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1. INTRODUCTION

The presence of field errors in quadrupoles and bending magnets can reduce the beam
stability area, called dynamic aperture. Hence a detailed study is needed, to set acceptable
ranges for the multipolar component strengths and to find which are the more dangerous
ones, in order to possibly modify the magnet design to minimize that specific component.

In this note we present the results obtained from simulations made for the DAΦNE
main rings. The two structures[1] studied are the DAY-ONE lattice (without solenoids, normal
conducting quadrupoles in the triplets) and the KLOE+KLOE lattice (D15, two equal
Interaction Regions with high field solenoids and permanent magnet triplets).

In the first part the different sources of systematic and random field errors will be
briefly discussed; in the following paragraph the results of the simulations performed on the
two lattices will be presented and compared with the ideal dynamic apertures. The analysis has
been performed separately for systematic and random components.

2. MULTIPOLE COMPONENTS IN A MAGNETIC FIELD

2.1 Systematic errors

First of all let us consider mechanically perfect magnets. The length and the actual
shape of the magnet pole affect the ideal field distribution; the pole surface cannot be infinite
but is laterally truncated to provide space for coils; moreover in the magnet design the ideal
pole curvature is often approximated and not perfect. These are the main sources of the
systematic multipole components, equal for all the magnets of the same type (same design and
construction method). These higher order components have the same orientation and
symmetry of the main one.

The number of higher order multipoles is minimized when the magnet is designed with
the symmetry of the main component. However, we can still have a large number of
systematic multipoles if a mechanical asymmetry shows up in the same way for all the
magnets of the same kind.
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As an  example let us consider a symmetric quadrupole magnet: the pole finite width
induces a 12-pole field, while the  approximation to its ideal hyperbolic pole contour with a
different shape, like a circular one, brings in the 20-pole component, whose intensity depends
on how much the actual shape deviates from the ideal one.

In our simulations the systematic multipole contributions have been obtained from the
field expansions delivered by magnet design programs.

2.2 Random errors

Random multipoles depend on magnet assembly and mechanical construction
tolerances and are therefore different for each magnet. Pole flatness, parallelism and
roughness can generate random errors, as well as the lack of a symmetric assembly[2]. In this
case one assumes that in the field expansion the higher harmonic components follow
statistical distributions over the total amount of magnets in the machine; the standard
deviations of these error distributions come from measured field data or from construction
specifications.

For their nature, the random multipole effect on beam dynamics can be significantly
estimated only by performing the simulation with several error distributions, i.e. by finding
out the dynamic apertures of a large number of randomly extracted sets of multipole
coefficients.

3. DYNAMIC APERTURE STUDY

In order to study the dynamic aperture sensitivity to both random and systematic
multipole errors we have used the well known code PATRICIA[3] and a home-developed
code, TRACKMULT[4], since PATRICIA does not foresee the solenoidal fields needed for
the DAΦNE detectors. In both programs the higher harmonic contributions to the ideal field
are treated as thin lens kicks to the particle trajectory. The magnetic field in the horizontal
mid-plane can be written as a power expansion:

B = B0ρ0 ∑
n=0

m
  

1
n!  kn xn (1)

where n indicates the 2(n+1) multipolar term, the kn [m-(n+1)] coefficients are the strengths of
the multipole components and x  [m] is the horizontal particle position with respect to the
central trajectory. The field B is in [Tesla].

From eq. (1) the normalized strength for each multipole component can be derived:

kn
ki

   =  
∆Bn
Bi

  
n! 

xn-i [m-(n-i)] (2)
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and the error field at a certain distance x is:

∆Bn
Bi

   =  
kn
ki

  
xn-i 

 n!   

where Bi is the ideal (linear) magnetic field in dipoles and quadrupoles, ki is the strength
coefficient relative to Bi (fundamental term of the expansion) and ∆Bn is the field contribution
of the multipole of order n.

In order to avoid possible misunderstandings we also report the field expansion formula
used in the magnet design codes (Magnet, Poisson):

B(x)  =  ∑
n=1

m
    Mn xn-1 (3)

where B is in [Gauss], the coefficients  Mn are expressed in [Gauss/cmn-1] and x is in [cm].
Finally, from (2) and (3) the relation between multipolar coefficients kn and Mn is easily
obtained:

Μn+1
Μi+1   =  

kn
ki

  
10-2(n-i) 

 n!       [m-(n-i)]

3.1 Systematic errors simulation

Systematic multipole errors were inserted in bendings, quadrupoles and in the low-β
triplets, since their influence in the sextupoles has been found out to be negligible.

