

INFN - LNF, Accelerator Division

Frascati, April 27, 1992 Note: **I-8**

TRANSFER LINES FOR DAPNE INJECTION

C. Biscari

Introduction

The DA Φ NE injection system consists of a full energy linac and a damping ring. The layout of the complex is almost completely predetermined by the existing buildings and facilities.

A preliminary design of the transport lines from and to the three machines (Linac, Accumulator, Main Rings) was described in [1] and [2]. As there stretched, the main design concept is to reduce the number of components and redundant lines as much as possible.

A new design of the lines has been studied; an effort has been made to further reduce the number of quadrupoles, their field gradient, and specially the beam size leading to reduction of the magnet apertures and costs. The linear optics is presented. The study on sensitivity to magnet errors and multipole components is now in progress.

General design

The layout of the lines, sketched in Fig.1, is the same as described in [2]. The horizontal dipole magnet locations and fields have not changed; the three stronger magnets, of which two are pulsed, have become sector dipoles, to avoid the strong horizontal defocusing lens due to the edge effect. Apart from the Y magnet for the injection into the accumulator, all the other dipoles are rectangular; this allows to construct the same type of magnets also for slightly different bending angles.

The beam lines are on different levels: the Accumulator is 60 cm higher than the Linac, which in turn is 45 cm higher than DA Φ NE. In addition the line to inject electrons into DA Φ NE passes under the rings by 70 cm. The level differences are followed by vertical chicanes, obtained with an unique type of vertical dipole (rectangular type, 35 cm of magnetic length, 11° bending angle).

Fig. 1 - Layout of the transport lines.

The number of quadrupoles has been reduced by 25% with respect to the previous design; all the quadrupoles are 20 cm long; the maximum integrated gradient (G*length) has been reduced by almost a factor 3. Few different types of quadrupoles are foreseen, according to the requirements in aperture and in gradient, to optimize their cost and utilization.

In the Appendix a complete description of the lines, including element characteristics and positions, is given.

Lines Linac - Accumulator

In the philosophy of reducing elements and costs a part of the line will be used both for injection and extraction of the beam in and from the Accumulator (see Fig. 1), without changing the field configuration because only few tens of milliseconds separe the passages of beam in - beam out. In addition the line for the beam in must be an achromat in both planes, this imposing strong restrictions on its flexibility.

The nominal characteristics of the two beams from the Linac are given in Table 1. Obviously, the most critical beam transport is the one for positrons because of the larger emittance and higher energy spread; the line presenting a lower dispersion function has been chosen for the positron injection into the accumulator, and it corresponds to the counter clock-wise direction inside the ring (opposite to Ref. [2]).

	Positrons	Electrons	
$\varepsilon_{\rm x}$ (m rad)	10 ⁻⁵	10 ⁻⁶	
${\cal E}_{f y}$ (m rad) $\Delta {f p}/{f p}$	$\pm 1.5 \%$	$\pm 0.5 \%$	

 Table 1 - Beams from Accumulator

The injection into the accumulator^[3] is in the horizontal plane, in a free dispersion region. The optimum betatron function, which minimizes the residual betatron oscillation of the injected beam, has been calculated following Ref. [4] and corresponds to:

 $\beta_{opt} \approx 1.5$ m for positrons

 $\beta_{opt} \approx 0.95$ m for electrons

for the present accumulator optics.

In the vertical plane the requirement of achromatism for the injected beam has been relaxed (a residual dispersion function of few cm produces an additional beam size of few mm), this giving a notable decreament in the field gradient of the vertical chicane quadrupoles, what translates in lower sensitivity to errors. For completeness, the line is presented from the linac including the matching section described in [5]. The maximum gradient in the quadrupoles is 7.4 (7.0) T/m for the positron (electron) line. The initial and final values of the optical functions are given in Table 2 in the MAD format.

