
85	3	10,566	0.000	-0.011250	0.000000
86	4	10.646	0.080	0.000000	0.042495
87	з	10.646	0.000	-0.011250	6.000000
ទទ	з	10.646	0.000	-0.0ZZ501	0.000000
89	4	10 686	0.040	0.00000	0.040495
		10,000			0.042475
90	.1	10.036	0.000	-0.022501	c.000000
91	з	10.686	0.000	-0.011250	0,000000
92	4	10,767	0.080	0.000000	0.042495
93	з	10.767	0.000	-0.011250	0.000000
94	1	11.067	0.306	0 000000	0.00000
95	1	13 062	0.000	0.00000	. 000000
, ,	-	11.007	0.000	0.000000	W-000000
96	1	11.367	0.300	0.000000	0.00000
97	2	11.667	0.300	1,800000	0.00000
98	1	12.267	0.600	0.000000	0.00000
99	3	12.267	0.000	-0.329158	0.000000
100	4	13.477	1 210	0 000000	0 867938
101	-1	10 477	0.000	0.000000	
101		13.477	0.000	-0.4/9158	<i></i> 000000
102	1	13.977	0.500	0.000000	0.00000
103	1	14.277	C.3CO	0.00000	0.000000
104	1	14.827	0.550	0.000000	0.000000
105	Э	15.127	0.300	-1.001377	0.000000
106	1	15.807	0.680	0 000000	0.000000
107	2	14 107	0.000	5.000000	p
10.	<u>د</u>	10,107	0.304	3-945711	0.000000
108	1	17.747	1.640	0.000000	0.000000
109	3	16.047	0.300	-3.338281	0.000000
110	1	18.497	0.450	0.000000	0.000000
111	2	18.797	0.300	2.767790	0.000000
112	1	20.674	1.878	0.000000	0.000000