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CORRECTING COILS IN LOW β INSERTION QUADRUPOLES

C. Biscari

Introduction

The design of DAΦNE Interaction Regions (IRs) for the two experiments KLOE

and FI.NU.DA. adopt the Rotating Frame Method (RFM)1, in order to correct the

coupling introduced by the detector solenoids. Let' s recall here the main

characteristics of the RFM.

A solenoid rotates the transverse planes by an angle proportional to the integral

of the longitudinal component of the magnetic field on the axis, Bs . To avoid betatron

coupling outside the IR, the condition

Bs ds
IR
∫ = 0

must be fulfilled. This is achieved by means of two compensating solenoids with the

field opposite to the main solenoid and placed outside the detector. Thanks to the IR

symmetry, the transverse rotation at the Interaction Point (IP) is also cancelled.

The low-β quadrupoles are placed inside the detector (KLOE and FI.NU.DA.) or

between the detector and the compensator (FI.NU.DA.), i.e. in the region where the

normal modes are not horizontal and vertical, but tilted following the rotation of the

transverse plane; it is then clear that in order to act as normal quadrupoles they must

be tilted by an angle

θrot
i = 1

2Bsρ
Bs ds

0

si

∫

where si  is the longitudinal distance of the ith quadrupole center from the IP.

                                                

1 M. Bassetti, M.E. Biagini, C. Biscari, M.A. Preger, G. Raffone, G. Vignola - "DAΦNE

Interaction Region Design"  -  Proceedings of PAC 93, Washington.
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There is still a residual coupling due to the change in θrot  along the quadrupole

length. As it is well known the coupling coming from any source can be cancelled by

four independent coupling elements such as skew quads or solenoids. The four

elements that cancel our residual coupling are three small adjustments of the rotation

angles of the quads (which are equivalent to skew terms) plus a correction of the field

in the compensator solenoids. This method provides decoupling at the IP for a

perfectly symmetric IR around the IP and in absence of alignment errors.

Even if sources of coupling come from the whole ring, it is the IR errors which

probably would provide the strongest contribution to the ring residual coupling, so it

is very much convenient to have inside the IR the four knobs per side necessary to

cancel the coupling at the IP, independently from the rest of the ring. This is true

especially for FI.NU.DA., which foresees to work at two different values of the

detector field, and therefore needs the possibility of modifying the RFM parameters.

One knob is the magnetic field of the compensator; the other three can be chosen

equivalently between a rotation of the quadrupoles supports or correcting skew coils

superposed on the quadrupoles. This note provides a quantification of the required

coil strengths.

Furthermore it is recommended to have gradient correcting coils on the

quadrupoles of KLOE, which are all permanent magnets. The required strength of

these coils is given simply as the fraction of the nominal gradient to be corrected.

Skew coils

A quadrupole tilted by an angle α with respect to the orientation of the normal

modes couples the betatron motions in two transverse planes. To eliminate this

coupling acting directly on the quadrupole, there are two possibilities: the first one is

of course to eliminate the tilt mechanically, which is not always possible, the second

is the use of superimposed skew coils. Let's see what is the relationship between the

quadrupole strength, the tilting angle and the skew strength.

Let's consider the quadrupole matrix and the skew quadrupole matrix as thin

lenses. In the thin lens approximation the matrix of a normal quadrupole (i.e. with its

axis normal to the normal modes, what means mounted rotated by an angle θrot

when inserted in the IR) of magnetic length L and strength k
B x

y= 1
ρ ∂

 is:

Q =

1 0 0 0

kL 1 0 0

0 0 1 0

0 0 −kL 1



















(1)
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The matrix of a quadrupole tilted with respect to the normal modes by any angle
α  is:

Qα = R(α )QR(−α ) (2)

where

R(α ) =
Icosα Isinα
−Isinα Icosα







(3)

is the rotation matrix and I  the (2x2) identity matrix. Multiplying the three matrices :