E	самент :	SEQUENCE	1	нояіг	ONTAL		I		VER	тіс	A L	
os.	ELEMENT	0¢¢.	DIST I	BETAX ALFAX	MUX	DX	DX' 1	BETAY	ALFAY	MUY	DY	DY'
o. 	NAME	NO.	[M] I	[M]	(281)	[M] 	I	[M]		[2PI]	[M]	
EGIN	LINPO	1	0.000	2.116 0.000	0.000	0.000	0.000	4.624	0.000	0.000	0.000	0.000
ND	LINPO	1	56.438	1,520 -1.287	3.079	0.000	0.000	6.750	0,250	1.57 9	-0.063	0.090
OTAL	LENGTH	56.438	337	мцх		3.	079145		 мџу	=		1,57942
				MUX '	-	-10.	500403		MUY '	u.		-2,63807
				BETAX (MAX)	=	52.	897003		BETAY (MA	x) =		37.28463
				DX (MAX)	n	1.	843386		DY (MAX)	5		0.57297
LINAC	> AC	CUMULATO	DR (ELECTR	ONS)								
LINAC	> AC PARAMET	COMULATO	DR (ELECTR BEAM LINE	CNS) "LINEL"	о N т X							
LINAC WISS	> AC PARAMET CLEMENT ELEMENT	CUMULAT(ERS FOR SEQUENCI	DR (ELECTR BEAM LINE E I DIST I	ONS) "LINEL" H O R I Z BETAX ALFA	ONTA.		I I XX' I	BETAY	V E 1	RTIC	A L DY	DY'
LINAC WISS POS.	> AC PARAMET ELEMENT ÉLEMENT NAME	COMULATO ERS FOR SEQUENCI DOC. NO.	DR (ELECTR BEAM LINE E I DIST I [M] I	CNS) "LINEL" H O R I Z BETAX ALFA: [M]	ONTA (MUX [2PI]	L DX [M]	DX' I I	BETAY [M]	V E T Alfay	R I I C MUY [2PI]	A L DY [M]	י צם
LINAC (WISS) POS. (0.] BEGIN	PARAMEI ELEMENT ÉLEMENT NAME LINEL	CUMULAT(TERS FOR SEQUENCI OCC. NO.	DR (ELECTR BEAM LINE E I DIST I [M] I 0.000	ONS) "LINEL" H O R I Z BETAX ALFA: [M; 2.136 0.00	0 N T A (MUX [2PI]) 0.000	L DX [M] 0.000	I DX'I I 0.000	BETAY [M] 4.624	V E Alfay 0,000	R T I C MUY [2PI] 0.000	A L DY [M]	0.000
LINAC WISS POS. VO. BEGIN	> AC PARAMET ELEMENT ELEMENT NAME LINEL LINEL	COMULATO ERS FOR SEQUENCI NO. 1	DR (ELECTR BEAM LINE E I DIST I [M] I 0.000 56.438	CNS) "LINEL" H O R I Z BETAX ALFA: [M; 2.116 0.00 0.998 -1,11	ONTA (MUX [2PI] 0 0.000 1 2.352	L DX [M] 0.000 0,000	I DX' I I 0.000 0.000	BETAY [M] 4.624 9.683	V E ALFAY 0,000 -0.732	R T I C MUY [2P1] 0.000 1.934	A L DY [M] 0.000 0.100	DY' 0.000 0.167
LINAC WISS YOS. YO. BEGIN RD	> AC PARAMET ELEMENT NAME LINEL LINEL LENGTH	COMULATO ERS FOR SEQUENCI : OCC. NO. 1 1 2 56.438	DR (ELECTR BEAM LINE E I DIST I [M] I 0.000 56.438	CNS) "LINEL" H O R I Z BETAX ALFA: [M; 2.116 0.000 0.998 -1.11 MUX	ONTA (MUX [2PI] 0.000 1.2.352	L DX [M] 0.000 0.000 2	I DX' I I 0.000 0.000 .351964	BETAY [M] 4.624 9.683	V E ALFAY 0,000 -0.732 MUY	R T I C MUY [2PI] 0.000 1.934	A L CY [M] 0.000 0.150	DY' 0.000 0.187 1.9341
LINAC TWISS POS. NO. BEGIN END	> AC PARAMET ELEMENT NAME LINEL LINEL LENGTH	COMULATO ERS FOR SEQUENCE OCC. NO. 1 1 2 56.438	DR (ELECTR BEAM LINE E I DIST I [M] I 0.000 56.438	CNS) "LINEL" H O R I Z BETAX ALFA: [M; 2.136 0.00 0.998 -1.11 MUX MUX	ONTA (MUX [2PI] 0.000 1.2,352	L DX (M) 0.000 0.000 2 -7	I DX' I I 0.000 0.000 .351964 .707752	BETAY [M] 4.624 9.683	V E ALFAY 0,000 -0.732 MUY MUY	R T I C MUY [2PI] 0.000 1.934 -	A L CY [M] 0.000 0.100	DY' 0.000 0.187 1.9341 -4.0336
LINAC TW:55 POS. NO. BEGIN END	> AC PARAMET ELEMENT NAME LINEL LINEL LENGTH	COMULATO ERS FOR SEQUENCI OCC. NO. 1 1 2 56.438	DR (ELECTR BEAM LINE E I DIST I [M] I 0.000 56.438	CNS) "LINEL" H O R I Z BETAX ALFA: [M; 2.116 0.000 0.998 -1.11 MUX MUX BETAX (MAX	ONTA (MUX [2PI] 0.000 1.2.352 - -	L DX [M] 0.000 0.000 2 -7 34	I DX' I I 0.000 0.000 .351964 .707752 .630941	BETAY [M] 4.624 9.683	V E ALFAY 0,000 -0.732 MUY MUY BETAY (M	R T I C MUY [2P1] 0.000 1.934 	A L CY [M] 0.000 0.100	DY' 0.000 0.187 1.9341 -4.0336 45.9094

