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1  Introduction

The DAΦNE Φ-Factory is an e+ e- high luminosity collider under construction at the INFN-
LNF (1).

At present its accumulator ring is being commissioned, and the first beam has been successfully
stored (2). Measurements of bunch lengthening and energy spread have not been performed yet,
and therefore in this paper we present the results of a theoretical-numerical study.

The preliminary estimates of the beam impedance (3) and the microwave instability threshold
have shown that the nominal current is far above the turbulence threshold.

In order to study the bunch lengthening process and the microwave instability manifestation in
the accumulator ring, we use a numerical tracking code that simulates the single bunch
longitudinal dynamics. We also undertake an analytical study and compare different models that
estimate the instability threshold with the tracking code results.

In Section 2 we describe the numerical results obtained with the multiparticle tracking code,
while in Section 3 we perform the analytical study of the mode coupling leading to turbulence.

Table 1 shows the accumulator ring parameters relevant for both the numerical and analytical
studies.

Table I.  DAΦNE Accumulator Parameter List

Nominal Energy MeV 510

Machine Length m 32.56

Momentum Compaction .034

Damping Time ms 10.71

Natural Rms Bunch Length cm 1.75

Natural Rms Energy Spread 4.1 × 10-4

RF Peak Voltage KV 200

Harmonic Number 8

Maximum Number of Particles 9 × 1010



G-44  pg. 2

2  Numerical Simulations of the Bunch Lengthening

In order to study the bunch lengthening in the DAΦNE accumulator ring, we use a standard
numerical tracking technique which has already been successfully applied in the bunch
lengthening simulations for the SLC damping rings (4), SPEAR (5), PETRA and LEP (6).

The motion of Ns  super particles, representing a bunch with a total charge Q , is described in
the longitudinal phase space by:
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In the equation (1) εi n( )  and z ni( )  are respectively the energy and the position coordinates of
the ith particle after n  revolutions in the storage ring; To  is the revolution period; τε  the damping
time; σεo  the rms of the bunch unperturbed energy distribution; ′Vrf  the derivative of the RF
voltage with respect to the particle longitudinal coordinate; αc the momentum compaction; Lo  the
machine length; E  the nominal energy, V zind i( )  the voltage induced by the whole bunch and seen
by the ith particle in the position zi , and R ni( )  a random number obtained from a normally
distributed function with mean 0 and rms 1.

At each turn, all the superparticles are distributed in a given number of bins in accordance with
their longitudinal position. The bunch is considered as a composition of short gaussian bunches
(substantially shorter than the bunch itself) and located at the bin centers. The induced voltage is
calculated as a convolution of the wake potentials of the short gaussian bunches.

For DAΦNE accumulator ring, the wake potential of a gaussian bunch with an rms bunch
length of σz = 5 mm  is used in the induced voltage calculations.

In order to determine the wake potentials of the bunch in all the important vacuum chamber
components, we used ABCI (7) and MAFIA (8) computer codes. The dominant impedance
elements were found to be the injection-extraction kickers, the RF cavity and numerous small
discontinuities. The resulting total wake potential is shown in Fig. 1.
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FIGURE 1.  DAΦNE accumulator wake potential of 5 mm gaussian bunch.
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The main results of the simulations are shown in Figs. 2 - 3.
Figure 2 represents the rms bunch length averaged over many revolutions as a function of

number of particles in the bunch. The behavior is very regular and it is impossible to distinguish
any instability threshold. However, the threshold is quite evident in Fig. 3 where the average rms
relative energy spread versus the number of particles N  is shown. The microwave instability
threshold is clearly seen at Nth = ×2 1010 .
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FIGURE 2.  Rms bunch length versus number of particles.
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FIGURE 3.  Rms energy spread versus number of particles.

Since the accumulator ring has to operate above the predicted threshold, we investigated the
turn-by-turn rms bunch length behavior at the nominal current, with N = ×9 1010 . Figure 4
displays the turn-by-turn bunch length after 6 damping time. The maximum variation in σ z  is less
than 4% and it is considered not dangerous for the machine operation.
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FIGURE 4.  Rms bunch length as function of turns with τε  = 10.71 ms.

