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SOME RESULTSOF LIE TRANSFORM
ON SEXTUPOLE HAMILTONIAN
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The trigonometric series of the sextupole Hamiltonian suitable for asymmetric
lattice is given. The results of Lie transformation to the first order of two dimensional
space, and to the second order of one dimensional space are aso given. Some results
of the estimated dynamic aperture with DA®NE parameters are compared with the
results given by tracking.

1. Introduction

"Particle tracking® has given good results of the dynamic aperture in
DA®NE[1]. However, in order to be prepared for any necessary further dynamics
investigation, experimentally or theoreticaly, we try to do some estimate from other
approach with more "physics' underlined. That's the "Hamiltonian method”, which
has been intensively studied by E. Levichev, et d. on VEPP-4M and SIBERIA2[2,3/4].
During their analyses, they started their work with the Hamiltonian of sextupoles in the
form of cosine series. The formulas of the one dimensiona Lie transform up to second
order were also given in their publicationg2,3].

However we will explain in the following that for an accelerator with
asymmetry latice, such as DAFNE with two different interaction regions, the
trigonometric series of sextupole Hamiltonian should include both the sine and cosine
series. Therefore the Lie transformation for the Hamiltonian suitable for asymmetry
lattice will be done in this note.

The dynamic apertures of different DA®NE configurations are estimated with
the formulas we got. The estimated apertures are generally smaller than those given
by tracking while nearly half of them are close to the tracking results.
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2. Sextupole Hamiltonian and Lie transform

2.1 Sextupole Hamiltonian

After appropriate canonica transformation, K.Y . Ng got the sextupole Hamiltonian[5] :

H=vJ, +vd,+(2J, )3’2[30‘/22(A3m51nf13m +3Ajpsing, ) 0

(27, *(27,)B"* %.(2 Binsin py, + Bimsinp,,,+ B_msin p_,)
1]

where d,,;, and P, . ae relaed not only with the harmonic number along "0"
coordinate, but also the distribution of the sextupoles. According to the definition of each
symbol in eq.(1)[5], we can get the formula of sextupole Hamiltonian:

H=v.J, +Vv,J,

+(2)*2prmco{ = m0) 37,0 sin{0, - mo)
+Ayy, c05(39,, — m0) ~ Zy,, sin(3¢, — m6)}
3 }IIE{H E{Iﬂjmms{ﬁ - m6) = 2%, a9, -~ m6) 2)
B, cos(¢, ma} min(9, —mo)
48y o ~0) 1y sy, o)
where
s Xé; ) (B2 . )eos( (v - vx9)+m9)]k
Zy = ﬁ% (B, )sin(j(, - Dx9)+m9)]k
- ﬁ% (BB, K. )eos(w, - Ux6+m9)]k o
= Zé_;r:% (BY°B. . Jsin(v, - v,0+ me)]lc
By = K;)E[(ﬁfzﬁzrg)cos( Wy — 030+ m9)]k
o= 2L S[[875, .ol 0.

481 k 3
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" ds :
and K,=-——B u,u“=jB—, ve=y, 22y, vp=v,t2v,,j=13
u

-4

Here we keep the definition of dl symbols same with those given by E. Levichev &
al.[2,34] so that they will be dightly different from those given by K.Y. Ng[5].
It can be seen from egs.(2) and (3) that for symmetric lattice, which are the situations of
lots of light sources, the Hamiltonian will be same as that given by E. Levichev and V.
Sgaev because dl the sums of the sine series in eq.(3) will be zero. However for
asymmetric lattice, such as the situation of DA®NE with two different interaction regions,
neither the sine series nor the cosine series could be neglected.

Both the Hamiltonian formulas given in eq.(1) and eq.(2) are suitable for Lie
transformation. However in order to compare our results directly with those got by
E. Levichev and V. Sgjaev, we will start our work form eq.(2).

2.2 Lietransfor mation results

The Lie transformation is used for the system whose Hamiltonian is the sum
of h,, for which the trgjectory is known, and some small perturbations h,. There are
some detail descriptions of such application on accelerator physicg4,6,7,8]. We will
do the transformation here following the steps of the so-called Deprit perturbation
theory[6,7], the same steps that E.Levichev and V.Sgaev have dready used.
However, here we will give some more general results than theirs so that our results could
be used for some estimation on DA®NE with asymmetric lattice.