The betatron functions and beam sizes are represented in Figs. 2 and 3 for positrons and electrons respectively. The beam size, defined as

$$\sqrt{+(D p/p)^2}$$

is less than 3 cm all along the line for positrons and less than 2 cm for electrons.

Table	2
-------	---

I-8 pg. 5

Fig. 2 - Optical functions and beam sizes along the transport line from Linac to Accumulator for positrons.

Fig. 3 - Optical functions and beam sizes along the transport line from Linac to Accumulator for electrons.

Lines Accumulator - $DA\Phi NE$

The beam extracted from the accumulator is characterized by the parameters given in Table $3^{[3]}$. The phase plane distribution is nearly gaussian; the beam envelope containing 99.7% of the beam is computed as

$$C \sqrt{\epsilon \beta + (D \Delta p \phi)^2}$$

with C = 3.

Table 3-	Beams from Accumulator	

	Positrons	Electrons
$\epsilon_{\mathbf{x}}$ (m rad)	2.8 x 10 ⁻⁷	2.8 x 10 ⁻⁷
ε_{y} (m rad)	1.4 x 10 ⁻⁷	1.4 x 10 ⁻⁷
$\Delta \mathbf{p}/\mathbf{p}$	± 1 ‰	± 1 ‰

As in the previous design the shorter line has been dedicated to positrons and the longer to electrons.

An additional step of the line which takes care of the 45 cm difference in level between the Linac and DA Φ NE has been included in the section common to electrons and positrons.

The injection scheme in DA Φ NE is not completely defined; the same septa of the accumulator have been assumed; the optical functions are almost matched to the optical functions of the actual DA Φ NE design^[6]; the flexibility of the line allows to change the final values to adapt them to the definitive injection scheme.

The maximum gradient in the quadrupoles is 7.5 (6.5) T/m for the positron (electron) line. The initial and final values of the optical functions are given in Table 4. Optical functions and beam sizes are represented in Figs. 4, 5 for positrons and electrons respectively.

I-8 pg. 8

Fig. 4- Optical functions and beam sizes along the transport line from Accumulator to DA Φ NE for positrons.

I-8 pg. 9

Fig. 5- Optical functions and beam sizes along the transport line from Accumulator to DA Φ NE for electrons.

Table 4

ACCUMULATOR ----> DAFNE (POSITRONS) TWISS PARAMETERS FOR BEAM LINE "POUTT"

	ELEMENT	SEQUENCE	I	но	R I 2 0	NTAD	L		I		VER	тіс	A L	
POS.	ELEMENT	occ,	DIST I	BETAX	ALFAX	MUX	DX	DX,	Ŀ	BETAY	ALFAY	MUY	DY	DY'
NC.	NAME	NO.	(M) I	(M)		[2P1]	(M)		I	[M]		[201]	[M]	
BEGIN	POUTT	1	0.000	2,960	0.960	0,000	0,000	0.000)	6,378	0.246	0.000	0.000	0.000
END	POUTT	1	66,542	14,000	-0.403	3,214	-0,940	0,100)	9.986	0.497	2.066	-0.078	-0.121
TOTAL	LENGTH :	= 66.542	349	MUX		=	3,	214232	2		MUY			2.066072
				MUX'		-	-4.	19333()		MUY	-		-10.147400
				BETA	X (MAX)	-	: 31.	972491	L		BETAY (MA	x) -		65,005653
				DX (N	AX)	=	7.	000940)		DY (MAX)	=		2.130804

