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Introduction 
 
 Experimental observations and measurements at DAΦNE have shown that beam-beam 
collisions can damp the longitudinal coupled bunch instability [1]. Bringing into collisions a 
high current electron beam with an unstable positron one was stabilizing the synchrotron 
oscillations of the e+ beam, even with the longitudinal feedback system switched off. Besides, 
a negative frequency shift of positron beam synchrotron sidebands has been observed when 
colliding the beams. 
 We attribute these two effects to a nonlinear longitudinal kick arising due to beam-beam 
interaction under a finite crossing angle. It is worthwhile to note here that we have observed 
this effect clearly only after implementation of the crab waist scheme of beam-beam 
collisions at DAΦNE having twice larger horizontal crossing angle with respect to the 
previous operations with the standard collision scheme [2].  
 In this Note we obtain an analytical expression for the synchrotron tune shift, that is also 
a measure of the synchrotron tune spread, and compare the formula with numerical 
simulations. 
 

Tune shift 
 
 In collisions with a crossing angle the longitudinal kick of a test particle is created due to 
a projection of the transverse electromagnetic fields of the opposite beam onto the 
longitudinal axis of the particle. The kicks that the test particle receives while passing the 
strong beam with rms sizes σx, σy, σz under a horizontal crossing angle θ are [3]: 
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where x, y, z are the horizontal, vertical and longitudinal deviations from the synchronous 
particle travelling on-axis, respectively. N is the number of particles in the strong bunch, γ is 
the relativistic factor of the weak beam. Then, for the on-axis test particle (x = y = 0) the 
longitudinal kick is given by: 
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For small synchrotron oscillations z << σz the exponential factor in the integral can be 
approximated by 1 and taking into account that 
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we obtain an expression for the linearized longitudinal kick: 
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Then, analogously to the transverse cases, we can write the expression for the synchrotron 
tune shift: 
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Remembering that the longitudinal beta function can be written as: 
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with c being the velocity of light; η the slippage factor, νz0 the unperturbed synchrotron 
frequency and ω0 the angular revolution frequency, we obtain the final expression for the 
linear tune shift: 
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Here we have added notations “weak” and “strong” just not to forget which beam parameters 
we should use in tune shift calculations. 
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For the case of flat beams with !
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further simplified to 
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As we see from (8), for the flat bunches the synchrotron tune shift practically does not depend 
on the vertical beam parameters. So, one should not expect any big variations due to crabbing 
and/or hour-glass effect. 
 Since particles with very large synchrotron amplitudes practically do not “see” the 
opposite beam (except for a small fraction of synchrotron period) their synchrotron 
frequencies remain very close to the unperturbed value νz0. For this reason, like in the 
transverse cases, the linear tune shift can be used as a measure of the nonlinear tune spread. 
 

Numerical Simulations 
 

In order to check validity of (7) we performed numerical simulations with the beam-beam 
code LIFETRAC. The synchrotron and betatron tunes in the presence of beam-beam effects 
are calculated by tracking in the following way. First of all a test particle is tracked for one 
turn with the initial conditions: 
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where Xi are the coordinates in the 6D phase space and σi are the respective rms sizes. 

Doing this 6 times for j = 1,2,..,6 we obtain the 6×6 revolution matrix. Then the matrix 
eigenvalues are calculated, those give us the tunes. For these simulations we use a simple 
model of a collider with linear transformations from IP to IP. In order to reproduce correctly 
the Gaussian longitudinal distribution we divide a strong bunch in much more longitudinal 
slices than in ordinary beam-beam simulations. In these conditions the following equation is 
valid: 
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where νz0 is the initial synchrotron tune without beam-beam interaction, and νz is the tune 
calculated by tracking. Thus we can find the synchrotron tune shift ξz. 
 For the sake of comparison we use typical parameters of SuperB [4] and DAΦNE listed 
in Table 1. The last three rows show the ξz calculated analytically from (7), the nominal 
synchrotron tune and the tune in beam-beam collisions obtained from (10), respectively. 
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Table 1. DAΦNE and SuperB parameters and synchrotron tune shifts 
 