It is worth to mention the importance of simulations with the real damping time, even if it
requires vast amount of computing time. As an example, Figure 5 shows the bunch length versus
number of turns, but with τε  reduced by a factor of 20. From the plot, wrong conclusions may be

drawn, like to see nonexistent saw-tooth behavior.
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FIGURE 5.  Rms bunch length as function of turns with τε  = .5 ms.

To conclude this section, in Fig. 6 we compare the bunch shape in the turbulent regime
( N = ×9 1010  particles) with a gaussian bunch of the same rms length. The shape is more
bulbous than gaussian and slightly distorted, meaning that the ring wake field has a mainly
inductive component. From the figure we can also conclude that the gaussian distribution
approximates very well the bunch shape even in the strong turbulent regime.
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FIGURE 6.  Bunch shape and gaussian distribution.

3  Analytical Study

The microwave instability regime is usually described by a mode coupling theory. If the bunch
distribution has a head-tail symmetry, that is the wake field is mainly inductive, the azimuthal
modes of the distribution function can couple after the mode frequencies have been shifted by
large amounts (comparable to the synchrotron frequency). In this situation we have the so-called
strong microwave instability characterized by a growth rate of the same order of magnitude of the
synchrotron frequency.

When the wake field has a high resistive component, there is a head-tail asymmetry and radial
modes can trigger the instability. The mode frequency shifts are small, the coupling is weak and
can be stabilized by both the radiation damping and Landau damping effects.

Before analyzing the microwave instability, we start to study the bunch length below the
instability threshold. We compare solutions of the stationary self-consistent Fokker-Planck (9)
equation, or Haissinski equation, with the results of the tracking code. The difference is no more
than few percent, showing that the Haissinski equation is thus a valid tool to evaluate the bunch
length in the steady state regime.

As far as the microwave threshold is concerned, the simplest approach is to use the Boussard
criterion (10):
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where the impedance Z n/  is calculated from the wake field using a Broad-Band Resonator
model. For DAΦNE accumulator ring, the value Nth  given by equation (2) has been found to be
Nth = ×6 25 109. , that is by a factor of three smaller than the one obtained with the simulations.
This means that more rigorous analysis is necessary to explain the simulation results.
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To further investigate the single bunch behavior in the turbulent regime, we use the mode
coupling theory based on the Vlasov equation:
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with ψ εz t, ;( )  the distribution function, and H z t, ;ε( )  the single particle Hamiltonian. By
linearizing the function ψ εz t, ;( )  around the stationary distribution and with the azimuthal mode
expansion of the perturbed distribution function, we obtain for each azimuthal number m  the
general equation (11):
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where we have introduced the action and angle variables J  and φ , with Ω  the coherent oscillation
frequency, ω J( )  the synchrotron frequency depending on the oscillation amplitude, R Jm( )  the
radial function of the mth azimuthal mode of the perturbed distribution, ψ o J( )  the stationary
distribution, and Z ω( )  the longitudinal coupling impedance.

If we make the further assumption that the bunch is gaussian, hypothesis supported by Fig. 6
from which we see that the gaussian distribution approximates very well the bunch shape, equation
(4) can be simplified to:
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with ωso  the synchrotron frequency, ẑ  the single particle amplitude of oscillation and J xm( )  the
Bessel function of the first kind of mth order.

By expanding the radial function R zm ˆ( )  in terms of orthogonal polynomials, and considering
only the most prominent radial mode, equation (5) can be transformed in a simple eigenvalue
equation:
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The coherent frequencies Ω  are therefore obtained by solving the equation:

det M I− −( )[ ] =Ω m soω 0 , (8)

where M  is the matrix given by equation (7), and I  the identity matrix. The instability arises
when the frequencies Ω  become complex.

In order to calculate the microwave threshold, it is necessary to know the longitudinal coupling
impedance as a function of the frequency ω . For DAΦNE accumulator ring the impedance is
approximated reasonably well by (12)

Z R i Lω ω( ) = + (9)

In Fig. 7 we show a comparison between the wake field obtained with the simulations and the
corresponding one obtained with the RL  impedance.