ACCUMULATOR ----> DAFNE (POSITRONS)

TWISS PARAMETERS FOR BEAM LINE "COUTT"

	ELEMENT	SEQUENCE	د ع	L HO	я: 20	N T A .	۴	I		VER	тіс	AL	
POS.	ELEMENT	occ.	DIST 1	ΒΕΤΑΧ	ALFAX	MUX	DX	ז יאס	BETAY	ALFAY	MUY	DY	DY'
NO.	NAME	NO.	(M) I	(M)		[2PI]	(M)	I	(M)		[291]	[M]	
BEGIN	EOUTT	1	0.000	2,960	0,960	0,000	0,000	0.000	6.378	0.246	0.000	0.000	0.000
END	EOUTT	1	100.581	13,206	0.4:3	3,756	-0,832	-0,061	2,000	0.500	2.513	-0.090	-0.060
TOTAL	, LENGTH		30562	мџх				3.756366		MUY			2,512791
				MUX	p.	2	-	7,608582		MUY'			-7,993864
				BET	'AX (MAX)	-	4	4.999673		BETAY (M	AX) -		54.146031
				DX ((MAX)	=	:	5.879617		DY (MAX)		1	1.730577

References

- [1] T. Tanabe I-3 Sept. 1991.
- [2] T. Tanabe I-7 Feb. 1992.
- [3] C. Milardi, M.Preger Work in progress.
- [4] Tazzari 'Apertures for injection' ESRF 83.
- [5] F. Sannibale, S. Vescovi LC-3 Feb. 1992.
- [6] DAΦNE project Team 'DAΦNE Status Report' EPAC 92.

APPENDIX

The line elements are listed with the description of their length, position and fields.

The letter P (E) in the name of the elements stays for positrons (electrons). The quadrupole QL is the last quadrupole of the Linac; the quadrupoles QLMi are used for the matching between the Linac, the spectrometer lines and the transfer lines; they are described in Ref. [6]. Apart from these quadrupoles, the elements are numbered from the Accumulator to DA Φ NE.

The quadrupoles Q1/Q6 are used per each beam both for the injection and for the extraction in and from the Accumulator, without changing the field configuration.

The right branch of the line to the accumulator is used for injecting e⁺ and for extracting e⁻; viceversa for the left branch.

Line L	inac - A	ccumulato	or (po	ositrons)			
TYPE	NAME	LENOTH I	N.POS (m)	K (m·²)	ANGLE (radians)	El (radians)	E2 (radiana)
QUADRUPO	QL.	0.125	0.000	-2.44000			
DRIFT	DLI	1.850	0.125	0.00000			
QUADRUPO	QLM1	0,400	1.975	1,40000			
DRIFT	DL2	1.700	2.375	0.00000			
QUADRUPO	QLM2	0.400	4.075	-1.41800			
DRIFT	DL3	2.600	4,475	0.00000			
QUADRUPO	QLM3	0.400	7.075	0.96950			
DRIFT	DL4	3.100	7.475	0.00000			
QUADRUPO	QLM4	0.400	10.575	-0.73490			
DRIFT	DLS	6.000	10,975	0.00000			
QUADRUPO	QLM5	0.400	16.975	1.66262			
DRIFT	DL6	1.000	17.375	0.00000			
QUADRUPO	QLM6	0.400	18.375	-1.23799			
DRIFT	DL7	2.500	18.775	0.00000			
QUADRUPO	QLM7	0.200	21.275	0.72176			