Sextupole, octupole and decapole components have been inserted in bending magnets,
while 12-poles and 20-poles have been considered in the quadrupoles.

The low-β triplet quadrupoles must be treated in a special way. In fact, because of the
crossing angle at the I.P., particles pass off-axis in these quadrupoles. This is a problem when
tracking is performed with PATRICIA, which cannot take into account off-axis trajectories.
The difficulty has been avoided by considering the low-β quadrupoles as gradient bending
magnet for the simulations on the Day-one lattice. Of course, each multipole generates off-
axis lower order harmonics, whose strengths depend on the multipole order and on the actual
distance of the trajectory from the quadrupole axis. Therefore all the multipole components,
from the 6-pole to the 20-pole, have been explicitly included in this simulation, taking as
generating errors those belonging to the small quadrupoles (see Table I). The D15 lattice has
been studied with TRACKMULT, which can deal with crossing angles, solenoidal fields and
off-axis trajectories. Therefore only 12-pole and 20-pole components have been included into
the input deck.

The bending magnets and some quadrupoles (the large aperture ones) will be built on
the basis of LNF performed magnetic design. For this reason we extracted from the magnet
designs and from the relative multipole field expansions the required set of normalized coef-
ficients (kn/ki) to be used in our simulations. The global sensitivity to a given set of errors has
been studied, comparing the ideal dynamic aperture (with sextupoles set to correct the natural
machine chromaticity) to the one we get with multipole errors in all the lattice magnets at the
same time.
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The effect of a single multipole component for a selected magnet subset has also been
studied, i.e. the dynamic aperture sensitivity has been investigated by putting only one
systematic multipole component in all the magnets of the same type. This second approach
has been followed in order to find which are the most dangerous multipole components for
each type of magnet, giving therefore an estimate of the single multipole tolerance. It should
be pointed out that, due to the non-linearity of the multipole fields, the combined effect of all
the multipoles together in the magnetic lattice cannot be directly predicted from the
contributions of different harmonics or magnet subsets.

For our global analysis, we have taken as systematic errors those estimated from the
magnetic calculations performed during the storage ring design. Table I shows the normalized
coefficients used for our simulations[5]. The corresponding values of the ∆Bn/Bi at a distance
of 3 cm from the magnet center are also indicated. The large quadrupoles are those in the
wiggler arc, the small  ones are all the others.

TABLE I - Systematic multipole components

(in parenthesis the corresponding ∆Bn/B @ 3 cm is shown)

ERROR
LOCATION

K 2/K0[m-2] K 3/K0[m-3] K 4/K0[m-4] K 5/K1[m-4] K 9/K1[m-8]

BENDS -8.4x10-2 1.33 -97.13 - -
(-3.8x10-5) (6.x10-6) (-3.3x10-6) - -

SMALL - - - -4.21x104 1.94x1013

QUADS - - - (-2.8x10-4) (3.5x10-5)

LARGE - - - 3.36x102 1.29x1014

QUADS - - - (2.4x10-6) (2.4x10-4)

In order to compare the results for the different multipole configurations we define as
required aperture [6] a rectangle in the phase plane between (-10σx, +10σx) off coupling in
the horizontal plane and 10σy, full coupling, in the vertical one (the vertical dynamic aperture
is symmetric with respect to the horizontal axis, when there are no skew elements). This
aperture allows for a Touschek beam lifetime of about 4 hours.

In the following the results of our simulations are summarized by listing the maximum
stable horizontal amplitude, in σx units, with at least 2 σy stable vertical amplitude, inside the
required aperture ( in many cases the dynamic aperture is larger than the required 10σx
value!). For all the simulations the Touschek and total beam lifetimes are also given, as
computed in Ref.[7]. These values have to be compared with the values obtained for an ideal
dynamic aperture of 10σx  up to 1.5% energy deviation: τTou = 301 min and τtot = 220
min. All the dynamic apertures are computed at the IP, with 256 turns and for three
momentum deviations: 0,-1%,+1% (fixed energy).
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Table II shows the results obtained from the global  analysis for the Day-one lattice. As
expected, the largest contribution to dynamic aperture reduction comes from the low-β
quadrupoles, for particles with an energy deviation of +1%, corresponding to a reduction of
about 4% on the total beam lifetime.

