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INTRODUCTION

The ionisation of the residual gas, present in the vacuum chamber, by the circulating electron
beam is a well known phenomenon. Under certain conditions the ions can be trapped in the beam
potential well and move on stable oscillating orbits inside the beam. This is the so called “Ion
Trapping” effect that produces a general detriment of the electron beam performances such as
tune-shift, spread, emittance blow-up, horizontal and vertical motion coupling, enhancements of
elastic and inelastic collisions with the residual gas [2], and for an electron-positron storage ring
an undesired loss of luminosity. To avoid these effects the “clearing” of the trapped ions has to
be achieved by means of an “ion clearing” system which means the use of DC and RF
electrodes or the set up of different operating conditions for the machine, (i.e. the asymmetrical
filling of the electron bunches), which lead to the desired instability for the ion orbits.

In the first part of this report the general concepts of Ion Trapping are reported, providing the
basic considerations for the DAΦNE ion clearing system. The Poisson equation for the potential
well due to the electron beam has been solved in order to locate the minima of the function, and
the suitable positions for the DC clearing electrodes.

The three-dimensional equations of motion have been written according to the lattice of the
storage ring. The numerical integration of the ion motion equations has been performed with the
help of the NAG FORTRAN Libraries and the results are shown for the two Bending Quadrants
(BQ) of the DAΦNE Main Ring.

The DAΦNE clearing system is proposed.

I. TUNE SHIFT AND NEUTRALISATION FACTOR

The force on the electron beam in the electric field due to the ions trapped inside the beam is
focusing for both horizontal and vertical planes [2]. The tune shift is given by:

δQH ,V =
1

4πE
βH ,V

∂Fx ,y

∂x, y
Rdθ∫ , (1)

where E is the electron energy, βH,V is the betatron function (horizontal or vertical), Fx ,y  the force
acting on the electrons, R the radius of the storage ring and θ the azimuthal angle.

Assuming that the longitudinal distribution of ions is uniform and the transverse distribution
is a duplicate of that of the electron beam [3], the derivatives of the forces ∂Fx ∂x  and ∂Fy ∂y
are given by:

∂Fx

∂x
=

Nje
2

ε0πσH (σH + σV )C
=

ηIe

πε0cσH (σH + σV )

∂Fy

∂y
=

Nje
2

ε0πσV (σH + σV )C
=

ηIe

πε0cσV (σH + σV )
,

(2)
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where Nj is the number of the ions, ε0 the permittivity of the free space, σH and σV the horizontal
and the vertical beam sizes respectively, C the circumference of the ring, e the electron charge, I
the electron beam current, η the neutralisation factor, which is the ratio of the density of ions to
electrons, and c is the velocity of light.

Assuming that the neutralisation factor η varies slowly over the entire circumference of the
ring we can write[2]:

δQH ≅
e

4π 2ε0cE
I ⋅ η ⋅

βH (1 + K)

βH + KβV

C

εT

δQV ≅
e

4π 2ε0cE
I ⋅ η ⋅

βV (1 + K)

K βH + KβV( )
C

εT

,

(3)

where K is the coefficient of coupling, εT is the emittance, and the symbol 〈 〉 shows the average
over the circumference of the ring.

The maximum tolerable value for δQH ,V  sets the limit for 〈η〉, which can be written also as [3]:

η ≅
τdrift

τ prod

, (4)

where τdrift is the migration time of the ions and for τprod we have:

1
τ prod

= c ⋅ σ p ⋅ρg , (5)

where c is the speed of light, σp the ion production cross section, and ρg  the mean value of the
residual gas density1.

Once the limit for 〈η〉 is known we can obtain the maximum tolerable value for τdrift which can
be written also as:

τdrift = l
υs

(6)

where υs is the drift velocity of the ions and l represents the distance between the clearing
electrodes locations.