DRIFT	DL8	0.700	21.475	0.00000			
QUADRUPO	QLM8	0.200	22.175	2.71262			
DRIFT	DL9	0.951	22.375	0.00000			
DRIFT	D17	4.349	23.326	0.00000			
QUADRUPO	Q6	0.200	27.675	-1.07745			
DRIFT	D16	4.750	27.875	0.00000			
BEND	HPB1	1.113	32.625	0.00000	0.7854	0.0000	0.0000
DRIFT	D15	2.020	33.738	0.00000			
QUADRUPO	Q5	0.200	35.758	3.82942			
DRIFT	D14	2.035	35.958	0.00000			
QUADRUPO	Q4	0.200	37.993	-2.65601			
DRIFT	D13	1.720	38.193	0.00000			
QUADRUPO	Q3	0.200	39.913	3.91143			
DRIFT	D12	1.720	40.113	0.00000			
QUADRUPO	Q2	0.200	41.833	-3.08760			
DRIFT	D11	2.020	42.033	0.00000			
QUADRUPO	QI	0.200	44.053	3.99759			
DRIFT	D10	1.820	44.253	0.00000			
BEND	TPEI	1.000	46.073	0.00000	-0.6283	0.0000	-0.6283
DRIFT	D9	0.965	47.073	0.00000			
QUADRUPO	QR5	0.200	48.038	0.80861			
DRIPT	D8	1.550	48.238	0.00000			
VERTBEND	VR2	0.350	49.788	0.00000	-0.1920	-0.0960	-0.0960
DRIFT	D7	0.550	50.138	0.00000			
QUADRUPO	QR4	0.200	50.688	0.39603			
DRIFT	D6	0.550	50.888	0.00000			
QUADRUPO	QR3	0.200	51.438	2.55299			
DRIFT	D5	0.543	\$1.638	0.00000			
QUADRUPO	QR2	0.200	\$2.182	4.32899			
DRIFT	D4	0.550	52.382	0.00000			
VERT BEND	VR1	0.350	52.932	0.00000	0.1920	0.0960	0.0960
DRIFT	D3	0.250	53.282	0.00000			
QUADRUPO	QR1	0.200	53.532	3.51265			
DRIFT	D2	0.475	53.732	0.00000			
BEND	SR2	1.233	54.207	0.00000	0.5934	0.0000	0.0000
DRIFT	DI	0.375	55.440	0.00000			
BEND	SRI	0.623	55.815	0.00000	0.0379	0.0000	0.0000

Line Li	nac - A	Accumulate	or (e	electrons)			
ТҮРБ 👌	NAME	LENGTI	în, pos	K (m ⁻²)	ANGLE	E1	E2
		(m)	(m)		(radians)	(radians)	(radians)
QUADRUPO (QL.	0.125	0.000	-2.44000			
DRIFT L	DLI	1.850	0.125	0.00000			
QUADRUPO (QLMI	0.400	1.975	1.40000			
DRIFT (012	1.700	2.375	0.00000			
QUADRUPO (QLM2	0.400	4.075	-1.41800			
DRIFT X	D1.3	2.600	4.475	0.00000			
QUADRUPO (QLM3	0.400	7.075	0.96950			
DRIFT (DLA	3.100	7.475	0.00000			
QUADRUPO (QLM4	0.400	10.575	-0.73490			
DRIFT [DLS	6.000	10,975	0.00000			
QUADRUPO (QLM5	0.400	16.975	1.77140			
DRIFT I	DL6	1.000	17.375	0.00000			
QUADRUPO (QLM6	0.400	18.375	-1.17537			
DRIFT I	DL7	2.500	18.775	0.00000			
QUADRUPO (QLM7	0.200	21.275	4.12513			
DRIFT (DL8	0.700	21.475	0.00000			
QUADRUPO (QLM8	0.200	22.175	-2.89001			
DRIFT E	DL9	0.951	22.375	0.00000			
DRIFT (017	4.349	23.326	0.00000			
QUADRUPO (26	0.200	27.675	0.96200			
DRIFT D	D16	4.750	27.875	0.00000	-		
HEND I	HPE1	1.113	32.625	0.00000	0.7854	0.0000	0.0000
DRIFT (D15	2.020	33.738	0.00000			
QUADRUPO (25	0.200	35.758	-1.10562			
DRIFT D	D14	2.035	35.958	0.00000			
QUADRUPO Q	Q4	0.200	37.993	2.69228			
DRIFT C	D13	1.720	38.193	0.00000			
QUADRUPO (Q3	0.200	39.913	-3.16783			
DRIFT C	012	1.720	40.113	0.00000			
QUADRUPO (22	0.200	41.833	2,26528			
DRIFT D	011	2.020	42.033	0.00000			
QUADRUPO (QL	0.200	44.053	-2.01516			
DRJFT D	510	1.820	44.253	0.00000			

