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1. Introduction

The measurement of the deflection induced on one of the crossing
beams by the other is routinely used at SLAC[1] to optimize the luminosity of
the SLC collider.

 The principle of the measurement is straightforward: if two beams of
opposite charge cross with an offset between the two charge distributions,
they are deflected towards each other. For small offsets the deflection is
linear in the charge of the beam and in the offset itself, as far as the inter-
action does not modify the charge distribution. If this happens, however,
the qualitative dependence of the deflection on the offset does not change
significantly and the optimization can be done anyway. The measurement is
performed by sweeping the vertical position of one of the two beams and
observing the displacement of the other with respect to the position corre-
sponding to a missing interaction. The perfect superposition is obtained
when this difference vanishes. One of the advantages of this method with
respect to a direct luminosity measurement, where one looks at the counting
rate of a well known particle reaction, is that the measured variable has non
zero derivative at the optimum, thus allowing a feedback mechanism to
be implemented.

This measurement can be easily extended to single storage ring colliders,
where electrostatic fields can be used to separate the beams, or two
rings colliders, where it is sufficient to sweep one of the two beams, while
observing the effect on the closed orbit deviation of the other. The mea-
surement has been carefully studied for the SLAC B-factory[2]. In this note we
follow the treatment in [2] in order to evaluate the magnitude of the effect
for DAΦNE and compare it with the obtainable resolution of our beam
position monitors.
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2. Beam-beam deflection

Assume one can create a symmetric vertical orbit distortion, localized
around the interaction point, which leaves the orbit unchanged in the rest of
the electron ring. A single positron (strong-weak approximation) passing at a
vertical distance d from the center-of-mass of an electron bunch, small with
respect to the vertical r.m.s. beam size σy and with no horizontal offset, will
change its slope by:

∆Y'  =  - 4 π ξy 
d
βy

 (1)

where βy is the vertical betatron function at the crossing point and ξy the
usual linear beam-beam tune shift parameter:

ξy

=  
roN-βy

2πγ σy[σx+σy]
 (2)

Here ro is the classical electron radius, N- the number of electrons in the
bunch and σx its horizontal r.m.s beam size. Since the derivatives of the be-
tatron functions vanish at the DAΦNE crossing point, the beam-beam induced
deflection changes also the position of the positron at the IP by:

∆Y(o)   =  2 π ξy d cotg(πνy) (3)

where νy is the vertical betatron wavenumber of the positron ring.

If we have a second particle, stored in a different bucket of the positron
beam, which corresponds to a missing electron bunch and we measure its
position s in the ring somewhere outside the region shared by the two beams,
we will detect the "reference" position, independent from the amplitude of the
distortion in the electron ring. Our first positron, instead, will be displaced by
the interaction with the electron bunch, and its displacement with respect to
the reference one will be:

∆Y(s) = 
∆Y'

2sin[πνy]
  βy[o]βy[s]   cos(φ(s)-πνy) (4)

Here βy(o) and βy(s) are the betatron functions at the IP and the monitor
respectively and φ(s) the vertical betatron phase advance from the IP to the
beam position monitor.
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Expressions (1) and (3) are valid when d<<σy. There are also similar
formulae for the opposite situation, when d>>σx,σy, namely when the beam
sizes can be neglected with respect to the distance. In this case we find:

∆Y' = - 
2roN-

γd  (5)

∆Y(o)  =  
roN-βy

γd   cotg(πνy) (6)

Formulae (1), (2) and (3) can be generalized to the case when both beams
have the same number of particles and same transverse dimensions, under the
assumption that the beams are rigid, i.e. the beam-beam interaction does not
modify the beam sizes. In this case the effect of one beam on the other must be
calculated by averaging over the distributions. If N+ = N-, σ+ = σ- in both
planes, the above quoted formulas still hold, if all r.m.s. distributions are
multiplied by 2 . Of course, in this case each beam deflects the other one,
and the distance d in (1) changes to d + ∆Y(o), so that a self consistent
solution must be find by iteration. ∆Y(o) is typically smaller than d (unless νy
is closed to an integer) and therefore the convergence is fast.

A useful approximation[2]  to the solution of the problem for any distance
d can be found when σx>>σy, which is of course the case for DAΦNE. In this
case:

∆Y'  =  
2Nro
γσx

  { π
2  erf [

d
2σy

 ] - 
d

2σx
  } (7)

where "erf" is the error function related to the integral of the gaussian dis-
tribution.

3. Application to the DAΦNE main rings.

In DAΦNE a vertical localized orbit bump created by six vertical correcting
dipoles is foreseen[3] to separate the beams at the most dangerous parasitic
crossings at injection (in the case of more than 30 bunches) and also to avoid
beam-beam interaction at one of the two IP's when only one crossing is
desired. This bump can be used also to sweep one of the beams across the
other to detect the beam-beam deflection.

Figure 1 shows the angular kick ∆Y' as a function of the distance between
the two centers-of-mass, as given by (7) with the nominal single bunch pa-
rameters of DAΦNE, namely:

        N = 8.9x1010              σx = 2.1 mm             σy = 21 µ              γ = 103 (8)
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Fig.1 - Beam-beam deflection at the crossing point as a function
of vertical distance between the two beam centroids

at the nominal DAΦNE single bunch parameters.

