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1. Introduction

Recently a dynamic tracking system [1] has been implemented in the DAΦNE main
rings. Among many useful data provided by the system it also allows to measure a
horizontal machine cubic nonlinearity, i. e. the tune dependence on transverse oscillation
amplitude.

During tune up for collisions it has been found that the cubic nonlinearity can vary in a
wide range depending on the lattice optical functions and on the orbit. Moreover, the sign of
the nonlinearity can even change, for example, when wigglers are switched off. This is
explained by a strong octupole term in the wigglers [2].

Besides, we have noted correlations between the nonlinearity strength and sign and the
attainable luminosity. In particular, the best single bunch luminosity of 1030 cm-2s-1 has been
achieved with currents of about 20 mA per bunch in the lattice having the weakest negative
cubic nonlinearity. Instead, when the wigglers were switched off, we could not collide
bunches with currents higher than 4-5 mA without beam-beam blow up and lifetime
degradation. This can not be explained completely only by weaker noise and longer
damping time.

Yet another observation is that while trying to increase the luminosity by increasing the
number of bunches per beam, parasitic crossings limit the maximum achievable luminosity
per bunch even for the bunch pattern with alternated empty and full buckets. This is not
confirmed by simulations if nonlinearities are not taken in account.

We have undertaken this study to explain the experimental observations in order to
understand and overcome present luminosity limitations. In Section 2 we summarize the
results of the cubic nonlinearity measurements in DAΦNE. Section 3 gives a qualitative
discussion on consequences of the crosstalk between beam-beam effects and nonlinearities,
while numerical simulations of the beam-beam blow up and tail growth taking into account
the measured cubic nonlinearities are described in Section 4. Section 5 is devoted to
modeling of beam-beam interaction with parasitic crossings and cubic nonlinearities. The
main results of the study and proposals for luminosity improvement are listed in the
Conclusions.
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2. Cubic nonlinearities in DAΦNE

The effects of machine nonlinearity on particle motion are investigated using a dynamic
tracking system recently implemented in the DAΦNE main rings [1]. A single bunch is
excited horizontally by pulsing one of the injection kickers. The dynamic tracking system
allows to store and to analyze turn-by-turn the position of the kicked bunch. The coherent
betatron oscillation amplitude is recorded over 2048 turns providing information on
trajectories in phase space and betatron tune shifts with amplitude.

Analysis of the coherent oscillation amplitude decay due to nonlinear filamentation
gives a possibility to estimate directly a cubic nonlinearity. The decoherence signal
envelope at small currents is found to decay with time t in the following way [3]:
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As it is seen from eq. (1), the signal provides a rich information on lattice parameters.
The cubic nonlinearity ∂ω ∂x xA/ 2  (the derivative of the angular betatron frequency ωx with
respect to the oscillation amplitude Ax) is determined by the signal roll-off τ if the kick
amplitude ∆x and the horizontal beam size σx are taken at the pick up position. Besides, if
the chromaticity ∂ω ∂x E/  does not vanish and is measured by other means, one can define
the angular synchrotron frequency Ωs and the energy spread σE. Vice versa, if the energy
spread is known, the chromaticity can be inferred from the signal. When the chromaticity is
compensated, the decoherence signal decays purely exponentially. An example of such a
signal measured by the DAΦNE dynamic tracking system is shown in Fig. 1.

Often, the dependence of the betatron tune shift on amplitude due to the cubic
nonlinearity is written as:

∆νx xc J= 2 11   (2)

with the coefficient c11 characterizing the strength of the nonlinearity:
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and Jx the action variable related to the oscillation amplitude as:

A Jx x x= 2 β (4)

where βx is the horizontal beta function and ω0 the angular revolution frequency. Now it is
easy to show that the coefficient c11 is found directly from the signal envelope by fitting it

by the exponential function.
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Exploiting eqs. (1) and (3) gives:
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where n is the number of turns after that the amplitude of the coherent signal drops by a
factor of e and εx is the horizontal emittance.
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Figure 1. Example of coherent signal decay.