Since inside the bunch distribution the two wakes do not manifest any significative difference,
and the corresponding loss factor is the same in the two cases, we use the RL  model to calculate
the matrix elements. By substituting the relation (9) into equation (7), the integral can be solved
giving:
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where

2 1 1 3 2 1n n+( ) = ⋅ ⋅ ⋅ +( )!! K . (11)
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FIGURE 7.  ABCI and RL  impedance model wake fields.
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With the matrix elements given by equation (10) we have solved equation (8) with the first six

coherent azimuthal oscillation modes. The eigenfrequencies Ω  are plotted in Fig. 8 versus the

number of particles in a bunch.

The dashed line represents the imaginary part of the frequency, that is the growth rate. The

microwave threshold is Nth = ×3 1010 , 1.5 times the one obtained with the simulations, and the

instability is due to the coupling of the modes m = 1 and m = 2 , dipole and quadrupole

respectively.

For a complete analysis of the mode coupling, one should include in the treatment also the

radial modes of oscillation for every azimuthal number. Unfortunately solutions for the Vlasov

equation in this case can be found only when we consider a very simple distribution function, such

as the so-called double water-bag distribution (13).
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FIGURE 8.  Azimuthal coherent frequency shifts.

In the phase space it is described by the equation:

ψ ψJ U J J U J J( ) = −( ) −( ) + −( )[ ]1 1 2Γ Γ , (12)

where the constant ψ  is derived from the normalization condition, Γ  is a parameter between 0

and 1 to better approximate the double water-bag to the real distribution, and U J( )  is the step

function.
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From equation (12), the radial modes are

R J A J J B J Jm m m( ) = −( ) + −( )δ δ1 2 , (13)

with δ J( )  the symbolic Dirac delta function. By using the relation (13) in equation (4), we obtain
the eigenvalue system:
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and where w z( )  is the machine wake field.
The determinant of the system (14) gives the values of the eigenfrequencies Ω . If we take into

account also the coupling of the radial modes with different azimuthal numbers, we obtain for the
accumulator ring the plot shown in Fig. 9. Even if the threshold, determined by the coupling of
modes 4 and 5 with different radial number in this case is the same of that of the simulations

Nth = ×( )2 1010 , it is necessary to point out that the truncation of the matrix to the first azimuthal
modes (9 in this case) may lead to wrong results since the matrix elements go to infinity as m
increases. The instability growth rate is lower than that obtained with the azimuthal mode coupling
theory, but still higher than the radiation damping.
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FIGURE 9.  Azimuthal and radial coherent frequency shifts.
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Conclusions

The numerical simulations show that the bunch in the DAΦNE accumulator ring is expected to
be in the turbulent regime at the nominal current N = 9 ×1010 . The microwave instability
threshold has been found to be at Nth = 2 ×1010.

The bunch lengthens from the natural value of σzo = 1.75 cm to σz = 4 cm at the nominal
current, and the relative energy spread widens from 4.1 ×10−4 to 6.5 ×10−4 .

Analysis of turn-by-turn beam sizes at the nominal current shows that the change in the bunch
length does not exceed 4%, i. e. not dangerous for the machine operation.

Analytical study has been undertaken, and different models have been used to predict the
microwave threshold value and compare it with the numerical results.

Application of Boussard criterion gives an instability threshold a factor 3 lower than that of the
simulations.

The perturbation modal analysis of Vlasov equation gives a closer result. In particular it is
shown that the bunch shape can be approximated by a gaussian distribution function, and the
azimuthal mode coupling theory can be applied. The corresponding strong microwave instability
threshold is found to be 1.5 times the one obtained with the simulations.

The double water-bag model allows to treat the radial mode coupling analytically. The threshold
of a weak instability due to a coupling of radial modes with different azimuthal numbers has been
found at Nth = 2 ×1010, which is exactly the same as found by numerical simulations.

Accurate experimental study is necessary to confirm the analytical predictions.
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