                                                
1 See Appendix A :  “Calculations of the relevant parameters of the ion clearing system for the
DAΦNE electron ring.
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II. LINEAR THEORY

In the simplified linear model of ion trapping the interaction between ions and electron bunch is
described with the help of the thin lenses approximation and the usual matrix formalism. The
longitudinal velocity of the ions is always negligible compared with that of the relativistic stored
electrons; moreover every variation of the drift ion velocity is also neglected. Let x  and ẋ  be the
position and speed of the ion respectively. After the passage of an electron bunch the new
position x2  and speed ẋ2  are obtained applying to the previous x1, ẋ1( ) the linear operator M
described by , [1]:

x2

ẋ2







 = M

x1

ẋ1









=
1 Tb

0 1








1 0

−α 1








x1

ẋ1







 ,

(7)

where Tb is the period of the electron bunches, and α is the linear kick parameter given by:

α =
Ne

Tot 4rpc

A2 p2σH ,V (σH + σV )
(8)

A= molecular number of the ion
rp = classical proton radius
p = bunch number
c= speed of light
Ne

Tot=total number of circulating electrons
From the stability condition, imposed on the trace of the matrix, the critical ion mass Ac  is

obtained, above which the ion motion is stable:

Ac =
Ne

TotrpC

2 p2σH ,V (σH + σV )
. (9)

C= circumference of the ring.

Another way to cope with the ion trapping effect is the asymmetrical filling of the electron
bunches [4]. In this case we have:

x2

ẋ2







 =

1− ω 2τTb Tb

−ω 2τ 1











p
1 Tb ⋅ (h − p)

0 1








x1

ẋ1







 , (10)

where h is the harmonic number and p is the number of consecutively filled bunches.
The stability condition can be found numerically. Plotting the value of the matrix trace versus
1 Ai we obtain stability and instability bands for the ions, depending on the machine parameters,
the current value I and the filling factor p, (see Fig. 1).
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Figure 1. The trace of the motion matrix M is shown as a function of the reciprocal of the atomic mass number
for a given beam size and current.

III. NON LINEAR THEORY

The electric field due to a Gaussian distribution of electric charge in both directions of the x-y
plane can be written [5]:

Ex

Ey









 =

Im(Z)

Re(Z)






                 where:

Z = A ⋅ w
x + iy

2 σ x
2 − σ y

2( )












− e

−
x 2

2σ x
2

+
y2

2σ y
2











⋅w

x
σ y

σ x

+ iy
σ x

σ y

2 σ x
2 − σ y

2( )







































,

A =
Ne

2ε0 2π σ x
2 − σ y

2( )
,  w(z) = e− z 2

1 +
2i

π
e−ζ 2

dζ
0

z

∫








.

(12)

In Fig. 2. Ey Ne is plotted vs. the y σ x ratio for different values of the coupling factor k.
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The linear behaviour actually lies only in the first one sigma range. As a consequence the
strength of the electric field exerted on the ions strictly depends on their positions with the
respect to the centre of the bunch.

For this reason it’s better to track the motion of the residual ions instead to look for general
statements that could oversimplify the problem.

Furthermore a three-dimensional analysis is needed to get a reliable description of the trapped
ions motion.
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x
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y
=9.0207E-4 (m)

Figure 2. The vertical component of the electric field due to a Gaussian distribution of charge in both directions of
the x-y plane, and a longitudinal linear density λ = Ne

Tot ⋅e C , is plotted vs. the vertical co-ordinate. Two

values of the coupling factor k have been considered.

