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The trigonometric series of the sextupole Hamiltonian suitable for asymmetric
lattice is given. The results of Lie transformation to the first order of two dimensional
space, and to the second order of one dimensional space are also given. Some results
of the estimated dynamic aperture with DAΦNE parameters are compared with the
results given by tracking.

1. Introduction

"Particle tracking" has given good results of the dynamic aperture in
DAΦNE[1]. However, in order to be prepared for any necessary further dynamics
investigation, experimentally or theoretically, we try to do some estimate from other
approach with more "physics" underlined. That's the "Hamiltonian method", which
has been intensively studied by E. Levichev, et al. on VEPP-4M and SIBERIA2[2,3,4].
During their analyses, they started their work with the Hamiltonian of sextupoles in the
form of cosine series. The formulas of the one dimensional Lie transform up to second
order were also given in their publications[2,3].

However we will explain in the following that for an accelerator with
asymmetry lattice, such as DAFNE with two different interaction regions, the
trigonometric series of sextupole Hamiltonian should include both the sine and cosine
series. Therefore the Lie transformation for the Hamiltonian suitable for asymmetry
lattice will be done in this note.

The dynamic apertures of different DAΦNE configurations are estimated with
the formulas we got. The estimated apertures are generally smaller than those given
by tracking while nearly half of them are close to the tracking results.
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2. Sextupole Hamiltonian and Lie transform

2.1 Sextupole Hamiltonian

After appropriate canonical transformation, K.Y. Ng got the sextupole Hamiltonian[5]:

where q1m,3m and P1m,3m are related not only with the harmonic number along "θ"
coordinate, but also the distribution of the sextupoles. According to the definition of each
symbol in eq.(1)[5], we can get the formula of sextupole Hamiltonian:

where:



G-52  pg. 3

Here we keep the definition of all symbols same with those given by E. Levichev et
al.[2,3,4] so that they will be slightly different from those given by K.Y. Ng[5].
It can be seen from eqs.(2) and (3) that for symmetric lattice, which are the situations of
lots of light sources, the Hamiltonian will be same as that given by E. Levichev and V.
Sajaev because all the sums of the sine series in eq.(3) will be zero. However for
asymmetric lattice, such as the situation of DAΦNE with two different interaction regions,
neither the sine series nor the cosine series could be neglected.

Both the Hamiltonian formulas given in eq.(1) and eq.(2) are suitable for Lie
transformation. However in order to compare our results directly with those got by
E. Levichev and V. Sajaev, we will start our work form eq.(2).

2.2 Lie transformation results

The Lie transformation is used for the system whose Hamiltonian is the sum
 of h0, for which the trajectory is known, and some small perturbations hn. There are
some detail descriptions of such application on accelerator physics[4,6,7,8]. We will
do the transformation here following the steps of the so-called Deprit perturbation
theory[6,7], the same steps that E. Levichev and V. Sajaev have already used.
However, here we will give some more general results than theirs so that our results could
be used for some estimation on DAΦNE with asymmetric lattice.

In Deprit perturbation technique, the old Hamiltonian H, the new Hamiltonian
H  and the generating function w are expanded as the power series:

and the Lie transformation operator:

In our case, ε ~ √4. The generating function of such transformation can be found
step by step from:

where D H0 0= + [ ]∂ ∂θ/ , is the derivative operator along the trajectory of the

unperturbed system, ˆ ,L wn n= [ ] is the Poisson bracket operator, T̂n
−1 is the reverse

operator of T̂n . The new Hamiltonian will be chosen in such values to cancel the

secular terms during the integration of the RHS of eq.(5).
.
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In this paper we will give the results for two cases: (a) in two dimensional
space transform up to the first order of perturbation; (b) in one dimensional space
transform up to the second order. Both the sine series and the cosine series will be
included in the Hamiltonian transformation. Because the detail procedures of the
transformation can be found somewhere else[4,6,7,81, only the brief results of our
derivation will be given in the following, for two situations:

A. two dimensions, first order transformation

and the relationship between new momenta and old ones:
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We keep the terminology same as those given by E. Levichev and V. Sajaev in order to
verify our results by a simple comparison to theirs.

B. One dimensional, up to second order transform
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and the relationship between new momentum and old one:

where:

When we set Zjm=0,(j=1,3), we will see that all the a(*)(*,0,m) coefficients given
here are same as those given by E. Levichev & V. Sajaev except a(2)(0,0,m) is
different by a factor of 2. As for other coefficients, c*(*,*,m) are introduced by the
lattice asymmetry effect, b*(*,*,m) are caused by two dimensional consideration,
while d*(*,*,m) are caused by both of the above reasons.
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3. Application for dynamic aperture estimation

Two ways have been mentioned by E. Levichev and V. Sajaev to estimate the
dynamic aperture using the results of Lie transformation[2,3]: (a) Since the Lie
transformed Hamiltonian is angle independent ( / ),∂ ∂φH x z = 0 , the new momenta
should be invariant of motion, therefore eqs.(7), (8), (11) can be written as
J J J Jx z x z x z x z x z x z, , , , , ,( , ) ( , )φ φ= = =0 0 , and we can find the maximum Jx,z beyond
which there will be no solution of Jx,z at some positions and that maximum Jx,z will
determine the dynamic aperture. (b) because normally only single-resonance or few
harmonics dominate the total movement, E. Levichev and V. Sajaev used the single
resonance approximation of the transformed Hamiltonian to get the dynamic aperture
analytically from eqs. ∂ ∂φH / = 0, ∂ ∂H J/ = 0 and the results are almost the same as those
given by tracking[2].

