DAD®NE TECHNICAL NOTE
INFN - LNF, Accelerator Division

Frascati, July 23, 1996
Note: G-41

IMPEDANCE OF A COAXIAL CAVITY COUPLED TO THE BEAM PIPE
THROUGH A SMALL HOLE

S De Santis, L. Palumbo

Abstract

In this paper we derive the impedance of a coaxial-line resonator coupled to the beam pipe
through a small hole. The method used takes into account the scattered fields on the aperture to
calculate its eectric and magnetic dipole moments. The low frequency impedance shows a resistive
contribution accounting for the cavity loss.

1. Introduction

The low frequency impedance of a hole on abeam pipe can be calculated by applying Bethe's
diffraction theory, stating that the holeis equivalent to a combination of radiating electric and mag-
netic dipoles and that their moments are related to the amplitude of the incident field. This method,
being independent from the structure geometry outside the beam pipe, yields an imaginary
impedance only [1-3]. More recently, thereal part of the impedance has been calculated taking into
account the energy radiated by the hole through propagating fields [4-6]. In this paper we caculate
the impedance when the hole radiates into a resonant structure (Fig. 1), as this geometry is more
likely to represent properly many cases that are encountered in practice.
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FIG. 1 - Coaxial resonator.
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2. Monopole Longitudinal mpedance

It has been shown [1] that the longitudinal impedance of a hole in the wall of a round beam
pipe can be expressed as a function of the magnetic and eectric dipole moments, Mj and Py, corre-
sponding to afirst order approximation of the scattered field. Limiting ourselves to frequencies
below the pipe cutoff, we can write for a point charge g travelling along the pipe axis with
velocity ¢

. (DZO 1
Z,=— “M,+P 1
7/ J 2 1bg (c 0 r) (1)
In generd, the dipole moments are given by
PZg&e'(EO+Esp_Esc)’ M:&m'(HO+HSp_Hsc) (2

where 0, and a.,,, are the polarizability tensors for the aperture, Eg and Ho are the primary field
radiated by the travelling particle (appendix A), and Eg, Hep, Esc, Hse are the scattered fields in the
pipe and in the cavity respectively. All the fields are evaluated & the aperture center
(r =b,p =0,z = zg).

The modified Bethe' s diffraction theory [7] states that only the propagating modes contribute

to the dipole moments in (2). Assuming that only the TEM1 mode is resonating in the cavity,
equations (2) become

P, = €0te (Eor — Egr ), My, = i (Hop — Heep) (3)

The scattered fields Esy and Hsep can be expressed through the cavity eigenfunctions e, h,
and the coupling coefficients Cey, Cn1:

Escr = Ce1€1, HSC(p = Cph1hy (4)

where[7]
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e1 and hy arethe TEM 1 normalized mode fields calculated on the aperture center, that is

o = 1 cos(kyzg)

Y7 UalIndb) b ©)
h = 1 sin(kyzg)

g =

~JaLIn(d/b) b

Substituting (4) in (3), we obtain the following linear system for the dipole moments

2
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k k
where, for the sake of compactness, we have defined
G=1+2"0, K=k2-kZ ©)

1

After afew calculations, the longitudinal impedanceisfound to be

Zsy=-]JZgF(20,,Q,) 9)
where
. koZoR3
—iZ, = —j-0%0" 10
IS J 672'2b2 ( )

is the impedance derived by Kurennoy in [1] for around hole in acircular pipe, and

F(zp,0,Q1) =

2
1—4nkTo[1+cosz(klzo)(d'—1)]
- k
_ ] (1)
_ kio 2 5 _ 2cin? _ 2 .2
1-2n h [COS (k1zp)a — 2sin“(kyzg) — 4 ncos”(kyzg)sin (klzo)]

(R/b)*(R/L)

with n =
1= 37indb)

In Figs. 1-2 the real and imaginary parts of the longitudina impedance are shown for three
positions of the hole. It isworth nothing that, as the hole moves from the middle to the side of the
cavity, the impedance increases since there is coupling through the magnetic field as well. The
frequency shift of the curves can be explained in terms of Slater’ s theorem.



G-41 pg. 4

2.990 2.995 3.000 3.005 3.010

FIG. 2. Real part of the longitudinal impedance
for three values of z (L=50 mm, d=24 mm, b=20 mm, R=4 mm, Q;=2900).
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FIG. 3. Imaginary part of the longitudinal impedance
for three values of z; (L=50 mm, d=24 mm, b=20 mm, R=4 mm, Q;=2900).

A. Maximum shunt impedance

It isinteresting to cal culate the maximum value of the impedance as a function of the position
Zp of the hole. When zy = 0, that is the hole is at the cavity mid-length, it is easy to show that the
real part of the longitudinal impedanceis

27, nk?k2Q;:t
ZRE — K 1701 (12)

[k? -kg@+2n)@+ Ql‘l)]2 + [k @+ 217)(21‘1]2
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and that its maximum value

_2Z,n(Qq +1)

ZRE ,max = 1+27 =2nNQZy = Zon2Q1 In(d/b) (13)
is reached when
k
Koy = ; 1 =
V@+27)(2+Q7) (14)

The imaginary impedance is given by

KZ2(1+Q 1) -k3(@+2n)(1+2Q.h)

Zyy =—1Zg 1—2nk§ 2 2
k2 -kZ2@+2m@+Qrh)| +[k3@+2mQ;?]