IV. POTENTIAL WELL CALCULATION

In order to have a good scenario of the boundary conditions for the ion trapping effect the
calculation of the potential well due to an electron beam has been carried out for a storage ring
with a rectangular vacuum chamber .

y

s

x

a

b

0

Φ= 0

Φ= 0

Φ= V(x,y)
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In the continuous beam model we can consider an uniform electron distribution along the
longitudinal co-ordinate s, and replace the time-dependent function with its average with respect
to time. Finally we can write for the electron density ρ(x,y):

ρ x, y( ) =
λ

2πσ xσ y

⋅e
−

x−Xc( )2

2σ x
2

+
y−Yc( )2

2σ y
2











, (12)

with λ =
Ne

Tot ⋅e
C

=  linear charge densityand:

x,y = horizontal and vertical transverse co-ordinates
s = longitudinal co-ordinate of the motion of ions and electrons
Ne

Tot= total number of electrons
C= total circumference of the ring
σ x ,σ y =  standard deviations of the electron distribution
Xc,Yc = beam centre transverse co-ordinates.

For the potential Φ(V) due to the presence of the electron distribution inside a rectangular
vacuum chamber of infinite length we have2:

∇2Φ = −4πρ inside the vacuum chamber

Φ = 0  on the chamber walls (i.e.  Dirichlet b.c.)





. (13)

The solution can be found from the Green’s function which satisfies:

′∇ 2G x, ′x( ) = −4πδ x, ′x( ) . (14)

Thus:
Φ x( ) = ρ ′x( )

V
∫ G x, ′x( )d3 ′x +

+
1

4π
G x, ′x( ) ∂Φ

∂ ′n
− Φ ′x( ) ∂G x, ′x( )

∂ ′n






d ′a

S
∫ .

(15)

The solution for our case is3:

Φ x, y( ) = λ
16
πab

sin
nπx

a






sin
nπXc

a






sin
mπy

b






sin
mπYc

b






n2

a2
+

m2

b2

⋅
n,m

1,∞

∑

                   ⋅ exp −
π 2n2σ x

2

2a2
+
π 2m2σ y

2

2b2






















,

(16)

                                                
2 C.G.S. units.
3 See Appendix B :  “Solution of the Poisson  equation with  Dirichlet boundary conditions for
a rectangular box of infinite length”.
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where a and b are the dimensions of the vacuum chamber cross-section. Strictly speaking, eq.
(17) should give Φ as a function of (x,y) only. In practice, we have an implicit dependence on s
through the variation of Xc,Yc, σx, σy along the vacuum chamber. This does not affect the validity
of eq. (17), since the variation of Xc,Yc, σx, σy in s is slow with respect to the other relevant scale
lengths of the problem. The results for the DAΦNE electron ring are shown in Fig. 3 for two
values of the coupling factor k.

It is evident that the potential Φ depends on the longitudinal co-ordinate s through the
variation of the beam size, the beam centre co-ordinates and the dimensions of the vacuum
chamber cross sections. This is the reason why abrupt cross section variations can provide
potential barriers for the longitudinal drift motion of the trapped ions. Therefore the balancing
effects of the eventual tapering, designed to connect different cross sections of the beam vacuum
chamber, have to be taken into account to well estimate the relevance of this type of barriers.

- 1200

-1000

- 8 0 0

- 6 0 0

0.0 10.0 20.0 30.0 40.0 50.0

Φ(V)k=0.01
Φ(V)k=0.1

Φ
(V

)

s(m)-half ring

Day-one config.

Figure 3. In this figure the potential well Φ Xc ,Yc , s( ) is plotted vs. the longitudinal co-ordinate of half DAΦNE

Main Ring, for two operating values of the coupling coefficient k, ( Xc ,Yc  are the beam centre co-ordinates). A
rectangular vacuum chamber cross section has been considered; the two abrupt variations of the potential
correspond to variations of the vacuum chamber cross section close to the Wiggler locations. The actual existing
tapering is very smooth and calculation have been carried out to estimate its weight on the potential well
behaviour. The effect of the tapering turned out to be very small comparing with the ∂Φ ∂s induced by the local
variations of the beam dimensions.