It can be seen that there is a sharp dependence between ±2σy with respect
to perfect alignment. The deflection reaches a maximum of ≈ 0.2 mrad and
then remains there until the displacement becomes of the order of σx. This
behaviour is quite comfortable for luminosity optimization, since the
measured position difference between the interacting bunch and the non-inter-
acting one flips between two opposite values, and the optimal superposition
can easily be found at the center of the transition from one state to the other.

Fig. 2 shows the position difference between an interacting bunch and a
non-interacting one at all beam position monitors in the DAΦNE Main
Ring[4], corresponding to the maximum deflection shown in Fig. 1. Empty dots
are "button" BPM's, while the full ones are strip-lines near the interaction
points.

It should be pointed out that this method not only allows to optimize the
vertical superposition of the two beams, but it can be used also to find the
best combination of other machine parameters relevant to the luminosity. In
fact, one would observe at one of the most sensitive BPM's a curve
proportional to that shown in Fig. 1 as a function of the amplitude of the
vertical bump at the IP. The slope of the curve near the optimum superposition
will increase when the interaction is stronger (at least in the rigid
bunch approximation) and one can therefore tune machine parameters, such
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as the residual coupling and the relative phase of the two RF systems (which
determine the vertical beam size and the longitudinal position of the
interaction point) by looking at this slope.

Fig. 2 - Beam displacement (difference between positions of interacting
and non-interacting bunches) at all beam position monitors
for the maximum beam-beam deflection (∆Y' = 205 µrad).

4. Requirements to beam position measurement system

Assuming one can use all the beam position monitors foreseen for the
DAΦNE Main Rings (shown in Fig. 2) in such a way that the beam position
from individual bunches (or small trains of bunches) can be measured
separately, the beam-beam deflection angle ∆Y' can be found from the dif-
ference between the position of interacting and non-interacting bunches at
each BPM and stripline, with a sensitivity which depends on the vertical β
function and phase advance at the monitor.

In order to estimate the sensitivity of the overall beam-beam deflection
measurement, let us obtain the deflection angle from a least-square fit of all
the measured position differences, under the assumptions that we have a
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reliable machine model and that the beam-beam interaction does not modify
the vertical optical functions. From (4) we know that

∆Yi  =  ki ∆Y' (9)

where ∆Yi is the beam displacement at the i-th monitor and ki a coefficient
which depends on the vertical β function and phase advance at the monitor.
The beam-beam deflection is therefore found from:

∆Y' =  
Σ ki∆Yi

Σ ki2
 (10)

The systematic errors in the position measurements (such as monitor
misalignment or electrical offset) cancel out in the position difference between
the interacting and the non-interacting bunches. We are left with the statis-
tical fluctuation (the "resolution") of the monitor. Denoting by δy the vertical
resolution, assumed to be the same for all monitors, the r.m.s. uncertainty on
the beam-beam deflection is:

δ∆Y'  =  
δy

 Σ ki2
 (11)

With the monitor arrangement displayed in Fig. 2, the denominator in
(11) is ≈ 2.5 m. It can be seen from Fig. 1 that 25 µrad beam-beam deflection
corresponds to ≈ 5 µ (a distance of 1/4 the r.m.s. vertical distribution between
the two beam centroids). To obtain such an accuracy δy should be better than
≈ 60 µ. However, the values of ∆Y' in Fig. 1 are estimated with the DAΦNE de-
sign tune shift (ξ = 0.04), and it is clear that the measurement of beam-beam
deflection is mainly useful when the collider is far from the optimum con-
dition. Assuming we want the measurement to be significant at a tune shift
value one order of magnitude smaller than design, we need a BPM resolution
between 5 and 10 µ.

This resolution is not far from that obtained with the button BPM's used
in Adone, where ≈ 3 µ resolution was measured by simulating the beam with a
signal from a wire, and ≈ 20 µ with the beam above 0.2 mA average current.
Being the measurement in Adone rather slow, the difference was attributed to
the beam itself, mainly coming from ripple in the quads. The geometry of the
DAΦNE buttons is such that the sensitivity is reduced by a factor ≈ 6 with
respect to Adone, but the reduction should be more than compensated by the
larger operation current.
    

5. Conclusions

The beam-beam deflection measurement is a promising tool to find the
best vertical superposition of the beams, and in this respect it can also be used
as a feedback signal to keep the collider always at the best performance.



IR-4 pg. 7

It can be used, although at the price of a more time consuming procedure,
to optimize some other parameters relevant to luminosity (such as the
coupling and the phase between the RF cavities in the two rings, which
determine the vertical beam size and the longitudinal position of the
interaction point), by looking at the slope of the beam-beam deflection around
the optimum superposition.

In order to reach sufficient sensitivity the resolution of the beam position
measurement should be kept below ≈10µ, and it must be possible to measure
the position of individual or small groups of bunches. One or few missing
bunches in one of the two beams must be provided to make the measurement
insensitive to systematic errors.
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