For finite currents the sign of the cubic nonlinearity is of a great importance [4, 5].
Depending on a combination of the nonlinearity sign and the sign of the tune shift δν
defined as a difference between the incoherent tune shift δνic  and the coherent tune shift
δνc :

δν δν δν= −ic c  (6)

the coherent instability scenario varies.

Usually, at high energies δν δνc ic>  and for a single bunch the sign of δνc  (and, in
turn, of δν ) is determined by the chromaticity sign. For such a case possible instability
scenarios are summarized in Table 1 [6].

Table 1. Different instability scenarios.

Chromaticity c11 < 0 c11 > 0

> 0 Fast decoherence Fast damping

< 0 Saw-tooth instability Head-tail instability
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In the case of a particular interest for us with δν > 0 and c11 > 0 the decoherence is
prohibited.

During machine studies for collisions different kinds of lattices have been tried. For
each lattice configuration the nonlinearity coefficient c11 has been measured with the
dynamic tracking system. These experimental data are given in Table 2.

Table 2. Measured cubic nonlinearity for different main ring lattice configurations.

LATTICE DATE c11

KLOE (old) November – December
2000

- 600

Wigglers off,
Sextupoles off

21/02/2001 + 400

Wigglers off,
Sextupoles on

21/02/2001 + 200

Wigglers 86%,
Sextupoles off

26/02/2001 - 300

"First" detuned structure
(low βx in wigglers)

08/03/2001 - 170

"Second" detuned structure
(high βx in wigglers)

13/03/2001 - 1700
- 460

"Intermediate detuned
structure (tris)"

21/03/2001 - 650

Present structure
(“sei decimi”)

23/03/2001 - 300 e-

- 350 e+

As we can see in Table 2, c11 varies in a very wide range. Moreover, it even changes
sign when the wigglers are switched off. For a comparison, Fig. 2 shows decoherence
signals for the lattices with the wigglers on (negative c11) and the wigglers off (positive c11).
As predicted by the theory, decoherence is absent in the lattice with positive nonlinearity.

Briefly summarizing the experimental observations and measurements we can say that:

1. The highest negative contribution to c11 comes from the wigglers and it depends strongly
on beta functions. That is why, in comparison with the “old KLOE lattice”, the detuned
lattice [7] with lower beta functions at the wiggler positions has weaker negative cubic
nonlinearity. And, besides, c11 gets positive when the wigglers are completely switched
off.

2. For most settings the sextupoles give also negative contribution to c11, but usually it is
substantially smaller than that of the wiggler. For example, compare in Table 2 the
lattices with wigglers off with sextupoles on and off.



G-57  pg. 5

3. By measuring the tune dependence on the localized bumps in the IP2 region, it has been
found that the “C” correctors on both sides of the IR can introduce sextupolar
components [8]. From this point of view, the detuned structure is preferable, since it
allows to create a large separation at the second IP with small currents in the “C”
correctors.

4. We attribute the positive contribution to the cubic nonlinearity to fringing fields in
quadrupole magnets. But, their strengths are to be checked quantitatively.

Figure 2. Images from dynamic tracking system monitor: coherent signal decay for the
lattice with wigglers on (left) and wigglers off (right).

3. Discussion on crosstalk between cubic nonlinearities and beam-beam effects.

It was noted more than 15 years ago that lattice nonlinearities can affect significantly
beam-beam collider performance [9]. The effect of the cubic machine nonlinearity
considering the resonance 10 96νy =  as an example was studied numerically showing that
positive nonlinearity can substantially enlarge the beam-beam resonance width [10]. Later,
Temnykh [11] made experimental observations at VEPP-4 on the influence of cubic
nonlinearities on the resonances induced by beam-beam interaction. By measuring the
particle loss rate during a betatron tune scan it was found that it increased strongly while
crossing the horizontal beam-beam resonance 7 60νx =  if the horizontal cubic nonlinearity
was positive. This observation is consistent with the analytical prediction of [9] and the
numerical result of [10].
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On the other hand, according to VEPP-2M experience, a positive cubic nonlinearity
was preferable for collider luminosity operation [12].