V. EQUATIONS OF THE ION MOTION IN PRESENCE OF AN ELECTRON
BEAM

The analysis of the residual ion motion in a storage ring can be divided into three parts:
a) free space(with no lattice elements)
b) dipole section
c) oscillating magnetic field section.
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The equations of ion motion in the free space in presence of an electron beam are:

˙̇x = −
q

Mi

Ex x, y,s( ),

˙̇y = −
q

Mi

Ey x, y,s( ),

˙̇s = −
q

Mi

Es x, y,s( ).

(17)

Here s represents the longitudinal co-ordinate along the ring for familiarity with the usual
machine physics representation.

Ex and Ey are the transverse components of the non-linear electric field due to a beam with
Gaussian distribution in both directions, (see par. III). The longitudinal component Es x, y,s( )is
obtained by:

Es x, y,s( ) =
Φ x, y, ŝ + ∆ŝ( ) − Φ x, y, ŝ( )

∆ŝ
, (18)

where Φ x, y, ŝ( )is a vector with the values of the potential well due to a linear distribution of the
beam charge at discrete positions ŝ = sj ,   j = 1,2,...,m  along the ring circumference, (see par.
IV), and ŝ  is the discrete longitudinal variable closest to the s actual value. This is because the
calculation of the series for the potential Φ is fast enough as stand-alone code but the series
evaluation is too long to be used inside a numerical code for integration of differential equations
Moreover the expression adopted for Φ x, y, ŝ( ) is:

Φ x, y,s( ) = Φ X0 ,Y0 , ŝ( ) − Ex ′x ,Y0( )d ′x
X0

x

∫ + Ey x, ′y( )d ′y
Y0

y

∫











, (21)

where X0,Y0 are the beam centre co-ordinates and Ex,y is the horizontal(vertical) component of
the electric field due to the beam. This is because, again, it’s faster to evaluate the two integrals of
the right hand side of (20), representing the difference in the potential value from the beam centre
position, than carrying out the summation over the series expansion at each step of the integration
code.

The time dependence of the electric field of the beam due to its bunch structure has been taken
into account turning on and off the charge density ρ according to the time distribution:

ρ = ρ0e
− t−nt0( )2

2σ t
2

(22)
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where:

n =
t

t0









,

t0 =
C

c ⋅h
,

σ t =
σ s

c

C =  ring circumference,

h =  harmonic number,

p =  #  of cons.  filled bunches,

j =  #  of machine turns,

and:

ρ = ρ t,n( ) for n ≤ p + j ⋅h

ρ = 0 elsewhere





 . (21)

In presence of a static magnetic field, i.e. dipole section the (18) become:

˙̇x = −
q

Mi

Ex −
q

Mi

ṡBy ,

˙̇y = −
q

Mi

Ey ,

˙̇s = −
q

Mi

Es +
q

Mi

ẋBy .

(22)

The effect of fringing field has been taken into account using for By:

  
By s( ) = By0

1
2

1m cos π
s

2g



















 (23)

where g is the gap of the dipole and the negative (positive) sign refers to the beginning (end) of
the dipole.

For the oscillating magnetic field of the insertion devices, (Wiggler), the real measured vector
By s( )  was used. The reason is the non-uniform geometry of the alternating magnetic poles, for
which the field is not easily reproducible by a mathematical function. In Fig. 4 the measured
magnetic field By s( )of a DAΦNE Wiggler and the horizontal beam centre co-ordinate Xc are
reported vs. the longitudinal co-ordinate s.



G-38  pg. 10

-4 104

-3 104

-2 104

-1 104

0 100

1 104

2 104

0 100

5 10-3

1 10-2

1.5 10-2

2 10-2

2.5 10-2

3 10-2

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

B(Gauss)

Xc(m)

X
c(m

)

s(m)

B
(G

au
ss

)
1st DAΦNE Main Ring Bending Quadrant

Figure 4. The plot shows the behaviour of the measured magnetic field in the first Wiggler of the DAΦNE Main
Ring, and the correspondent electron beam centre co-ordinate Xc vs. the longitudinal one s. The zero line of the
beam centre co-ordinate corresponds to the axis of the vacuum chamber.