In this note, we first try to estimate the dynamic aperture by finding the
maximum existing contour of Jx of eq.(11) at a fixed θ position numerically (we
choose θ=0 because so did E. Levichev and V. Sajaev in [2,3]). That means the
calculation is up to the second order perturbation and using one dimensional
approximation. For a given Jx(θ=0), the solution of Jx at 150 other points along the circle
(φ =0-2π) are calculated with the Newton method. Since xD = 2βx xJ , σx = β εx  for
zero coupling and in DAΦNE ε = 1.0E-6m.rad, there will be

x JD x x/ .σ = ×2 0 106 (13)

For calculation the dynamic aperture, we substitute the minimum value of Jx in outmost
contour of J Jx x x( )φ  into eq(13). When θ=0, eq.(11) becomes:

where
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All the summations in eqs.(9), (12) and (15) will approach stable values when m and
l become greater then several hundreds. For the calculation in this note, m, l are
within a range from -1000 to 1000. The dynamic apertures for 5 different DAΦNE
lattice configurations, two different working points for each configuration[1] are
estimated and listed in Table 1. The subscript "A" means the asymmetry coefficients
are included in the estimation. For asymmetric lattice, only the results including
asymmetric coefficients are correct. The results without the asymmetric coefficients
are kept in the table only for a comparison.

Table 1. Numerical results of e .(11)

* The definition of the configurations are given in [1], for different lattice and
working points.

* * NL means no limit of JX has been found from eq.(l4).
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The tracking results given in [1] show that the dynamic apertures of all the

configurations are greater than 20σx, except "3(a)" configuration where DA~17 σx.

But in table 1, there are about half of the estimated dynamic apertures smaller than the

tracking results. Currently we don't know why. However, except 3(a) and 4(b)

configuration, all the estimated apertures are greater than the physical aperture, which

is about 10 σx off coupling in horizontal plane.

It can be seen from Table 1 that for some cases we cannot find the limit of the

Jx from eq.(14). That is because θ=0 limited the influence of A200 on Jx along the

trajectory of the particle. If we use eq.(11) and θ=φ/νx (that means we find the

solution of Jx along the unperturbed orbit), the limit of Jx for 1(a), 2(a), 4(a)

configurations will be found and the dynamic aperture of these configurations in table 1

are given by such limits. We search the Jx value along the orbit for three circles

(θ=0--6 π). However no limit of Jx can be found for 5(b) case if the asymmetry terms

in the Hamiltonian are not considered.

From eq.(12) it can be seen that the value of the coefficients of eq.(14)

represents how much influence the different harmonics will have on the momentum

Jx. Effects of four harmonics: νx=m, 2νx=m, 3νx=m and 4νx=m, are included in

eq.(11). For higher harmonic effect, one has to use the results of more higher order

Lie transformation.

Table 1 shows that A130 is greater than A110 and C130 is greater than C130

for almost all the configurations. That means 3νx=m harmonics normally has stronger

influence than νx=m harmonics. For l(b), 2(b), 3(b), 4(b) (νx=4.53) and 3(a), 5(a)

cases (νx=5.09), all the A220 (or A220A, C220) values are quite big. That means

2νx=m harmonics have strong influences; For l(a), 2(a), 4(a) and 5(b) cases, the

A220 (or A220A) values are big, and it can be seen from eq.(l2) that the 3νx=m harmonics or

a kind of "coupling" between the 3νx=m and νx=m harmonics will play an important role.

When Jx is big and close to the dynamic aperture limit, the numerical results

of eq.(14) (or eq.(11)) shows that Jx(φx) is quite wavy along the trajectory, but when

Jx is small and far away form the dynamic aperture limit, the Jx(φx) is quite smooth.

So it is also possible to check how Jx(φx) behaviours when Jx close to the physical aperture

limit. We do it in this way: Setting the maximum of Jx in the contour to be

l0σx (the physical limit in DAΦNE) then to search the minimum value of Jx(φx) in the
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contour and find the aperture calculated from this minimum Jx, that gives the "total

effect" of the sextuples and the physical limit. The results are shown in Table 2. In

order to have a impression of the distortion of Jx(φx) plot when Jx is big, a set of

maximum and minimum values (J1DA, J2DA) of Jx on the outmost contour we

calculated are also listed (if for some cases there are no limit by eq.(l4), we use

the result of eq.(11) instead, i.e., searching the solution along particle trajectory). J1PH

was fixed to 5.0xl0-5m as the physical limit of l0σx and it was taken as the

maximum value of the contour of which the minimum is J2PH. Dt is the aperture calculated

from J2PH and we take it as the total effect of both sextupoles and physical

limit. For 3(a) configuration, this estimate predicts a 30% decrease of aperture. In 3(a)

configuration, not only the 2νx=m harmonics is strong (big A220A value), but also

3νx=m harmonics (big A130 and C130 values).

Table 2.

Summary

The trigonometric series of sextupole Hamiltonian suitable for Asymmetric

lattice is given. The Lie transformation of (a) two dimensional first order and (b) one

dimensional second order are also given. The dynamic apertures of 5 proposed

DAΦNE configuration[1] (two work points of each configuration) have been

estimated. Nearly half of the results are close to the tracked results while nearly half

of the results are smaller than those given by tracking.
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