Let us briefly discuss why the results are so different. There are two main contradicting
consequences of the crosstalk between lattice nonlinearities and the beam-beam
nonlinearities:

1) The betatron tune shift due to beam-beam interaction is positive. The core of colliding
bunch experiences the highest tune shift, while the bunch distribution tails do not
almost change their betatron tunes. Instead, the lattice nonlinearities do not affect the
bunch core, but can change considerably the tune of particles in the tails.
In this sense, the negative nonlinearity adds to beam-beam nonlinearity thus enlarging
the beam-beam footprint on the tune diagram. In this case the number of resonances
crossing the footprint is higher, especially in the tails. One might expect degradation in
the collider performance for negative nonlinearity. A positive nonlinearity tends to
compensate partially the footprint.

2) However, the parameters of beam-beam resonances change in a different manner for
positive and negative nonlinearities. Consider an isolated resonance described by a
truncated Hamiltonian as [13]:

H J J f J m nx x x x= + ( ) + ( ) −ν α φ θcos( )    (7)

where α is the term responsible of nonlinear detuning and f the resonant harmonic. The
resonance island width is given by:
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where all values are taken at the oscillation amplitude (corresponding to the action
variable Jx

R) where the resonance conditions are met.

When a nonlinearity is composed by the cubic lattice nonlinearity and that arising from
the beam-beam interaction the detuning term can be written as:

α αJ J c Jx bb x x( ) = ( ) + 11
2  (9)

Since the double derivative of the detuning term determined by the beam-beam
interaction ′′αbb  is negative, the following changes in beam-beam resonances due to the
cubic nonlinearity are possible (see eq. (8) and (9)):

a) if c11 < 0, the resonances are located at smaller amplitude, ′′( )α Jx
R  is higher and the

resonance width gets smaller.

b) if c11 > 0, α Jx( )  can change sign and the resonant condition can be met twice. And what
is even more important, the positive lattice nonlinearity can compensate the beam-beam

nonlinear detuning, i. e. when ′′( ) →α Jx
R 0 the resonance width will grow drastically.

From this point of view, the negative sign of the nonlinearity is preferable being less
harmful to collider performance.
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Therefore, it is difficult to say a priori what kind of cubic nonlinearity, positive or
negative, is less harmful in the presence of beam-beam effects. Which one of these two
consequences, 1) or 2), prevails in real working conditions depends much on the collider
working points, beam-beam tune shifts, nonlinearity strength and sign. This is why it would
be very useful to have in DAΦNE additional octupoles to vary the cubic nonlinearity in a
wide range in order to optimize experimentally beam-beam performance.

However, there is another point in favor of the negative nonlinearity: it gives a strong
decoherence of coherent oscillations, while decoherence is prohibited for the positive one.

4. Single bunch luminosity limitation due to cubic nonlinearity.

Now, when the cubic nonlinearity has been measured, we perform beam-beam
simulations taking into account the nonlinearity in order to understand its impact on beam
blow up and lifetime.

We use the weak-strong code LIFETRAC [14] that allows including implicitly the
cubic nonlinearity coefficient c11 in the simulations. It is assumed that the tune shift
parameters are equal in both transverse planes ξ ξx y= = 0 03.  and the working point is at
(0.15; 0.21). The coefficient c11 is varied in the range – 600 < c11 < + 600 corresponding to
the measured c11 as given in Table 2.

The examples of resulting mountain range distributions in the space of normalized
betatron amplitudes are shown in Fig. 3. Table 3 summarizes the main results as a function
of different c11: the beam blow up in the horizontal and vertical planes is reported in the
second and the third rows respectively, and the lifetime is given in the last raw. We should
remark here that in the simulations the lifetime is limited only by beam-beam effects and the
dynamic aperture is considered to be rectangular with boundaries at Ax x= 10σ  and
Ay y= 70σ  (or 10σy  at full coupling).