In Deprit perturbation technique, the old Hamiltonian H, the new Hamiltonian
H and the generating function w are expanded as the power series:

H=YeH,, H=YH,, w=TYew, @
=l

n={) n=0
and the Lie transformation operator:
T=Ye"T,

a=(
In our case, € ~ V4. The generating function of such transformation can be found
step by step from:

_ =l _ -
DoWa =n{H,~Hu)= %, [Ln—u|Hm+an£mHm] (5)
ms|

where D, =9/96+| ,H,]is the derivative operator aong the trajectory of the
unperturbed system, L, =[w,, | is the Poisson bracket operator, T,™ is the reverse

n

operator of T,. The new Hamiltonian will be chosen in such values to cance the
secular terms during the integration of the RHS of eq.(5).
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In this paper we will give the results for two cases. (a) in two dimensiona
gpace transform up to the first order of perturbation; (b) in one dimensiona space
transform up to the second order. Both the sine series and the cosine series will be
included in the Hamiltonian transformation. Because the detail procedures of the
transformation can be found somewhere €sg4,6,7,81, only the brief results of our
derivation will be given in the following, for two Situations:

A. two dimensions, first order transformation

Ho= Vi + v J,
H;=0

wy = ~(2J, )3'!2 2 {_EAl—mSin('px ~m0)+ Lom_ sin(3¢, — mo)
m

V,—m 3v,—m

3Z, Z,
m —mb m 3¢, — 0
+—2cos(¢, —m )+ 3v, - cos(3¢, —m )}

v, -m

3(22,)@21)3 {iﬁmn; sin(9, —m8)+ —t1_gin(g, —m)

nt VI - 2Y V+ —-m (6)
m_sin(¢_ — mB) +—12 cos(¢, - mB)

v_—m V- m
n_cos(¢. — mo)}

+

+-Y—cos( +—mo}+ Yo
v,—-m V. —m

and the relationship between new momenta and old ones:

T =J.+ J:‘Q{Za(l)(l,(],m)cos(qu ~m0)+ Za“)(3,0,m)cos(3¢x —~m0)
m

nt

+): <P(1,0, m)sin(¢, —m0)+ ¥.c(3,0, m)sin(3¢, —m 9)}

-J2 {Ebm(IOm)cos( -m9)+zb‘”(12m)cos( “mo) M

+)j,b“’(1 ~2,m)cos(¢_ — mO)+ Zd“’(l 0,m)sin{g, —m0)

m

+3 dV(1,2,m)sin(g, —m0)+ ¥ dP(1,-2,m)sin(¢_ - mO)}

m
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I =J,-J" {ZZb(l)(l 2,m)cos(¢, —mBO)— 22!;“)(] -2,m)cos(¢_. —m0)

m

: %)
+E2d(”(l,2,m)51n(¢+ ~m6)- ZZd“}(l,—Z,m)sin(gﬁ_ - mﬂ)} (
m "
where: al(1,0,m) = 6\5ﬁ“ , a'P(3,0,m) = 6\/_ Aam
v, —m 3v,—m
c(l)(l,O,m) = —6‘\/5 Zlm (l)(3 0, m) - 6\1_ %m
v, —m v, —m ©)
BO(L,0,m) = 1242 -2m | p0(1, 42 m) = 67—t
Vx — i vi m

d(')(l,O.m) =122 Yy i d(])(l,iZ,m) = —6:2 L
Vi—m Vi—m

We keep the terminology same as those given by E. Levichev and V. Sgaev in order to
verify our results by a ssimple comparison to theirs.