TABLE II

 Day-one lattice results:  apertures with systematic errors.
Number of stable σx  (off c.)  for 2 σy   (full  c.)  stable vertical amplitude

ERROR   LOCATION ∆p/p = -1% ∆p/p = 0 ∆p/p = 1%
τ Tou
(min)

τ tot
(min)

Bendings -10/+10 -10/+10 -7/+10 287 212

Quadrupoles (no low-β) -10/+9 -10/+10 -7/+9 287 212

Quadrupoles (including low-β) -10/+10 -10/+10 -6/+7 283 210

Bendings & quads (no low-β) -10/+9 -10/+10 -7/+9 287 212

All magnets  (including low-β) -10/+10 -10/+10 -6/+7 283 210

Fig. 1 shows the dynamic apertures with the systematic errors of Table I in bendings
and quadrupoles (low-β included), compared to the ideal one. The stronger reduction occurs
for +1% energy deviation, which presents a  smaller dynamic aperture also without multipole
errors.

The effect of a single multipole component is shown in Tables III.a and III.b as a
function of ∆Bn/Bi for different energy deviations, for quadrupoles and bendings respectively.
The tolerance on single multipole component contributions can be estimated again from their
effect on the beam lifetimes. For the arc quadrupoles, both the 12-pole and 20-pole errors can
be tolerated up to a value of ±5x10-4. The reduction of the stable region, due to errors in the
low-β triplets, is strong: a 12-pole component of about -5x10-4 is still acceptable, while the
dynamic aperture seems to be strongly affected by a 20-pole component  ranging from -5x10-

4 to ±10-4.  It has to be pointed out that the considered values correspond to a very strong
error on the pole profile design, that is unlikely to occur in practice.

For what concerns the bending magnets, a 6-pole and a 10-pole component can be
safely tolerated up to a value of  7.5 x 10-4  and  5 x 10-4 respectively; for the 8-pole harmonic
a value of  -5 x 10-4  is acceptable, while  ∆B/B = 5 x 10-4 gives a total lifetime reduction to
about 2 hours.

Comparing these limits with the ∆Bn/Bi  values shown in Table I, it is clear that the LNF
designed bendings have multipolar components well below the tolerable limits, while a
particular care must be put in constructing the low-β quadrupoles.
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Fig. 1 - Day-one Lattice: effect of systematic multipoles.  Ideal dynamic aperture (solid line)
compared to the one with all the systematic errors (dashed line) for three energy deviations.
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TABLE III.a

Day-one lattice results: analysis of dynamic aperture sensitivity to single systematic errors in
quadrupoles. Number of stable σx  (off c.) for 2 σy  (full c.) stable vertical amplitude

12-POLE IN QUADS (low-β quads without errors)

∆B/B @ 3cm -10- 4 10- 4 -5x10 - 4 5 x 1 0 - 4 - 7 . 5 x 1 0 - 4 7 . 5 x 1 0 - 4

∆p/p =-1% -10/+10 -10/+10 -10/+9 -10/+9 -9/+6 -9/+6

∆p/p =   0 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =+1% -9/+10 -7/+9 -7/+10 -7/+10 -7/+10 -6/+9

τ Tou (min) 293 287 287 287 283 283

τ tot (min) 216 212 212 212 210 210

20-POLE IN QUADS (low-β quads without errors)

∆B/B @ 3cm -10- 4 10- 4 - 2 . 5 x 1 0 - 4 2 . 5 x 1 0 - 4 -3x10 - 4 3 x 1 0 - 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -9/+9 -9/+9 -9/+6 -9/+6 -9/+6 -9/+6 -6/+6 -6/+6

∆p/p =  0 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =  1% -7/+10 -7/+9 -7/+9 -7/+9 -6/+9 -7/+7 -7/+9 -6/+7

τ Tou (min) 287 287 283 283 283 283 283 283

τ tot (min) 212 212 210 210 210 210 210 210

12-POLE IN LOW-β QUADS ONLY

∆B/B @ 3cm -10- 4 10- 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -6/+6 -10/+9 -9/+9 -4/+4

∆p/p =  0 -10/+10 -10/+10 -10/+10 -7/+7

∆p/p =  1% -7/+10 -7/+10 -6/+6 -3/+4

τ Tou (min) 283 287 283 140

τ tot (min) 210 212 210 120

20-POLE IN LOW-β QUADS ONLY

∆B/B @ 3cm -10- 4 10- 4 -3x10 - 4 3 x 1 0 - 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -4/+4 -6/+4 -4/+4 -4/+4 -4/+4 -4/+4