C11 = - 400
σx/σx0 = 1.053
σy/σy0 = 1.30

C11 = - 200
σx/σx0 = 1.075
σy/σy0 = 1.038

C11 = 0
σx/σx0 = 1.067
σy/σy0 = 1.047

C11 = 200
σx/σx0 = 1.110
σy/σy0 = 1.055

C11 = 400
σx/σx0 = 1.160
σy/σy0 = 1.044

Figure 3. Beam-beam blow up and tail growth as a function of the cubic lattice
nonlinearity (numerical simulations). Equilibrium density contour plots in the

space of normalised betatron amplitudes are shown.
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Table 3. Beam-beam blow up and lifetime versus cubic nonlinearity strengths.

c11 - 600 - 400 - 200 0 + 200 + 400 + 600

σ σx x/ 0 1.064 1.053 1.075 1.067 1.110 1.160 1.400

σ σy y/ 0 2.431 1.300 1.038 1.047 1.055 1.044 1.108

τ 2.4 h 9.9 h ∞ ∞ ∞ 7.7 h 4 min

As it is seen in Fig. 3, both positive and negative nonlinearities are harmful for the
beam-beam effects. Above | c11| > 200 the distribution tails start growing and the bunch core
blows up in both cases. So, it is hard to say which sign of the nonlinearity is more
preferable. For positive c11 the horizontal tails reach the horizontal dynamic aperture and the
horizontal size is blown up, while for negative c11 the tails expand in both transverse
directions and the bunch blows up vertically.

According to the simulations, the nonlinearity strength can be considered acceptable
when c11 remains within the range – 200 < c11 < + 200. As shown in Fig. 3, for this range the
tails are well confined inside the dynamic aperture and blow up is negligible. This agrees
well with experimental observations: the highest single bunch luminosity of 1030 cm-2s-1 was
reached in a reliable way when both collider rings were adjusted to the working point (0.15;
0.21) and the measured c11 was equal to – 170 (see the first detuned structure in Table 2).

Instead, during collisions in the KLOE IP in November – December 2000 the measured
c11 was about – 600 and the maximum achievable single bunch luminosity was at a level of
5-6x1029 cm-2s-1. At it is seen in the first column of Table 3, such a strong cubic nonlinearity
leads to both beam-beam blow up and lifetime reduction.

In the present collider configuration, the electron ring has c11 = - 300 and the positron
one has c11  = - 350. The nonlinearity is higher for this configuration due to the increase of
the beta functions in the wigglers, giving a strong negative octupole term. This was
necessary to cope with background problems. However, c11 values of the order of –300 are
still acceptable giving relatively small blow up and moderate tail growth. The measured
single bunch luminosity in this case is about 8x1029 cm-2s-1. Therefore, the present lattice can
be considered as a reasonable compromise between beam-beam performance and allowable
background level. From this point of view, beam-beam and background problems can be
separated if we use an independent (and variable) source of the cubic nonlinearity.
Additional octupoles could play this role [They will be available in fall 2001].

As we see from Table 2, the cubic nonlinearity changes its sign getting positive when
the wigglers are switched off. In the lattice configuration with wigglers off and sextupoles
on we managed to get c11 as low as + 200. The simulations indicate only 10% blow up and
no substantial tail growth. However, we could not collide bunches with currents above 4-5
mA without beam-beam blow up and lifetime degradation. This can be explained by two
reasons. First, the transverse damping time is by a factor of 3 longer, and respectively, the
noise is weaker when the wigglers are switched off. The simulations of these conditions
show that a bunch has about 30% blow up and tails reach the horizontal dynamic aperture.
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Second, during the collisions we observed that the transverse instability thresholds reduced
drastically for positive nonlinearity. In particular, without sextupoles the head-tail threshold
current was below 1 mA, while for the lattice with wigglers on the threshold was as high as
10-13 mA. Also the multibunch instability threshold was much lower with wigglers off.
Presumably, the loss of decoherence with positive nonlinearity did not allow us to collide
bunches in a stable way.

5. Luminosity limitations due to parasitic crossings and cubic nonlinearity.

Experimentally, it was found that passing from single bunch to multibunch collisions
the luminosity does not scale linearly with the number of bunches. The best luminosity of
3.17x1031 cm-2s-1 was achieved with 47 bunches per each beam, i. e. with the luminosity of
6.75x1029 cm-2s-1 per each bunch, while the luminosity routinely obtained in single bunch
collisions is about 8-9x1029 cm-2s-1.