BEND	TPEI	1.000	46.073	0.00000	0.6283	0.0000	0.6283
DRIFT	D9	0.965	47.073	0.00000	•		
QUADRUPO	QLS	0.200	48.038	-0.12077			
DRIFT	D8	1.550	48.238	0.00000			
VERT BEND	VL2	0.350	49.788	0.00000	-0.1920	-0.0960	-0.0960
DRIFT	D7	0.550	50,138	0.00000			
QUADRUPO	QL4	0.200	50.688	-0.69930			
DRIFT	D6	0.550	50.888	0.00000			
QUADRUPO	QL3	0.200	51.438	3.83869			
DRIFT	D5	0.543	51.638	0.00000			
QUADRUPO	QL2	0.200	52.1 82	-3.86931			
DRIFT	DA	0.550	52.382	0.00000			
VERTRENT	VII	0.350	52.932	0.00000	0.1920	0.0960	0.0960
TERT DEND	161	0.000	3 4.73	2,00000			
DRIFT	D3	0.250	53.282	0.00000			
QUADRUPO	QLI	0.200	53.532	0.56507			
DRIFT	D2	0.475	53.732	0.00000			
BEND	SL2	1.233	54.207	0.00000	-0.5934	0.0000	0.0000
DRIFT	D 1	0,375	55,440	0.00000			
HEND	SLI	0.623	55.815	0.00000	-0.037 9	0,0000	0.0000

түре	NAME	LENGTH	IN.POS	K (m·2)	ANGLE	E 1	£2
		(m)	(m)		(radians)	(radians)	(radians)
BEND	SLI	0.623	0.000	0.00000	-0.0379	0.0000	0.0000
DRIFT	DI	0.375	0.623	0.00000			
BEND	\$1.2	1.233	0.998	0.00000	-0.5934	0.0000	0.0000
DRDT	D2	0.475	2.231	0.00000			
QUADRUP	O QLI	0.200	2.706	4,38408			
DRIFT	D3	0.250	2.906	0.00000			
VERTBEN	D VLI	0.350	3.156	0.00000	0.1920	0.0960	0.0960
DRIFT	D4	0.550	3.506	0.00000			
QUADRUP	O QL2	0.200	4.056	1.04052			
DR.IFT	D5	0.543	4.256	0.00000			
QUADRUP	O QL3	0.200	4,800	-4.05859			
DRIFT	D6	0.550	5.000	0.00000			
QUADRUP	0 QI.4	0.200	5.550	1.47852			
DRIFT	D7	0.550	5.750	0.00000			
VERTBEN	D VI.2	0.350	6.300	0.00000	-0.1920	-0.0960	-0.0960
DRIFT	D8	1.550	6.650	0.00000			
QUADRUP	D QLS	0.200	8.200	2.36997			
DRIFT	D9	0.965	8.400	0.00000			
BEND	TPE1	1.000	9,365	0.00000	0.6283	0.6283	0.0000
DRIFT	D10	1.820	10.365	0.00000			
QUADRUP	Q1	0.200	12.185	-3.99759	-		
DRIFT	D 11	2,020	12.385	0.00000			
QUADRUP	D Q2	0.200	14.405	3.08760			
DRIFT	D 12	1.720	14.605	0.00000			
QUADRUP	O Q3	0.200	16.325	-3.91143			
DRIFT	D13	1.720	16.525	0.00000			
QUADRUP	D Q4	0.200	18.245	2.65601			
DRIFT	D14	2.035	18.445	0.00000			
QUADRUIN	Q5	0.200	20.481	-3.82942			
DRIFT	D15	2.020	20.681	0.00000			
BEND	HPE1	1.113	22.701	0.00000	0.7854	0.0000	0.0000
DRIFT	D16	4.750	23.813	0.00000			
QUADRUP	9 Q6	0.200	28.563	1.07745			
DRJFT	D17	4.349	28,763	0.00000			

Line Accumulator - DAΦNE (positrons)

