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Tune Shift in Beam-Beam Collisonswith a Crossing Angle

P. Raimondi, M. Zobov

Abstract

Several schemes for upgrading DAFNE require alarge crossing angle. In this Note we
investigate the beam-beam tune shift and beam deflection dependence on the crossing angle,
for non-crabbing collisions.

Beam-beam tune shift

Let us consider two ultrarelativistic bunches colliding at a horizontal angle 6 as shown
in Fig. 1. The strong beam moves along z-axis of the right laboratory coordinate system.
The coordinate system connected with the test particles of the weak beam and denoted with
theindex ‘p’ in Fig. 1 isrotated by the angle 6 with respect to the strong beam system. The
vertical y-axes coincide for both systems and are directed towards us.
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Figure 1: Scheme of beam-beam collision under a crossing angle.
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The coordinate transformations from one system to the other are as follows:

x = xP cog(8) + zP sin(6)
z=zP cog(0) - xPsin(9)
and

xP = xcog6) — zsin()
zP = zcog(6) + xsin()

In the laboratory system components of the electromagnetic field, created by a 3D
Gaussian bunch (strong bunch) moving with avelocity ~c is given by [1]:
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Equations of motion of atest particle belonging to the weak beam in this system are:

X(t) = —csin(O)t Vy =—Csin(0)
Z(t) = —ccogO)t v, = —ccoy0) 2
y(H) = Yo vy =0

The Lorentz force acting on the test particle due to the electromagnetic fields
produced by the strong beam:

I£=e(lg+\¥><l§) with \]fxl§=—vZByr+szxf+vaylz (3
has the following components:

F = { Ex - V,By ) = { Ex + CCos(0)By ) = e, (1+ cog(0))

R = e(Ey + VZBX) = & Ey — ccos(6) By ) = eE, (1+ cos(6)) (4)
F, =evyBy =—ecs n(e)By = —eE, sin(6)
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Note that:

F .
F = —ms n(6) ©)

The force projected onto the axes of the test particle coordinate system has:
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According to the tune shift definitions:
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Combining egs. (1), (4) and (6) one gets after differentiation:
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By integrating the above expressions along z° we get formulae for the tune shifts:
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In case when y >> tg(6/2) we can neglect by the term w/(y’ctg*(0)) and the formulae
are greatly simplified:
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Considering the last expressions and the luminosity formula obtained in [2]:
2
L= N (11

) 47my\/ (thgz(e 12)+ 0)2()

we can see that both egs. (10) and (11) can be obtained from similar formulae for the head-
on collision by simply substituting the horizontal beam size with:

Gy ——> \/(oftgz(el 2)+05%) (12)
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The kick that the test particle receives while passing through the strong beam is
obtained by integrating egs. (4). Thefina resultis:
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As we can see, a large crossing angle introduces strong coupling between the
horizontal and longitudinal planes, provided that 6z > ox (thisis almost aways true).

Conclusion

- We have obtained the formulae for the beam-beam tune shifts in collisions with a
horizontal crossing angle. In particular, it has been shown that these formulae can be
transformed from similar formulae for head-on collisions by substituting the horizontal

1/2
beam size by (0)2( + ogtgz(9/2))
- Analyzing egs. (10) and (11), we see that the luminosity and the tune shifts are reduced
with the crossing angle. However, since
-1/2 -1/2
L~(cZ+02tg%(012) "5 & ~(ok+02tg%(012)) i & ~(o%+ottg?(6/2))
the horizontal tune shift drops faster than the luminosity does.

- On the other hand, large crossing angles introduce strong coupling between horizontal
and longitudinal planes of motion.
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