We can list a few reasons leading to the luminosity degradation in the multibunch
regime. These are multibunch instabilities, ion trapping and uneven bunch fill. However, the
impact of these reasons is substantially reduced:

-  The multibunch instabilities are damped by feedback systems and cured by Landau
damping due to the beam-beam interaction itself.

-  The ion trapping is avoided by using a large enough gap in the bunch trains and
applying clearing electrodes.

- The bunch fill pattern can be made even by carefully adjusting the beam injection.

In our opinion, for the present beam pattern with 47 bunches with every other bucket
filled, one of the luminosity limitations is due to parasitic crossings (PC) enhanced by the
cubic machine nonlinearity. We also expect that at currents higher than those we use at
present the PC effect will get much more stronger.

There are some experimental observations confirming that the PC effect is significant
for the multibunch collider performance. In particular, when injecting one of the beams out
of collision in the nearby bucket, the already stored opposite beam was killed. Yet another
observation is that it was possible to scale the luminosity with the number of bunches when
bunches were separated by 4 empty buckets. But the linear scaling failed when the
separation was reduced to 2 empty buckets.

In order to clarify the situation we have simulated with LIFETRAC the beam-beam
interaction with two parasitic crossings at either side of the interaction point (IP) and taking
into account the measured cubic nonlinearity c11 = -350. The PCs were at a distance of 81
cm from the IP, which corresponds to the actual fill pattern with 1 empty bucket between
bunches. We have also considered that the coupling has been corrected down to 0.3% and
respectively have put εx m rad= ⋅−10 6  and εy m rad= ⋅ ⋅−0 3 10 8.  in the simulations. The
simulations have been carried out for a bunch current of 25 mA.
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Figure 4 compares the results of the following simulation runs taking into account:

a) IP without PCs and without nonlinearity;
b) IP with two PCs and without nonlinearity;
c) IP with two PCs and with cubic nonlinearity.

As it is clearly seen, the PCs reinforced by the nonlinearity strongly affect the bunch
tails and, as a result, the lifetime drops. So, one of the solutions aimed at luminosity
improvement in the multibunch regime is further reduction of the collider nonlinearity.
Installation of additional octupoles capable to control the nonlinearity would be extremely
useful.

On the other hand, increasing the bunch separation at the PC positions in terms of the
horizontal rms size can reduce the PC effect. This can be accomplished either by decreasing
the horizontal beta function at the PCs or decreasing the emittance. One can also try to
increase the horizontal crossing angle.

a) b) c)

σx/σy = 1.076
σy/σy0 = 1.449

τ = ∞

σx/σx0 = 1.097
σy/σy0 = 1.954

τ = ∞

σx/σx0 = 1.099
σy/σy0 = 2.498
τ = 36 sec

Figure 4. Equilibrium density contour plots taking into account 2 Parasitic Crossings and
lattice nonlinearities.

6. Conclusions

The numerical simulations of beam-beam effects taking into account the measured
cubic nonlinearities have shown that they have a dramatic impact on the collider luminosity
performance. The numerical results explain most of experimental observations made during
collisions in both single and multibunch regimes.

In particular, the strong negative nonlinearity accounts for the low single bunch
luminosity during collisions in the “old” KLOE lattice. When the nonlinearity was
decreased in the new detuned lattice the single bunch luminosity reached 1030 cm-2 s-1, an
improvement by a factor of 2 approximately.
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In the multibunch regime the maximum achievable luminosity is mainly limited by
parasitic crossings enhanced by the nonlinearity, if other limiting factors, such as
multibunch instabilities, ion trapping and uneven fill are eliminated.

According to the simulations, in order to decrease the nonlinearity effects to an
acceptable level, its strength should be kept below | c11 | < 200. The negative nonlinearity
sign seems to be preferable, since collective instabilities are more pronounced for the
positive nonlinearity (at least, as observed experimentally).

In practice, optimization of crosstalk between beam-beam effects and nonlinearities can
be carried out by adjusting the strength and the sign of the cubic nonlinearity with additional
octupoles to be installed by next fall. In the multibunch regime the nonlinearity correction
should be also accompanied with bunch separation increase at the parasitic crossing
positions.
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