BEND	TIPE2	1.113	33.112	0.00000	-0.7854	0.0000	0.0000
DRIFT	D18	1.077	34.225	0.00000			
BEND	HPE3	0.757	35.302	0.00000	-0.5236	-0.2618	-0.2618
DRIFT	D19	0.400	36.059	0.00000			
QUADRUPO	O Q7	0.200	36.459	0.40087			
DRIFT	D20	0.476	36.659	0.00000			
BEND	HPE4	1.113	37.134	0.00000	-0.7854	0.0000	0.0000
DRIFT	D21	2.500	38.247	0.00000			
QUADRUP	Q8	0,200	40.747	0.82222			
DRIFT	D22	2.500	40.947	0.00000			
VERT BEND	v 1	0.350	43.447	0.00000	0.1920	0.0960	0.0960
DRIFT	D23	0.907	43.797	0.00000			
QUADRUPO	QP9	0.200	44.705	-1.84441			
DRIFT	D24	0.900	44.905	0.00000			
VERT BEND	V2	0.350	45.805	0.00000	-0.1920	-0.0960	-0.0960
DRIFT	D25	2.100	46.155	0.00000			
QUADRUPO	Q10	0.200	48.255	1.44276			
DRIFT	D26	3.832	48.455	0.00000			
BEND	HP5	0.451	52.287	0.00000	-0.3188	-0.1594	-0.1594
DRIFT	D27	1.800	52.738	0.00000			
QUADRUPO	QP1	0.200	54.538	3.27257			
DRIFT	D28	1.900	54.738	0.00000			
QUADRUPO	QP2	0.200	56.638	-2.57009			
DRIFT	D29	1.900	56.838	0.00000			
QUADRUPO	QP3	0.200	58.738	3.18994			
DRIFT	D30	1.691	58.938	0.00000			
BEND	HP6	0.452	60.629	0.00000	-0,2365	-0.1182	-0.1182
DRIFT	D31	1.200	61.081	0.00000	-		
QUADRUPO	QP4	0.200	62.28)	-0.07100			
DRIFT	D32	1.205	62.481	0.00000			
BEND	SPD2	1.233	63.686	0.00000	-0.5934	0.0000	0.0000
DRIFT	D33	0.500	64.919	0.00000			
BEND	SPD1	0.623	65.419	0.00000	-0.0379	0.0000	0.0000
DRIFT	D34	0.500	66.042	0.00000			

E2 түре NAME LENGTH IN.POS K (m·2) ANGLE **E**1 (radians) (radians) (radians) (m) (m) 0.0000 BEND SRI 0.623 0.000 0.00000 0.0379 0.0000 0.375 DRJFT DI 0.623 0.00000 0.0000 0.0000 BEND SK2 1.233 0.998 0.00000 0.5934 DRIFT $\mathcal{D}2$ 0.475 2.231 0.00000 QUADRUPO QR1 0.200 2.706 3.79745 DRIFT D3 0.250 2.906 0.00000 VERTBEND VR1 0.350 3.156 0.00000 0.1920 0.0960 0.0960 DRIFT D4 0.550 3.506 0,00000 QUADRUPO QR2 0.200 4.056 -0.95162 DRIFT D5 0.543 4.256 0.00000 4.800 0.200 -3.25384 QUADRUPO QR3 DRIFT 0.550 5.000 0.00000 D6 0.200 5.550 2.83488 QUADRUPO QR4 5.750 DRIFT D7 0.550 0.00000 -0.0960 -0.0960 0.350 0.00000 -0.1920 VERT BEND VR2 6.300 DRIFT 1.550 0.00000 D8 6.650 QUADRUPO QR5 0.200 8.200 2.42684 DRIFT D9 0.965 8,400 0.00000 0.0000 BEND TPE1 1.000 9.365 0.00000-0.6283 -0.6283 DRIFT D10 1.820 10.365 0.00000 QUADRUPO Q1 0.200 12.185 2.01516 DRIFT DH 2.020 12.385 0.00000 QUADRUPO Q2 0.200 14.405 -2.26528 DRIFT 1.720 14.605 0.00000 D12 0.200 16.325 3.16783 QUADRUPO Q3 DRIFT D13 1.720 16.525 0.00000 QUADRUPO Q4 0.200 18.245 -2.69228 2.035 18.445 0.00000 DRIFT D14 0.200 20.481 1.10562 QUADRUPO Q5 2.020 0.00000 DRIFT D15 20.681 0.00000 0.7854 0.0000 0.0000 HPE1 1.113 22.701 BEND DRIFT D16 4.750 23.813 0.00000 QUADRUPO Q6 0.200 28.563 -0.96200 28.763 0,00000 DRIFT D17 4.349 0.0000 0.0000 HPE2 1.113 33.112 0.00000 -0.7854 BEND 1.077 34.225 0.00000 DRIFT D18 BEND HPE3 0.757 35.302 0.00000 -0.5236 -0.2618 -0.2618DRIFT D19 0.400 36.059 0.00000 0.200 36.459 1.32428 QUADRUPO Q77 0.476 0.00000 DRIFT D20 36.659 37.134 0.00000 0.7854 0.0000 0.0000 HPE4 1.113 BEND 2.500 38.247 0.00000 DRIFT D21 0,200 40.747 0.57646 QUADRUPO Q8 2.500 40.947 0.00000 DRIFT D22