The numerical integration of the ion motion equations has been performed using the
integration subroutine of the NAG FORTRAN Libraries for stiff equations. The check on the
stiffness was necessary because of the insertion of the discrete values of the measured Wiggler
magnetic field vector instead of a continuous mathematical function.

VI. DC ION CLEARING AND RF BEAM SHAKING

The DC-clearing of the trapped ions is included in the ion motion equations by simply adding a
constant component to the acceleration in the correspondent direction; e.g. :

˙̇y = −
q

m
Ey − Ey

DC( ) . (24)

To evaluate the right value of the clearing electric field, inside the vacuum chamber, the Poisson
equation with Dirichlet boundary conditions has been solved, (see C), for a suitable geometry for
both Wiggler and dipole zones.
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It happens quite often that the required DC voltage is too high compared to the electrode
feasibility. In this case RF-shaking of the electron beam can help to reduce the needs of a high
voltage [8]. In fact lower values for the DC “kick” are required around the maximum of the
oscillating orbit of the ion. The beam shaking is included in the ion motion equations as a
sinusoidal motion of the beam centre co-ordinate, around which the beam charge distributes and
moves rigidly ; e.g.:

Yc = Yc0 + f ⋅ σ y cos 2πν̃t( ), (25)

where f = Ã σ y , and ν̃  belongs to the whole set of excited frequencies [9]:

ν̃ = νexc
RF ± nf 0 , (26)

where f 0  is the revolution frequency of the synchronous electron, and n takes the value that

minimises the difference ν̃ −
ωH ,V

2π
, where ωH ,V  is the characteristic ion frequency .

VII. ION MOTION TRACKING RESULTS

The analysis of the ion motion has been performed first on the bending quadrants BQ of the
main electron ring, (see App. D.1 and D.2). In Fig. 5 the potential Φ Xc ,Yc ,s( )  is shown in detail
for the first BQ. The main interesting points are the minimum, (a), of the potential Φ, together
with the dipole zones, (1st and 2nd Bending Magnets), and the insertion device, (Wiggler). For
the point a, corresponding to s=13.64 m, the evaluation of the average required DC clearing field
[1], at full current, turns out to be:

Eclearing =
Z0I

2π σ x + σ y( )
≅ 173kV m , (27)

where Z0 = 1 ε0c( ) is the free space impedance and I the average current in the ring. To reach
this value for the clearing field, in the vertical direction, with a square button shaped electrode and
a vacuum chamber section 7.5 × 5.3cm2, at least 14.4 kV need to be applied, (see App. C).

The tracked motion for the ion mass 44 is reported in Fig. 6 for the point a. The ionisation is
considered to have taken place at the beam centre with negligible thermal velocity. The actual
bunch structure of the beam leads to a lower value of the required Eclearing in order to loose the
trapped ions in a time τ ≤ τdrift

max , (see Table A.1).
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Figure 5. The potential Φ(x, Xc,y,Yc,s) due to the electron beam, calculated in the beam centre position (see
Sect. IV), is plotted vs. the longitudinal co-ordinate s for the first Bending Quadrant, BQ, of the DAΦNE Main
Ring for electrons. The position of the lattice elements are also reported together with an estimate of the effect of
the vacuum chamber tapering on the potential Φ . The “tapering curve” is actually a collection of discrete values
of the potential Φ calculated for a vacuum chamber of infinite length and given, but variable in s, transverse
dimensions.
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Figure 6. The transverse co-ordinate y of the tracked motion of the trapped mass 44 is reported vs. time, for the
two cases with and without the vertical DC clearing field Ey .
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Figure 7. The transverse co-ordinate y of the ion tracked motion is shown for four different trapped masses,
(corresponding to the four main residual gases present in the vacuum chamber), to check the effectiveness of the
chosen value for the applied clearing voltage.