(15)

so that it is zero when (14) holds.

When the hole is no more a the cavity mid-length, we can see from (9) that for low-loss
cavitiesand n<<1

ZRE,max (ZO)
ZRE,max(ZO = 0)

=1+ 3sin?(k;zp) (16)

3. Dipole Longitudinal and Transverse | mpedance

Proceeding in asimilar manner, one can easily derive the transverse and the dipole longitudind
impedances by applying their standard definitions, provided the expressions of the dipole
component of the incident field are used in the right hand side of system (7).

We obtain for a point charge with offset r1,¢;

_ 2KogZo R3
Zy7Nr, ) =] 3;20b—4F(Zo’w,Q1)”1005<PCOS(P1 (17)
and
z ——jﬂR—SF(z ®,Qq)cos @;f (18)
L 37[2 b4 (OR Rt A 1

Again, we find the same expressions found by Kurennoy, but for the factor F(zy,®,Q1).
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4. Conclusions

Applying Bethe's modified theory of diffraction to a hole radiating into a bounded space, we
obtain that Kurennoy’s impedance for a round hole is corrected by a complex coupling factor
depending on the geometry and electromagnetic properties of the outer structure.

The correcting factor has been caculated for the case of a resonant coaxial structure, and the
most relevant features of the low frequency coupling impedance have been investigated.

APPENDIX A

The fields produced by a point charge q travelling insde a perfectly conducting cylindrical
pipewith velocity ¢z, can be expressed as a sum of multipole terms[8§].

The low-frequency expression of the first (monopole) term on the pipe surfaceis

Eor(r =b,p=0)=2Z¢ -

q27rb (A1)
Ho,(r=b,0p=0)=—"—
O(p( ¢ ) 2 1b
while the second (dipole) term is given by
n=1 _ _ _ q
Eor (r=b,9=0)=24 > o2p2 (1608
; " (A2)
HE (r =b, @ = 0) = —5—r; coS
Oop ( ¢ ) 271'2b2 1 1
APPENDIX B

The quality factor for a coaxial-line cavity of length L and radii b and d, resonating in the
TEM1 modeis

2L
Q = (B1)
slas L(1+d/b)
dIn(d/b)
The skin depth ¢ has the following expression
—~Cc[ L . 2 —1/2
§=12 —[\1+ (o/we) —1] (B2)
0]

where o isthe conductivity of the cavity walls.
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APPENDIX C

The resonant modes of a coaxia cavity can be obtained from the modes propagating into a

coaxia line, with the additional condition of vanishing tangentia electric field and normal magnetic
field on the end plates (z = £L/2).

The following modes are found:

TEM modes

: (C1)
| sm(k,z)q)

TE modes

€hm) = Cn,m,l (_%[Jn ]cos(ngo)cos(k,z)? +
+ Kenmy[ 35 Isin(ng) cos(k;2))

k: (n,m)k T . ~
hn,m,l = Cn,m,l (_t(nw—;)l[\]n Isin(ng)sin(k,z)r +

—ﬁﬂ[\]n]cos(n(p)sin(k,z)@+ (C2)
ou '

2

+ M) 3 sin(ng)cos(k,z)2
jou

TM modes

€hm) = Cn,m,l (_%[Jrﬁ ]cos(mp)cos(k,z)? +
+%?[Jn]sin(n<p)cos(k|z)® +

k& _ X
ji)s %[Jn ]COS(nQD)Sm(MZ)ZJ
|

i m, :Cn,m,|(—%I%[Jn]Sin(mp)sin(k,z)F+ (C3)

_%[Jr’] ]cos(ngo)Sin(klz)(T’]
!

In the above expressions (C1-3) we have defined k) = In/L and
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~ YI',1 (kt(n,m)b)
Hnl = In om0 31 (ko m )
Yn (kt(n'm)b)

V Jr’l(kt(n,m)b)Y, (K r TE (C4)
T n \Rt(n,m) ) n,m,l
Yn (kt(n,m)b)

[Jn]:Jn(kt(n,m)r)+<_Jn(kt(n,m)b) ’

—— Y7 (k ry ™™
Yn(kt(n,m)b) n( t(n,m) ) n,m,l

Yn (kt(n,m)r) TEn,m,I

Yn (kt(n,m)r) TMn,m,l

The kt's in (C4) are 1/b times the zeros of [Jy] (TE modes) and of [Jy] (TM modes),
caculated for r = b.

The normalization factors C; and Cp, m,| are found from the condition

J [t 2 rerdpaz =1 (cs)

for the TEM1 mode C; = [#L In(d/b)] 2.
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