Accumulator - DAΦNE

Line

(electrons)

VERT BENI	D VI	0.350	43.447	0.00000	0.1920	0.0960	0.0960
DRIFT	D23	0.907	43.797	0.00000			
QUADRUP	D Q9	0.200	44.705	-1.29726			
DRIFT	D24	0.900	44.905	0.00000			
VERTBENI	D V 2	0.350	45.805	0.00000	-0.1920	-0.0960	-0.0960
DRIFT	D25	2.100	46.155	0.00000			
QUADRUPO	Q10	0.200	48.255	0.43149			
DRIFT	D26	3.832	48.455	0.00000			
DRIFT	D\$1	3.945	52.287	0.00000			
VERT BENT	> V 3	0.350	56.232	0.00000	0.1920	0,0960	0.0960
DRIFT	D52	1.558	56.582	0.00000			
QUADRUPC	QEI	0.200	58.140	0.71152			
DRIFT	D53	1.560	\$8.340	0.00000			
VERT BEND	V 4	0.350	59.900	0.00000	-0.1920	-0.0960	-0.0960
DRIFT	D54	1.950	60.250	0.00000			
QUADRUPO	QE2	0.200	62.200	1.06371			
DRIFT	D55	1.699	62.400	0.00000			
8END	HE5	0.757	64.099	0.00000	0.5236	0.2618	0.2618
DRIFT	D56	2.100	64.856	0.00000			
QUADRUPO	QE3	0,200	66.956	0.70153			
DRIFT	D57	3.200	67.156	0.00000			
QUADRUPO	QE4	0.200	70.356	0.56643			
DRIFT	D58	5.800	70.556	0.00000			
DRIFT	D59	6.800	76.356	0.00000			
QUADRUPO	QE5	0.200	83,156	-1.34365			
DRIFT	D60	3.000	83.356	0.00000			
QUADRUPO	QE6	0.200	86.356	1.77179			
DRIFT	D61	1.386	86.556	0.00000			
BEND	HE6	0.757	87.942	0.00000	-0.5411	-0.2705	-0.2705
DRIFT	D62	0.736	88.699	0.00000	-		
BEND	HE7	0.757	89.435	0.00000	-0.5411	-0.2705	-0.2705
DRIFT	D63	0.762	90.192	0.00000			
QUADRUPO	QE7	0.200	90.954	-3.81603			
DRIFT	D64	0.870	91.154	0.00000			
QUADRUPO	QES	0.200	92.024	2.93651			
DRIFT	D65	0.770	92.224	0.00000			
VERT BEND	V 5	0.350	92.994	0.00000	-0.1920	-0.0960	-0.0960
DRIFT	D66	1.358	93.344	0.00000			
QUADRUPO	QE9	0.200	94.701	-2.23964			
DRIFT	D67	1.760	94.901	0.00000			
VERTBEND	٧6	0.350	96,661	0.00000	0.1920	0.0960	0.0960
DRIFT	D68	0.213	97.011	0.00000			
BEND	SED2	1.233	97.224	0.00000	-0.5934	0.0000	0.0000
DRIFT	D69	0.500	98.457	0.00000			
BEND	SED1	0.623	98.957	0.00000	.0.0379	0.0000	0.0000
DRIFT	D70	1.000	99.581	0.00000			