

INFN - LNF, Accelerator Division

Frascati, October 27, 1994 Note: I-13

STRENGTHS OF THE INJECTION KICKERS (UPDATE I-12)

S. Guiducci

The strengths of the injection kickers have been calculated for the final configuration of the kickers in the injection straight section and the updated version of the DA Φ NE lattice.

The injection configuration has been described in [1], the position of the three kickers in the LONG straight section is shown below.

The septum position with respect to the DA Φ NE central orbit x_{septum} is larger than the vacuum chamber half aperture A_x required for the stored beam (for good beam lifetime A_x is $10\sigma_x$ plus closed orbit allowance[2]).

With the new lattice configuration and $Q_x=5.18$ it is:

 $A_x = (24.8+2.5) \text{ mm} = 27.3 \text{ mm}$

and

 $x_{septum} = 32 \text{ mm}.$

The injection parameters are listed in **Table I**.

Table I

x _{septum}	32 mm	ε	1.0 10 ⁻⁶
$\Delta \mathbf{x_s}$	4.2 mm	β_{septum}	6.13 m
Q _x	5.18	ε _{inj}	2.5 10 ⁻⁷
$\mathbf{Q}_{\mathbf{y}}$	6.15	β_{inj}	6 m

The kickers strengths calculated assuming:

$$x_{bump} = x_{septum} - 4 \sigma_x$$

are shown in Table II for different $\mathbf{Q}_{\boldsymbol{X}}$ values.

 $\mathbf{x_{res}^{inj}}$ / $\sigma_{\mathbf{x}}$ is the residual oscillation amplitude of the injected beam after the kicker, in units of $\sigma_{\mathbf{x}}$, for an initial amplitude \mathbf{x}_0 .

$$x_0 = x_{septum} + \Delta x_s + 4 \sigma_{xinj} = 41 \text{ mm}$$

 $\mathbf{x_{res}^{acc}}$ / $\sigma_{\mathbf{x}}$ is the residual oscillation of the stored beam, in units of $\sigma_{\mathbf{x}}$, when the orbit bump is not exactly closed.

Q _x	δ 1 (mrad)	δ 2 (mrad)	δ 3 (mrad)	$\mathbf{x_{res}^{acc}}$ / $\sigma_{\mathbf{x}}$	$\mathbf{x_{res}^{inj}}$ / $\sigma_{\mathbf{x}}$	x_{bump} (mm)	x'_{bump} (mrad)
5.24	8.73	9.50	_	1.24	7.11	20.36	223
5.18	9.47	9.74	_	0.30	7.61	22.10	089
5.12	9.58	7.39	2.54	0.	7.64	22.67	.475
5.09	9.51	5.55	4.36	0.	7.64	22.72	.840

Table II

In Table III the same quantities are calculated for:

$$x_{bump} = x_{septum} - 5 \sigma_{x.}$$

Q _x	δ ₁ (mrad)	δ 2 (mrad)	δ 3 (mrad)	x_{res}^{acc} / σ_x	$\mathbf{x_{res}^{inj}}$ / $\sigma_{\mathbf{x}}$	x_{bump} (mm)	x'_{bump} (mrad)
5.24	7.48	8.15	_	1.06	8.12	17.44	191
5.18	8.41	8.65	_	.26	8.65	19.62	079
5.12	8.60	6.63	2.27	0.	8.69	20.33	.426
5.09	8.54	4.98	3.92	0.	8.66	20.40	.754

Table III

In both cases the kickers strengths are higher than those presented in [1].

In order to reduce them the central orbit can be displaced towards the septum by means of the corrector dipoles. The maximum orbit displacement allowed by the aperture is:

$$\mathbf{x_{corr}} = 32 \text{ mm} - 10 \sigma_x$$

correspondingly the kickers strengths listed in Table I are reduced by the factor

$\mathbf{f} = (\mathbf{x_{bump}} \cdot \mathbf{x_{corr}}) / \mathbf{x_{bump}}$

as shown in Table IV.

An orbit displacement of \sim 3 mm is sufficient to reduce the kickers strengths to the previous design values.

Q _x	δ ₁ (mrad)	δ 2 (mrad)	δ 3 (mrad)	f	x_{bump} (mm)	x_{corr. (mm)}
5.24	7.49	8.15	_	.86	20.36	2.89
5.18	6.34	6.53	_	.67	22.10	7.25
5.12	5.94	4.58	1.57	.62	22.67	8.67
5.09	5.80	3.39	2.66	.61	22.72	8.80

Table IV

Tolerances on the kickers strengths

The residual oscillation amplitude of the stored beam, in units of $\sigma_{\bm{x}}$, obtained by varying the angle $\delta_{\bm{2}}$ by \pm 5% is shown in Table V compared with that for the nominal value.

Q _x	δ 2 (mrad)	xacc / σ _x	$\mathbf{x_{res}^{acc}} / \sigma_{\mathbf{x}}$ $\delta_{2} = \delta_{2} * 1.05$	$\mathbf{x_{res}^{acc}} / \sigma_{\mathbf{x}}$ $\delta_{2} = \delta_{2} * . 95$
5.24	8.15	1.24	1.26	.94
5.18	8.65	.30	.61	.32
5.12	6.63	0.	.35	.35
5.09	4.98	0.	.28	.28

Table	V
-------	---

The same quantity is shown in Table VI for a variation of the angle δ_{3} by $\pm 10\%.$

In both cases the effect on the stored beam is smaller than one standard deviation of the beam size.

Table	VI
-------	----

Q _x	δ 3 (mrad)	x_{res}^{acc} / σ_x $\delta_3 = \delta_3 \pm \delta_3 *.10$
5.12	2.27	.28
5.09	3.92	.48

References

S. Guiducci: "Injection configuration in DAΦNE ", Technical note I-12.
C. Biscari: "DAΦNE stay-clear apertures", Technical note L-6.