∆p/p =  0 -10/+7 -10/+7 -7/+7 -7/+7 -7/+7 -7/+7

∆p/p =  1% -6/+7 -6/+6 -6/+4 -6/+6 -6/+6 -3/+4

τ Tou (min) 149 149 149 149 149 140

τ tot (min) 126 126 126 126 126 120
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TABLE III.b

Day-one lattice results: analysis of dynamic aperture sensitivity to single systematic
 errors in bendings. Number of stable σx  (off c.) for 2 σy  (full c.)  stable vertical amplitude

6-POLE IN BENDS

∆B/B @ 3cm -10- 4 10- 4 -5x10 - 4 5 x 1 0 - 4 - 7 . 5 x 1 0 - 4 7 . 5 x 1 0 - 4

∆p/p =-1% -10/+10 -10/+9 -10/+10 -6/+9 -10/+10 -6/+6

∆p/p =  0 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =  1% -7/+10 -7/+10 -7/+9 -6/+7 -7/+7 -6/+7

τ Tou (min) 287 287 287 283 287 283

τ tot (min) 212 212 212 210 212 210

8-POLE IN BENDS

∆B/B @ 3cm -10- 4 10- 4 - 2 . 5 x 1 0 - 4 2 . 5 x 1 0 - 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -10/+10 -10/+9 -10/+10 -6/+9 -10/+10 -6/+6

∆p/p =  0 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10 -7/+7

∆p/p =  1% -7/+10 -7/+9 -7/+9 -6/+9 -6/+7 -4/+6

τ Tou (min) 287 287 287 283 283 149

τ tot (min) 212 212 212 210 210 126

10-POLE IN BENDS

∆B/B @ 3cm -10- 4 10- 4 - 2 . 5 x 1 0 - 4 2 . 5 x 1 0 - 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -10/+10 -10/+9 -9/+6 -9/+6 -4/+6 -9/+6

∆p/p =  0 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =  1% -9/+10 -7/+9 -9/+10 -7/+9 -6/+7 -7/+9

τ Tou (min) 293 287 283 283 260 283

τ tot (min) 216 212 210 210 197 210
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A similar study has been carried out for the D15 lattice, which exhibits a larger ideal
dynamic aperture, assuming the same systematic errors as for the Day-one. The results,
summarized in Table IV, V.a and V.b., show that this lattice is less sensitive to multipole
errors than the previous one. The dynamic aperture with all errors included  (Table IV) is
plotted in Fig. 2 as compared to the ideal one.

TABLE IV

D15 lattice results:  apertures with  systematic errors (from computer codes).  Number of
stable  σx  (off c.) for  2σy  (full c.) stable vertical amplitude

ERROR   LOCATION ∆p/p = -1% ∆p/p = 0 ∆p/p = 1%
τTou

(min)

τtot

(min)

Bendings -10/+10 -10/+10 -10/+10 301 220

Quadrupoles (no low-β) -10/+10 -10/+10 -8/+8 290 214

Quadrupoles (including low-β) -10/+10 -10/+10 -10/+8 290 214

Bendings & quads (no low-β) -10/+10 -10/+10 -8/+8 290 214

All magnets  (including low-β) -10/+10 -10/+10 -10/+8 290 214

 A generalized tolerance of 5x10-4 is acceptable for all magnets, with the exception of the
low-β ones. These quadrupoles will be of the permanent type, due to the small size required to
ensure a wide acceptance to the detector. It is almost impossible to foresee the harmonic
content of the field in these quadrupoles, since there is no symmetry in the design, and the
field shape may also depend on the longitudinal coordinate along the magnet, so that it is
unlikely that a specific high order component could be much larger than the others.  The
overall  field quality will be 5x10-4 within a good field radius of 3 cm and a prototype is under
construction. The higher order terms in the field integral will be measured by means of the
rotating coil method and the measured values, for each magnet, will be included in the
simulation.
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TABLE V.a

D15 lattice results: analysis of dynamic aperture sensitivity to single systematic errors in
quadrupoles. Number of stable σx (off c.)  for 2 σy  (full c.) stable vertical amplitude.