As far as the Wiggler is concerned, two accumulation points for trapped ions are found, i.e. the
two minima of the oscillating magnetic field By s( ) , see Fig. 4, corresponding to s= 10.6m and
s=11.2m., respectively. Figure 8 refers to the first accumulation point; the effect of an applied
clearing voltage of ≈1500 V is shown, together with the effect of the RF beam shaking and the
tracked orbit of the unperturbed motion of the trapped ion.
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Figure 8. The transverse co-ordinate y of the tracked motion for the trapped mass 28 is plotted vs. time for three
cases: with and without the vertical DC clearing field Ey, and with the effect of the RF electron beam shaking.
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Other results for different points are collected in App. E. They refer to the 2nd Bending
Quadrant that is almost the same of the first one but for the position of the deepest minimum of
potential Φ and for the presence of another accumulation point for the ions close to the 4th

Bending Magnet. The third and fourth Bending Quadrants are obtained by reflection of the first
two BQ’s due to the mirror symmetry of the DAΦNE Electron Ring lattice along the major axis,
(see App. D.1).

VIII. CONCLUSIONS

The design of the clearing system for the DAΦNE electron ring bending quadrants is based on
the results obtained solving numerically the motion equations for the ions trapped in the
circulating electron beam. The boundary conditions are always taken to be very conservative, i.e.
the residual gas atoms are considered to be ionised in the beam centre, with negligible thermal
velocity, and, for the high luminosity requirements, the electron current is given its maximum
value as the number of equidistantly filled bunches.

Moreover the considered value for the maximum tolerable vertical tune shift, induced by the
ion trapping effect, is very low, even though it has to be considered as a hard task which can be
relaxed under proper considerations and discussion on the tolerable detriments on the beam
performances.

In this scenario DC clearing electrodes are needed in the potential well minima locations and
also in those points where the Wiggler magnetic field takes its lowest values. Further the “mirror
effect “ due to the fringe field of the bending sections has been considered; [11,12], the location
of the clearing electrodes has been optimized in order to cope also with this effect. Troubles arise
from the practical point of view, since each DAΦNE Wiggler is actually a two meters long
“closed box”, for there is no room for placing any feed-through between the magnetic pole
expansions. The clearing electrode for the wiggler has then to be thought as a two meters long
strip, biased at the first available place outside the first or the last magnetic pole. The other
electrodes locations seem to be less hard since the length of the eventual strip should be around
20 cm. As far as the RF beam shaking is concerned it should be feasible to apply the proper
oscillating component to the electrodes of the transverse feedback system for the electron beam.
Similar considerations are to be applied also to the positron beam in order to make the two beams
collide with the right phase at the two interaction points.



G-38  pg. 15

Appendix A :

“Calculation of the relevant parameters of the ion clearing system
for the DAΦNE Electron Main Ring”

In order to estimate the neutralisation factor η, we must set an upper limit to the maximum
tolerable linear tune shift δQH ,V  due to the presence of the ion space charge. For rectangular
gaussian beams we have that :

∂Fx

∂x
∂Fy

∂y

=
σ y

σ x

< 1, (A.1)

therefore for flat beams, i.e.  σ y << σ x , the vertical tune shift is the critical one. The chosen limit
for DAΦNE is δQ  y   ≤ 0.001, and the analysis of the betatron functions has been limited to one
half of the Main Ring due to its mirror symmetry .

For the neutralisation factor η  we have[6]:

η ≅
∆Q ⋅ γ

D ⋅ A ⋅ Ibeam

, (A.2)

where :

γ = electron energy normalised to the electron energy at rest;

Ibeam = beam current (A)

A =
β y 1 + K( )

K β x + Kβ y( )
,

D =
re ⋅C
π ⋅ c ⋅e

A−1( )

with re = classical electron radius.