Qα =

1 0 0 0

kLcos2α 1 −kLsin2α 0

0 0 1 0

−kLsin2α 0 −kLcos2α 1



















(4)

Applying (2) to a skew quadrupole α = π 4( ) with the same length L and

strength k sk =
Bρ

x
∂x

, the matrix of the quadrupole results:

Qsk =

1 0 0 0

0 1 −ksk L 0

0 0 1 0

−ksk L 0 0 1



















(5)

In the case of skew coils superimposed to a quadrupole tilted by an angle α  we

must apply (4) substituting α → π
4

+ α  and obtain:

Qsk(α ) =

1 0 0 0

−ksk Lsin2α 1 −ksk Lcos2α 0

0 0 1 0

−ksk Lcos2α 0 ksk Lsin2α 1



















(6)

Let's now distinguish two cases:

a) A quadrupole, tilted by an angle α , with skew coils whose orientation is
independent of the quadrupole axes; the matrix is represented by the product of
the two matrices (4) and (5):

Qsk Qα =

1 0 0 0

kLcos2α 1 −ksk L − kLsin2α 0

0 0 1 0

ksk L − kLsin2α 0 −kLcos2α 1



















(7)
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The matrix results uncoupled if:

 ksk = −k sin2α (8)

and corresponds to a normal quadrupole with a strength kn given by:

kn = k + ∆k = k cos2α (9)

b) A quadrupole, tilted by an angle α , plus skew coils whose orientation is defined

by the quadrupole axes; the matrix is represented by the product of the two

matrices (4) and (6):

Qsk(α ) Qα =

1 0 0 0

−ksk Lsin2α + kLcos2α 1 −ksk Lcos2α − kLsin2α 0

0 0 1 0

−ksk Lcos2α − kLsin2α 0 ksk Lsin2α + kLcos2α 1



















(10)

The matrix results uncoupled if:

 ksk = −k tan2α (11)

and corresponds to a normal quadrupole with a strength kn given by:

kn = k + ∆k = k

cos2α
(12)

For small α  the two cases are of course equivalent.

The required strength of a skew coil used to correct a quadrupole tilt angle is

proportional to the quadrupole gradient: coils with the same length of the

corresponding quadrupole must yield ~ 3.5% of the nominal gradient to correct an

angle of 1° (see Fig. 1).

The strength of the quadrupole remains unchanged.
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Figure 1 - Strength of the skew coils and change of the quadrupole strength with α .

KLOE

The three permanent magnet quadrupoles will be mounted on the same support,
with their nominal tilt angle. This support will have the possibility of being rotated by
a small angle (within ±1°).

The first quadrupole QF1 will not have correcting coils, because of lack of space.
It is then necessary to have the skew correcting coils on the other two, QD and QF2.

The nominal lengths and gradients of the KLOE quadrupoles are listed in Table
I, together with the gradients which coils should yield to correct the angle by 1°.

Gradient correcting coils should be mounted also on QD and QF2, to give ~0.5%
of the nominal gradients.

Table I - KLOE quads

Name
Length

(m)
K2

(m-2)
G

(T/m)
θ
(°)

K skew
(m-2)

G skew
(T/m)

QF1 0.20 3.5 6.0 5.9 0 0

QD 0.35 5.7 9.7 10.5 0.19 0.32

QF2 0.27 2.8 4.7 15.5 0.10 0.16
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FI.NU.DA.

There are only two permanent magnet quadrupoles inside the detector (per side)

while two normal conducting quadrupoles are placed outside and mounted on a

support which can rotate up to 22.5°. It is clear that the external quads do not need

any correcting coil. Furthermore the gradient correcting coils are not necessary on

the two permanent magnet quadrupoles because small optical mismatches can be

corrected with the two outer quads.

In the definition of the correcting coils it must be taken into account that

FI.NU.DA. could work at different magnetic field values, which means that the

nominal tilt angles of the quadrupoles must change proportionally.

