DAФNE TECHNICAL NOTE

INFN - LNF, Accelerator Division

Frascati, September 11, 1997
Note: I-15

ABOUT e- TRANSFER LINES

C. Biscari

During the first accumulator commissioning runs (1996), the main goal being to accumulate and measure the beam in the accumulator, the transfer line was not optimized.

The beam from the Linac had high current, large energy spread and large emittance, with values far from the nominal ones for which the transfer lines were designed. The quadrupole configuration was chosen in order to minimize the dispersion function, and therefore optimize the energy acceptance of the transport. That quadrupole configuration does not fit the requirements for the extraction of the beam from the accumulator and its injection in the e^{-} ring.

In view of the next commissioning (which includes the latter items), a new configuration must be used. Quadrupole currents and polarities, optical functions, beam envelopes, expected beam sizes at targets are shown in the following tables and drawings for both the lines Linac \rightarrow Accumulator and Accumulator $\rightarrow \mathrm{e}^{-}$ring lines.

The optical functions at the transfer line initial point are determined by the last linac quadrupoles. Figure 1 shows the dependence of the autobeta functions at the center of the last linac quadrupole on the strength of the same quadrupole, under the assumption that the last quadrupoles in the linac focusing structure are set at constant phase advance.

The gradient and the current of the quadrupole are also plotted for the nominal energy of 510 MeV .

Obviously given a certain current of the quadrupole, the gradient is fixed and corresponds in Fig. 1 at a certain value $K_{\text {nom }}^{2}$. The value of K^{2} is inversely proportional to the energy:

$$
K^{2}=\frac{1}{B \rho} G
$$

therefore if the linac output energy is $E_{\text {out }}(\mathrm{MeV})$, the FODO autobetas are those corresponding to the value

$$
K^{2}=\frac{510}{E_{\text {out }}} K_{\text {nom }}^{2}
$$

Figure 1-Last linac FODO cell: autobeta, gradient, current.

An usual value of the linac last quadrupole current in the last runs corresponded to $K^{2}=1 . \mathrm{m}^{-2}$, horizontally focusing. The corresponding autobeta are 9.3 and 6.3 m . The quadrupole configuration of the line between the linac and the accumulator has been optimized with these initial values.

Figure 2 shows the optical functions and the beam envelopes along the line for the nominal emittance and energy spread for electrons:

$$
\begin{aligned}
& \varepsilon_{x}=\varepsilon_{y}=1 \mathrm{~mm} \mathrm{mrad} \\
& \Delta E / E= \pm 0.5 \%
\end{aligned}
$$

The dashed lines in the envelope plot correspond to a factor two on these values $\left(\varepsilon_{x}=\varepsilon_{y}=2 \mathrm{~mm} \mathrm{mrad} \quad \Delta E / E= \pm 1 \%\right)$. It is evident that the betatron acceptance of the line is larger than the nominal values, while the energy acceptance is not so large.

Table I lists the values of the strengths, currents and polarities of all the quadrupoles. The polarity is the one to be set by the control system, taking into account the present cabling configuration. The focusing or defocusing configuration is defined in the strength list. In the matching section (TM) four of the nine quadrupoles can be switched off.

Figure 2-Optical functions and beam envelope in the Linac \rightarrow Accumulator line.

TABLE I - Quadrupoles from Linac to Accumulator

Name	$\mathrm{K}^{2}\left(\mathrm{~m}^{-2}\right)$	Current A	Polarity
QUATM001	-1.400	21.753	POS
QUATM002	1.600	23.759	NEG
QUATM003	-1.250	19.478	POS
QUATM004	0.000	0.000	NEG
QUATM005	0.950	13.898	POS
QUATM006	0.000	0.000	POS
QUATM007	0.000	0.000	POS
QUATM008	0.000	0.000	POS
QUATM009	-1.100	17.202	NEG
QUATT006	0.930	13.595	NEG
QUATT005	-0.740	15.316	POS
QUATT004	1.770	35.684	NEG
QUATT003	-2.080	42.543	POS
QUATT002	1.565	31.519	NEG
QUATT001	-1.230	25.272	POS
QUATL005	1.000	14.657	POS
QUATL004	-2.200	33.890	NEG
QUATL003	4.000	60.170	POS
QUATL002	-2.000	30.856	POS
QUATL001	-1.600	24.787	NEG

Figure 3 shows the expected aspect ratio and size in the transverse plane of the beam at the SEM flags along the line for the nominal beam parameters.

10

Figure 3 -Expected beam size (mm) and aspect ratio in targets along the Linac \rightarrow Accumulator line.
(La figura serve solo a pubblicizzare il prodotto...)

A variation of even 50% of the current in the last linac quadrupole can be easily matched with the first quadrupoles of the line. The absolute values of the strengths of the five matching quadrupoles of the line TM are plotted as a function of the last linac quadrupole variation in Fig. 4.

Figure 4 - Variation of the five matching quadrupoles as a function of the strength of the last linac quadrupole.

The line for extraction from the accumulator and injection in the e^{-}ring is described in Figs. 5 and 6 and table II. The beam parameters used for the envelope computation are:

$$
\begin{aligned}
& \varepsilon_{x}=0.3 \mathrm{~mm} \mathrm{mrad} \\
& \varepsilon_{y}=0.15 \mathrm{~mm} \mathrm{mrad} \\
& \Delta E / E= \pm 0.1 \%
\end{aligned}
$$

The initial values of the betatron functions are those at the septum entrance for the accumulator working point (3.146, 1.162).

The list of the betatron functions along the lines is given in the Appendix.

Figure 5-Optical functions and beam envelope of the Accumulator $\rightarrow e^{-}$ring line.

In Fig. 6 the beam sizes are computed for the nominal horizontal emittance and vertical emittance ten times smaller, corresponding to 10% coupling in the accumulator.

Figure 6 - Expected beam size and aspect ratio in targets along the line accumulator $\rightarrow e^{-}$ring.

Sizes are in mm.

TABLE II - Quadrupoles in the Accumulator $\rightarrow \mathrm{e}^{-}$ring line

Name	$\mathrm{K}^{2}\left(\mathrm{~m}^{-2}\right)$	Current (A)	Polarity
QUATR001	3.6586679	54.991	
QUATR002	-4.4987010	68.763	
QUATR003	3.1783390	47.704	
QUATR004	-0.1568800	2.894	
QUATR005	2.5674580	38.437	
QUATT001	1.2300000	24.712	
QUATT002	-1.5650000	32.079	
QUATT003	2.0800000	31.983	
QUATT004	-1.7700000	36.244	
QUATT005	0.7400000	14.756	
QUATT006	-0.9300000	14.623	
QUATT007	2.2100000	33.014	
QUATT008	0.6000000	8.589	
QUATT009	-1.3200000	20.540	
QUATT010	0.2800000	3.734	
QUATE001	0.3450000	4.720	
QUATE002	1.3300000	19.663	
QUATE003	0.7700000	11.168	
QUATE004	0.7100000	10.257	
QUATE005	-1.1100000	17.354	
QUATE006	1.7400000	25.883	
QUATE007	-3.9300000	60.136	
QUATE008	2.4300000	36.351	
QUATE009	-2.4800000	38.138	

APPENDIX 1

Optical functions in Linac \rightarrow Accumulator line

$+1$

上ints no mon

 गौ？

 EDEUENI SEQUENCE
OEMER OCC．

 FVTTOけ؛
$14 A$
QEG

 pos
no．
enc
bed
bed Fro
W0
0 $\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$
\qquad

APPENDIX 2

Optical functions in Accumulator $\rightarrow \mathrm{e}^{-}$ring line