Parameters SuperB DAΦNE 

N, strong beam 5.74x1010 3.3x1010 

γ, weak beam 8180 998 

σz, mm, weak beam 5 12.8 

σz, mm, strong beam 5 19 

σx, µm, strong beam 5.65 255 

σE/E, weak beam 6.57x10-4 5.0x10-4 

θ, mrad 60 50 

ф, weak beam 16.58 1.255 

ξz, analytical -0.00102 -0.000811 

νz0 0.0100 0.01150 

νz 0.0893 0.01066 
 
 
 
 First, our numerical simulations have confirmed that, in accordance with (8), the 
synchrotron tune shift does not depend on parameters of the vertical motion, such as βy and 
νy. Second, an agreement between the analytical and numerical estimates is quite reasonable 
for the horizontal tunes far from integers, see Fig. 1. Quite naturally, in a scheme with a 
horizontal crossing angle synchrotron oscillations are coupled with the horizontal betatron 
oscillations. One of the coupling's side effects is the νz dependence on νx, which becomes 
stronger in vicinity of the main coupling resonances kzx =±!! . Obviously this effect is not 
accounted in (7) and (8), so in order to make comparisons with the analytical formula we need 
to choose the horizontal betatron tune νx closer to half-integer, where its influence on νz is 
weaker. The coupling vanishes for very large Piwinski angles, that is why the νz dependence 
on νx is stronger for DAΦNE with respect to that of SuperB. 
 Since νx for DAΦΝΕ is rather close to the coupling resonance, we will use numerical 
simulations in order to compare the calculated synchrotron tune shift with the measured one 
described in [1]. In particular, when colliding the weak positron beam with !  500 mA 
electron beam, the measured synchrotron frequency shift was about -630 Hz (peak-to-peak). 
In our simulations we use the DAΦNE beam parameters listed in Table 1 with respectively 
lower bunch current (N = 0.9 x1010) and shorter bunch length (σz = 1.6 cm). This results in the 
synchrotron tune shift of – 0.000232 corresponding to the frequency shift of -720 Hz. In our 
opinion the agreement is good considering experimental measurement errors and the finite 
width of the synchrotron sidebands (see Fig. 12 and Fig. 13 in [1]). 
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Figure 1. Synchrotron tune dependence on the horizontal tune. The solid straight lines 
correspond to the analytically predicted synchrotron tunes (last row in Table 1). 
 

 As the next step we have calculated numerically the synchrotron tune dependence on 
synchrotron oscillation amplitudes since namely this amplitude dependent spread of 
synchrotron frequencies can give Landau damping of the longitudinal coupled bunch mode 
instability. For this purpose we track on-axis particles with different initial longitudinal 
coordinates over 2048 turns and perform the Fourier transform in order to extract respective 
synchrotron frequencies.  
 In Fig. 2 the blue curve shows the calculated synchrotron tune dependence on the 
normalized synchrotron amplitude for the DAΦNE “weak” positron beam interacting with the 
“strong” electron beam with the current of 1.7 A. For comparison, the green curve shows the 
tune dependence on amplitude arising due to nonlinearity of the RF voltage. As we can see, 
the synchrotron tune spread due to the beam-beam interaction is notably larger than that due 
to the RF voltage alone, at least within 5 σz. In the past it was shown that the RF voltage 
nonlinearity is strong enough to damp quadrupole longitudinal couple bunch mode 
instability [5]. So, we can expect a strong Landau damping of longitudinal coupled bunch 
oscillations by the beam-beam collision. This conclusion is in accordance with performed 
measurements reported in [1]. 

 
 

Figure 2. Synchrotron tune dependence on normalized amplitude of synchrotron oscillations 
(blue curve – tune dependence created by beam-beam collisions alone, green – RF 
nonlinearity alone, red – both contributions). 
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Conclusions 
 

1. We have obtained a simple analytical formula for evaluation of the synchrotron tune 
shift and tune spread due to beam-beam collisions with a crossing angle. 

2. The formula agrees well with the simulations when the horizontal tune is far from the 
synchro-betatron resonances kzx =±!! . The agreement is better for larger Piwinski 
angles. 

3. Measured and obtained by simulations synchrotron frequency shifts are in a good 
agreement. 

4. Calculations have shown that at high beam currents the synchrotron tune spread 
induced by the beam-beam interaction at DAΦNE can be larger than the tune spread 
due to the nonlinearity of the RF voltage. This may result in additional Landau 
damping of the longitudinal coupled bunch oscillations. 
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