One solution is that skew coils are mounted on the two first quads. Table II

shows as in KLOE case the value of the skew used to correct the angle by 1°.

Table II - FINUDA quads

Name
Length

(m)
K2

(m-2)
G

(T/m)
θ
(°)

K skew
(m-2)

G skew
(T/m)

Q1 0.1575 5.8 9.8 8.6 0.20 0.33

Q2 0.3000 6.9 11.7 14.8 0.24 0.41

If the detector magnetic field (Bo) changes, considering the relationship between

the skew strength, the rotation angle and the quadrupole strength, the required

gradient from the skew coils is represented in Fig. 2.

Table III shows the rotation angles and the quadrupole strengths for three

different values of B/Bo.
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Figure 2 - Gradient of skew coils on Q1, Q2 of FI.NU.DA. IR

Table III - FINUDA configuration with different B/Bo

B/Bo = 1.

Name
Length

(m)
K2

(m-2)
G

(T/m)
θ
(°)

K skew
(m-2)

G skew
(T/m)

Q1 0.1575 5.8 9.4 8.6 0. 0.

Q2 0.3000 6.9 10.8 14.8 0. 0.

Q3 0.4000 2.0 3.4 22.3 0. 0.

Q4 0.4000 1.3 2.2 22.3 0. 0.

B/Bo = .8

Name
Length

(m)
K2

(m-2)
G

(T/m)
θ
(°)

K skew
(m-2)

G skew
(T/m)

Q1 0.1575 5.8 9.4 8.6 0.3 0.6

Q2 0.3000 6.9 10.8 14.8 0.7 1.2

Q3 0.4000 2.4 4.1 13.3 0. 0.

Q4 0.4000 1.9 3.2 13.3 0. 0.

B/Bo = .6

Name
Length

(m)
K2

(m-2)
G

(T/m)
θ
(°)

K skew
(m-2)

G skew
(T/m)

Q1 0.1575 5.8 9.4 8.6 0.7 1.2

Q2 0.3000 6.9 10.8 14.8 1.4 2.4

Q3 0.4000 2.6 4.3 17.8 0. 0.

Q4 0.4000 2.1 3.6 17.8 0. 0.
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Another solution consists in using the two permanent magnet quadrupoles sup-
port rotation as one of the knobs, and skew coils only on one of the quads. In this
case, considering that the coil strength is proportional to the quadrupole gradient, it
is convenient to mount the coils on the first quadrupole, which, furthermore, is also
the shorter one.

Table IV shows the necessary skew strengths for the three values of B/Bo as
above, if the support position is nominal for the nominal value of B. To allow larger
flexibility in the change of B, for the same maximum strength of the skew coils, the
nominal support position could correspond to the mean value of B/Bo, as for example
is shown in Table V.

Table IV - Q1 Skew strength and support rotation as function of B/Bo
in the hypothesis of nominal support position at B/Bo = 1.

B/Bo 1. 0.8 0.6

Support rotation (°) 0. -2.96 -5.92

θQ1 (°) 8.6 5.64 2.68

θQ2 (°) 14.8 11.84 8.88

∆θQ1 (°) due to skew 0. 1.24 2.48

Kskew Q1 (m-2) 0. 0.25 0.50

Gskew Q1 (T/m) 0. 0.43 0.86

Table V - Q1 Skew strength and support rotation as function of B/Bo
in the hypothesis of nominal support position at B/Bo = 0.8

B/Bo 1. 0.8 0.6

Support rotation (°) 2.96 0 -2.96

θQ1 (°) 8.6 6.88 3.92

θQ2 (°) 14.8 11.84 8.88

∆θQ1 (°) due to skew -1.24 0. 1.24

Kskew Q1 (m-2) -0.25 0. 0.25

Gskew Q1 (T/m) -0.43 0. 0.43