12-POLE IN QUADS (low-β quads without errors)

20-POLE IN QUADS (low-β quads without errors)

12-POLE IN LOW-β QUADS ONLY

∆B/B @ 3cm -5x10 - 4 5 x 1 0 -4

∆p/p =-1% -10/+10 -10/+10
∆p/p =  0 -10/+10 -10/+10

∆p/p =  1% -10/+10 -10/+8
τ Tou (min) 301 290
τ tot (min) 220 214

20-POLE IN LOW-β QUADS ONLY

∆B/B @ 3cm -3x10 - 4 3 x 1 0 - 4 -5x10 - 4 5 x 1 0 4

∆p/p =-1% -7/+6 -8/+8 -5/+5 -8/+8

∆p/p =  0 -9/+7 -10/+8 -8/+7 -9/+8

∆p/p =  1% -7/+7 -7/+7 -6/+6 -7/+7

τ Tou (min) 157 201 195 201

τ tot (min) 132 161 157 161
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TABLE V.b

D15 lattice results: analysis of dynamic aperture sensitivity to single systematic errors in
bendings.  Number of stable σx  (off c.) for 2 σy  (full c.) stable vertical amplitude.

6-POLE IN BENDS

∆B/B @ 3cm -10- 4 10- 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =  0 -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =  1% -10/+10 -10/+10 -10/+10 -10/+10

τ Tou (min) 301 301 301 301

τ tot (min) 220 220 220 220

8-POLE IN BENDS

∆B/B @ 3cm -10- 4 10- 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -10/+10 -10/+10 -10/+10 -9/+8

∆p/p =  0 -10/+10 -10/+10 -10/+10 -8/+7

∆p/p =  1% -10/+10 -10/+10 -9/+7 -7/+7

τ Tou (min) 301 301 287 157

τ tot (min) 220 220 212 132

10-POLE IN BENDS

∆B/B @ 3cm -10- 4 10- 4 -5x10 - 4 5 x 1 0 - 4

∆p/p =-1% -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =  0 -10/+10 -10/+10 -10/+10 -10/+10

∆p/p =  1% -10/+10 -10/+10 -8/+8 -10/+10

τ Tou (min) 301 301 290 301

τ tot (min) 220 220 214 220
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Fig. 2 - D15 Lattice: effect of systematic multipoles. Ideal dynamic aperture (solid line) compared to
the one with all the systematic errors (dashed line) for three energy deviations.
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In order to investigate a possible dependence of the machine sensitivity to systematic
multipole errors on the chosen working point (Qx=5.18, Qy=6.15), a study of dynamic
aperture as a function of the tunes has been performed. For the Day-one lattice it has been
considered a 20-pole error in all the quadrupoles (see Table VI), for the D15 the dependence
of the 20-pole error in the low-β triplets only has been also investigated (Tables VIII.a and
VIII.b). For comparison in Table VII the dynamic aperture behaviour of D15 lattice as a
function of the horizontal tune without errors is reported. The dependence on the tune for
the ideal case is very weak, the largest reduction in the total  beam lifetime being  3.6% for Qx
= 5.13, while the dynamic aperture in presence of 20-pole errors seems to be very sensitive to
tune adjustments, since the reduction is important for each considered working point,  ranging
from  27%   (Qx = 5.18, chosen working point) to  61%  (Qx = 5.13). These results are
summarized in Fig. 3, where the total beam lifetime is plotted as a function of the horizontal
tune.
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Fig. 3 - D15 Lattice: dynamic aperture behaviour vs. horizontal tune for the ideal case (stars)
and with 20-pole errors in low-β quads only (dots).

TABLE VI

Day-one lattice results: analysis of dynamic aperture sensitivity to 20-pole systematic error
 in all quadrupoles as a function of the working point (Qy = 6.15).

 Number of stable σx  (off c.) for 2 σy  (full c.)  stable vertical amplitude.

∆ B/B=5x10 -4 Q x  = 5.2 Q x  = 5.18 Q x  = 5.16 Q x  = 5.13

∆p/p =-1% -8/+8 -4/+4 -4/+1 -1/+1

∆p/p =  0 -7/+6 -7/+7 -7/+7 -7/+6

∆p/p =  1% -3/+3 -3/+4 -6/+6 -6/+5

τ Tou (min) 107 140 113 91

τ tot (min) 81 120 100 71
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TABLE VII

D15 lattice results: analysis of dynamic aperture as a function of the working
point (Qy = 6.15). Number of stable σx  (off c.) for 2 σy  (full c.)  stable vertical amplitude.