B. One dimensional, up to second order transform

Hn = vzj.r
ﬁ| =0

Hy=-187" E[ﬂm_ 7 R - ]

Ve—m 3v, —m V,—m 3v_—m
Wy = 35!2 1 E[:H”a‘hmq "'"3_!-"";_11-1 3El!zlml-1' Ly Zamit Sln{mﬂ}
V=1 31"' _! 'I-" - I 3 ".lk _! m

[ _{2 Ve = m =2 AyZipyy  (6V, =m—2)AyZs ] cas{m8)
(ve =T) (v, —m—=1) (3v, = 1)(3v, —m 1) m

2(4vy —m~ EI} |- sin(2¢,
EE{'-’;; =1)(3v, - ]L[Al!"*i'm! + 3|:Z1m+:}Ji—v“_“"'“l (10)
HAuZyme = ZyAsmar) cmf:h*::ﬂj
+3 (2v;-m+21) [ sin(49, - m0)

Z, - \
m 1 Ve=D)3v, - +.']||_E Z3m-t = Ay

A AuZys + Ay cos{dd, - mﬂ]}}

dv,=m

4v, —m
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and the relationship between new momentum and old one:

T =1+ Jﬁ"l{zu{“ﬂ,n.m}nmw; ~m@)+ ¥ a'"(3,0,m)cos(3¢, — mb)
+E-:“][l.ﬂ. m)sin(¢, —mB)+ Ecm{l 0,m)sin(3¢, — mﬂ}}

-I-JE{E,::'[EJI:D 0, m)cos(m@) + Eam{i 0,m)cos(2¢, —m8) (1)

+Z a?)(4, 0,m)cos(4p, —-mE] + Ecml[ﬂ 0,mi)sin(md)

+5,¢P(2,0,m)sin(2¢, — m8)+ T P(4,0,m)sin{46, - mﬁr}l

where:

a20,0,m) = 543 Ayimit + ZyZymay | AyAy g+ ZyZysy
k{v — v, —m- l) {3}' —!'}l:EI-v ~m =)

a'?(2,0,m) = 712% _hq t 2y Zamyy 2 =m ]

'..{"' ~I)(3v, —m- 1} 2v,—m

a®(4,0,m) = 36Y Mﬂ 4l- m}
!

I}[E'I.-' -m+l) 4v,-m

4240, 0.m) = 108 Ayt Ay Zamsi 2
(00m)= E[{"'; I)(v, -—m—f}+|: v, —I)3v,-m~1) (12

('{1][2 0,m) = ]rgz LAy — AL!{]_.;_-..L 2H=m
|: _11{31" “"t—-f} 2w, —m

Ay +Zydy, » 4l—m ]

ct?(4,0,m) = 352[“’: ~I)3v,—-m+I) 4v,-m

When we set Z,=0,j=13), we will see that &l the a”)(*,0m) coefficients given
here are same as those given by E. Levichev & V. Sgaev except a®(0,0,m) is
different by a factor of 2. As for other coefficients, c*(*,*,m) are introduced by the
lattice asymmetry effect, b*(*,*,m) are caused by two dimensional consderation,
while d* (*,*,m) are caused by both of the above reasons.
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3. Application for dynamic aperture estimation

Two ways have been mentioned by E. Levichev and V. Sgaev to edtimate the
dynamic aperture using the results of Lie transformation[2,3]: (&) Since the Lie
transformed Hamiltonian is angle independent (8ﬁ/8¢xyz=0), the new momenta
should be invariant of motion, therefore egs.(7), (8), (11) can be written as
3,30, =3.,0,,=06,,=0), and we can find the maximum J,, beyond
which there will be no solution of J , a some positions and that maximum J, , will
determine the dynamic aperture. (b) because normaly only single-resonance or few
harmonics dominate the total movement, E. Levichev and V. Sgaev used the single
resonance approximation of the transformed Hamiltonian to get the dynamic aperture
anayticaly fromegs. oH /d¢ =0, dH /0] =0 and the results are dmost the same as those
given by tracking[2].