The DAΦNE project requirements for the beam lifetime limit the value of the mean pressure
in the Main Rings of the collider to:

P = 1 ×10−9 Torr , (CO related) (A.3)

The gas load is mainly due to the synchrotron radiation induced gas desorption from the
vacuum chamber walls. The measured percentage [7] of CO is about the 35% of the total photo-
desorbed gas load (CO related). It means a partial pressure of

P CO( ) ≈ 3.5 ×10−10 Torr (A.4)
and a gas density :

ρ CO( ) ≈ 3.5 ×10−10 ⋅3.294 ×1022 = 1.153 ×1013 m−3, at 20 ˚C. (A.5)
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Figure A.1. The optical functions of half DAΦNE Man Ring are shown as function of the longitudinal co-
ordinate s, starting from the half long straight section. The value of the quantity A is also reported.

Therefore:
1

τ prod . CO( )
= cσ pρ ≅ 0.483s−1, (A.6)

where σ p
CO ≅ 1.4 ×10−18 cm2  [3].

The DAΦNE project provides three operating values for the beam current , i.e. three value sets
of the neutralisation factor η , (I=5.3 A with 120 bunches, I=2.65 A with 60 bunches and I=1.325
A with 30 bunches). The resulting values of τdrift

max , for the two main residual gases, are then used to
design the ion clearing system. In table A.1 the results for η and τdrift

max  are reported.

Table A.1. The results for the neutralisation factor η and the maximum drift time τdrift
max of the trapped ions are

reported for the two main residual gases present in the vacuum chamber and three different operating values of the
DAΦNE electron beam current.

η120b τdrift
120b s( ) η60b τdrift

60b s( ) η30b τdrift
30b s( )

H2 ≅ 1 ×10−5 ≅ 4.2 ×10−5 ≅ 2 ×10−5 ≅ 8.4 ×10−5 ≅ 4 ×10−5 ≅ 1.7 ×10−4

CO ” ” ≅ 2 ×10−5 ” ” ≅ 4.1 ×10−5 ” ” ≅ 8.3 ×10−5
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Appendix B:

“Solution of the Poisson equation with Dirichlet boundary conditions
for a rectangular box of infinite length”

Starting from the Poisson equation* :

∇2Φ = −4πρ inside the vacuum chamber

Φ = 0  on the chamber walls (i.e.  Dirichlet b.c.)





(B.1)

The definition of the Green’s functions is:

′∇ 2G x, ′x( ) = −4πδ x, ′x( ) , (B.2)

and by applying the Green’s theorem to the potential Φ and the function G x, ′x( ) we can obtain:

Φ x( ) = ρ ′x( )
V
∫ G x, ′x( )d3 ′x +

+
1

4π
G x, ′x( ) ∂Φ

∂ ′n
− Φ ′x( ) ∂G x, ′x( )

∂ ′n






d ′a

S
∫

. (B.3)

For the Dirichlet boundary conditions we impose:

GD x, ′x( ) = 0 for ′x ∈S . (B.4)

ρ x, y( ) =
λ

2πσ xσ y

⋅e
−

x−Xc( )2

2σ x
2

+
y−Yc( )2

2σ y
2











,

λ =
Ne

Tot ⋅ e
C

=  linear charge density ,

x,y = horizontal and vertical transverse
co-ordinates,

s = longitudinal co-ordinate of the
motion of ions and electrons,

Ne
Tot = total number of electrons,

C = total circumference of the ring,
σ x ,σ y = standard deviations of the

electron distribution,
Xc,Yc = beam centre transverse
 co-ordinates.

y

s

x

a

b

0

Φ= 0

Φ= 0

Φ= V(x,y)

                                                
* C.G.S. units.
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Furthermore, in our case :
Φ = 0 for ′x ∈S (B.5)

so that:

Φ x( ) = ρ ′x( )
V
∫ GD x, ′x( )d3 ′x . (B.6)

In the case of a uniform charge distribution along z, eq. (B.6) becomes

Φ r( ) = ρ ′r( )d ′r ⋅ g r , ′r( )
S
∫ . (B.7)