∆ B/B=5x10 -4 Q x  = 5.2 Q x  = 5.18 Q x  = 5.16 Q x  = 5.13

∆p/p =-1% -10/10 -10/10 -10/10 -10/9

∆p/p =  0 -10/10 -10/10 -10/10 -10/10

∆p/p =  1% -10/10 -10/10 -10/9 -10/7

τ Tou (min) 301 301 293 287

τ tot (min) 220 220 216 212

TABLE VIII.a

D15 lattice results: analysis of dynamic aperture sensitivity to 20-pole systematic error
in low-β quadrupoles only as a function of the working point (Qy = 6.15).
Number of stable σx  (off c.) for 2 σy  (full c.)  stable vertical amplitude.

∆ B/B=5x10 -4 Q x  = 5.2 Q x  = 5.18 Q x  = 5.16 Q x  = 5.13

∆p/p =-1% -5/+5 -8/+8 -7/+6 -5/+5

∆p/p =  0 -9/+7 -9/+8 -9/+7 -9/+6

∆p/p =  1% -4/+5 -7/+7 -8/+6 -7/+5

τ Tou (min) 149 201 156 114

τ tot (min) 126 161 131 85

TABLE VIII.b

D15 lattice results: analysis of dynamic aperture sensitivity to 20-pole systematic error
in all quadrupoles as a function of the working point (Qy = 6.15).

 Number of stable σx  (off c.) for 2 σy   (full c.) stable vertical amplitude

∆ B/B=5x10 -4 Q x  = 5.2 Q x  = 5.18 Q x  = 5.16 Q x  = 5.13

∆p/p =-1% -5/+5 -7/+7 -7/+7 -5/+4

∆p/p =  0 -9/+8 -9/+8 -9/+7 -9/+6

∆p/p =  1% -4/+5 -7/+7 -8/+6 -7/+5

τ Tou (min) 188 201 156 112

τ tot (min) 153 161 131 83
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3.2 Random errors simulation

In this case the multipole coefficients have been extracted from experimental
measurements on existing magnets, performed at PEP, AGS, ALS[8]. The values used in our
simulations[2] are conservative with respect to these data.

Table IX shows all the coefficients used as standard deviations of the Gaussian error
distributions. For bendings and quadrupoles we included the 6-pole, 8-pole and 10-pole
terms, adding for the quadrupoles also the 12-pole and 20-pole coefficients.

To represent the effect of random errors on the dynamic aperture we have chosen the
same criterion used in the previous analysis: for each sequence of errors, corresponding to
one machine, we take the value of the maximum stable horizontal amplitude, expressed in
number of σx (off coupling) with at least 2σy (full coupling) stable vertical amplitude.

For what concerns the Day-one lattice, Fig. 4 shows the results obtained by simulating
50 machines without errors in the low-β quadrupoles, for three different particle energies. For
particles on energy and for a deviation of -1%, the average values of these distributions, on
both sides with respect to the axis origin, are above the limits of ±10 σx, even if few machines
exhibit a smaller dynamic aperture. For ∆p/p=+1% the average value of the distributions is
around 7σx.

Including the errors also in the low-β quadrupoles, we obtain the results shown in Fig.
5. As one can see the resulting average dynamic aperture is still acceptable even if smaller than
the previous one. Again for positive energy deviation the reduction is larger.

The vertical aperture behaviour, always well above the required limit of 10 σy , is not
shown.

The same analysis has been performed on the D15 lattice for the worst case only, that is
with random errors in all the quadrupoles, low-β included, for the same number of machines,
tracking particles in the area corresponding to the required aperture (-10σx, 10σx, 10σy). The
results are shown in Fig. 6, for three energy deviations. As for the systematic errors, this
lattice is less sensitive to multipole random errors, even though there is a reduction for
∆p/p = +1%.

TABLE IX -Random r.m.s. multipole components.

(in parenthesis  the correspondent  ∆Bn/B @ 3 cm is shown)

K 2/K0 [m-2] K 3/K0 [m-3] K 4/K0 [m-4] K 5/K1 [m-4] K 9/K1 [m-8]

BENDS 0.566 .85 567.
(2.6x10-4) (3.8x10-6) (1.9x10-5)

QUADS 0.015 2.4 60. 3600. 9.6x1010

(2.3x10-4) (3.6x10-4) (6.8x10-5) (2.4x10-5) (1.7x10-7)
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Fig. 4 - DAY-ONE Lattice: effect of random multipole errors in  all magnets except for low-β quadrupoles,
on a sample of 50 machines, for three energy deviations.
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Fig. 5 - Day-one Lattice: effect of random multipole errors in  all magnets including the low-β quadrupoles,
on a sample of 50 machines, for three energy deviations.
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