In this note, we first try to estimate the dynamic aperture by finding the
maximum existing contour of J, of eq.(11) a a fixed 6 position numericaly (we
choose 6=0 because so did E. Levichev and V. Sgaev in [2,3]). That means the
caculation is up to the second order perturbation and using one dimensiona
approximation. For agiven J,(6=0), the solution of J, & 150 other points along the circle
(¢ =0-2r) are calculated with the Newton method. Since XD = /28,J,, 6, = /B¢ for
zero coupling and in DA®NE ¢ = 1.0E-6mrad, there will be

X, /o, =~2.0x10°J, (13)

For caculation the dynamic gperture, we substitute the minimum vaue of J, in outmost
contour of J,(J,4,) into eq(13). When 6=0, eg.(11) becomes:

'T.:: = 'F.: + J:ﬂ{‘ql ] GDS{ﬁI}'{' ﬂimﬂﬂiiﬂ-lﬁr }+c| 10 sin ['ﬁ; }+ Can Ei“{ﬁ*?: ,}]'

+J2{ Aaoo + Agan 005(2, ) + Apag c0s(49, 1 Cang sin(26, ) + Crag sin(49, )} o
where
10 = Za"(1,0,m), Am—}-:a‘ "(3,0,m),
Ao = £aP(0.0m), Ay = zam{z 0m) ,
Ay = gu‘“m,mm}, Ciig = Ec‘”il-&m} : (15)

1] i
E‘lm = Ec[]]{:i"ﬂl‘m} ¥ c-?II:I = EE{I}{,21 u!m] ]
Cog = ¥ c'®(4,0,m) .
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All the summations in egs.(9), (12) and (15) will approach stable vaues when Im| and
|1 become greater then severd hundreds. For the calculation in this note, m, | are
within a range from -1000 to 1000. The dynamic apertures for 5 different DA®NE
lattice configurations, two different working points for each configuration[1l] are
estimated and listed in Table 1. The subscript "A" means the asymmetry coefficients
are included in the estimation. For asymmetric latice, only the results including
asymmetric coefficients are correct. The results without the asymmetric coefficients
are kept in the table only for a comparison.

Table 1. Numerical results of e .(11)

conf* {1(a) |i(b) [2@) [2(b) |3(a) [3(b) |4(a) [4b) |5(@) I5(b)
A110 1-5.060 |-4.744 |2.435316.8063|13.101|-13.43 |-14.74 {7.199514.1724]-27.02
A130 |20.080]12.307}15.78216.9838]22.575[26.475[12.76111.626[11.04823.256
A200 [321.98]130.81§191.56[71.469}173.57|661.25|285.58|141.18]105.41|951.83
A220 |-46.12 |-1917 |176.71]-1362 |819.89{-827.7 |-68.49 |-3015 1891.5 }|-184.7
A240 [135.69]425.50[141.35|104.75|-233.3|751.75]-187.7 {-160.3 | 115.50|528.07
C110 7.5985]-13.43 |8.9130(-0.554 {8.9045|-3.634
C130 30.386|26.475[12.596(13.222[7.1534]9.3595
A200A] 1246.2|661.29(345.60(272.64]|201.96]1029.0
A2204 1876.7|-624.9 |-73.19 |-3723. |900.65]-1709.
A240A 250.80]744.76|-115.8 |453.99]206.54|706.90
€220 -1813 1-879.1[-230.8 |1807.4]-159.2 |-754.5
C240 -513.51448.351-53.63 |-821.1 |-73.51 }479.44
Jer10-4NL** [5.1382|NL 1.0335[1.9 1.1789|NL 1.0017{1.9 NL

J (1074 0.3664[0.5409|NL.  0.3715]1.684 0.6500
Dioxy [21.5 |32.1 [22.5 [144 |19.5 |154 |244 |14.2 (195 —
Dafox 8.5 104 294 |3.6 184 |114

*  The definition of the configurations are given in [1], for different lattice and
working points.
** NL means no limit of JX has been found from eqg.(14).
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The tracking results given in [1] show that the dynamic apertures of dl the
configurations are greater than 20c,, except "3(a)" configuration where DA~17 o,.
But in table 1, there are about half of the estimated dynamic apertures smaller than the
tracking results. Currently we don't know why. However, except 3(a) and 4(b)
configuration, al the estimated apertures are greater than the physical aperture, which
isabout 10 o, off coupling in horizontal plane.

It can be seen from Table 1 that for some cases we cannot find the limit of the
J, from eq.(14). That is because 6=0 limited the influence of A,,, on J, aong the
trgjectory of the particle. If we use eg.(11) and 6=¢/v, (that means we find the
solution of J, aong the unperturbed orbit), the limit of J for 1(a), 2(a), 4(a)
configurations will be found and the dynamic aperture of these configurations in table 1
are given by such limits. We search the J vaue adong the orbit for three circles
(6=0--6 ). However no limit of J, can be found for 5(b) case if the asymmetry terms
in the Hamiltonian are not considered.

From eq.(12) it can be seen that the value of the coefficients of eq.(14)
represents how much influence the different harmonics will have on the momentum
J,. Effects of four harmonics. v,=m, 2v.=m, 3v,.=m and 4v.=m, are included in
€g.(11). For higher harmonic effect, one has to use the results of more higher order
Lie transformation.

Table 1 shows that A, is greater than A,,, and C,,, is greater than C,,,
for amost dl the configurations. That means 3v,=m harmonics normally has stronger
influence than v,=m harmonics. For I(b), 2(b), 3(b), 4(b) (v,=4.53) and 3(a), 5(a)
cases (v,=5.09), dl the A,,, (or A, C,,) vaues are quite big. That means
2v.=m harmonics have strong influences, For 1(8), 2(a), 4(a) and 5(b) cases, the
A, (or A,,) Values are big, and it can be seen from eq.(12) that the 3v,=m harmonics or
akind of "coupling" between the 3v,=m and v,=m harmonicswill play an important role.

When J, is big and close to the dynamic aperture limit, the numerical results
of eq.(14) (or eq.(11)) shows that J,(¢,) is quite wavy along the trgectory, but when
J, is small and far away form the dynamic aperture limit, the J,(¢,) is quite smooth.
Soitisalso possible to check how J (¢,) behaviourswhen J, close to the physical aperture
limit. We do it in this way: Setting the maximum of J, in the contour to be
|0c,, (the physical limit in DA®NE) then to search the minimum vaue of J (¢,) in the
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contour and find the aperture calculated from this minimum J,, that gives the "total
effect” of the sextuples and the physical limit. The results are shown in Table 2. In
order to have a impression of the distortion of J,(¢,) plot when J, is big, a set of
maximum and minimum vaues (Jp,, Jpa) Of J, on the outmost contour we
caculated are also listed (if for some cases there are no limit by eq.(14), we use
the result of eq.(11) instead, i.e,, searching the solution aong particle trgectory). J,q,
was fixed to 5.0xI0°m as the physica limit of 1006, and it was teken as the
maximum value of the contour of which the minimum is J,.,,. D, is the aperture caculated
from J,,, and we take it as the tota effect of both sextupoles and physical
limit. For 3(a) configuration, this estimate predicts a 30% decrease of aperture. In 3(a)
configuration, not only the 2v.=m harmonics is strong (big A,,,, vaue), but aso
3v,=m harmonics (big A ,, and C,,, values).

Table 2.

conf* Ia) |Lb) j2(a) |2(b) |3a) |3(b) [4(a) |4(b) [5(a) |5(b)
JipatoH|117.9 [23.87 |5034. [24.63 |13.00 |16.72 |424.2 Jo.85 [51.34 [24.18
Japa(107|23.2 1021 {2529 |10.33 |3.66 |5.41 |[43.11 [3.72 |16.84 [4.26
Iipgiorh (5.0 |50 |50 |50 |50 |50 |50 [0 |50 |50
Joppt1r$|3.71 |3.85 1395 [3.93 (244 [3.22 |3.50 [2.80 [3.75 [2.90
Dyo,  |8.61 [8.77 |8.80 [B.87 |7.00 |8.02 [837 |[748 |8.66 |[7.62

Summary

The trigonometric series of sextupole Hamiltonian suitable for Asymmetric
lattice is given. The Lie transformation of (&) two dimensiona first order and (b) one
dimensona second order are aso given. The dynamic apertures of 5 proposed
DA®NE configuration[1] (two work points of each configuration) have been
estimated. Nearly half of the results are close to the tracked results while nearly half
of the results are smaller than those given by tracking.
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