For the g r , ′r( ) it holds:

∂ 2

∂x2
+

∂ 2

∂y2









g r , ′r( ) = −4πδ x − ′x( )δ y − ′y( ), (B.8)

and:

g S, ′r( ) = 0 . (B.9)

The solution is found to be:

g r , ′r( ) =
16
πab

sin
nπx

a






sin
nπ ′x

a






sin
nπy

b






sin
nπ ′y

b






n2

a2
+

m2

b2
n,m=1

∞

∑ , (B.10)

where a,b are the vacuum chamber cross section dimensions and which gives for the potential Φ:

Φ x, y( ) =
16
πab

d ′x
0

a

∫ d ′y ρ ′x , ′y( )
sin

nπx

a






sin
nπ ′x

a






sin
nπy

b






sin
nπ ′y

b






n2

a2
+

m2

b2
0

b

∫
n,m

1,∞

∑ . (B.11)

In our case σ x << a  and σ y << b  so we can replace the integration limits of (B.11) with ±∞ ,
carry on the integration and obtain the solution:

Φ x, y( ) = λ
16
πab

sin
nπx

a






sin
nπXc

a






sin
mπy

b






sin
mπYc

b






n2

a2
+

m2

b2

⋅
n,m

1,∞

∑

                exp −
π 2n2σ x

2

2a2
+
π 2m2σ y

2

2b2






















.

(B.12)
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Appendix C:

 “Solution of the Poisson Equation with Dirichlet b.c. for
a circular box of infinite length”The approach is the same of Appendix A, (see equations B1-
B6). For a uniform charge distribution along the z variable and with a vacuum chamber of
circular cross section we can write:

Φ r,θ( ) = ′r d ′r
0

a

∫ d ′θ ρ ′r , ′θ( ) 2πgm r, ′r( )eim θ − ′θ( )

m=−∞

∞

∑
0

2π

∫ . (C.1)

The Poisson equation is:

1

′r
∂ ′r ′r ∂ ′r gm( ) − m2

′r 2
= −

2
r
δ r − ′r( ), (C.2)

i.e.:
∂ 2

∂ ′r 2
+

1

′r

∂
∂ ′r

−
m2

′r 2









gm r, ′r( ) = −

2
r
δ r − ′r( ). (C.3)

a- a

=0Φ

Φ=V

Figure C.1. Bi-dimensional case of circular box of infinite length where the external surface is kept at ground
potential.

The solution of the above equation is :

  

g0 r, ′r( ) = −2 ln
r>

a






gm r, ′r( ) =
1
m

′r<

r>









 −

r ′r( )m

a2m























 ,     where:  r> =  
r,  if r > ′r

′r ,  if ′r > r











. (C.4)

For the charge density ρ ′r , ′θ( )we have :
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ρ ′r , ′θ( ) =
λ

2πσ xσ y

exp
′r 2

2
1

2σ x
2

+
1

2σ y
2

+
cos2 ′θ

2
1
σ x

2
−

1
σ y

2


































, (C.5)

that leads to :

Φ r,θ( ) =
2

σ xσ y

′r d ′r exp −
′r 2

4
1
σ x

2
+

1
σ y

2






















⋅ − ln

r>

a






I0

′r 2

4
1
σ x

2
−

1
σ y

2



















 +





0

a

∫

+
−1( )l

2l
Il

′r 2

4
1
σ x

2
−

1
σ y

2



















 ⋅ cos2lθ ⋅

r<
2l

r>
2l
−

r ′r( )2l

a4l











l =1

∞

∑






. (C.6)

For r = 0 , r< = r  and r> = ′r  we obtain:

Φ 0( ) = −
2λ
σ xσ y

d ′r ′r exp
′r 2

4
1
σ x

2
+

1
σ y

2























ln
′r

a






I0

′r 2

4
1
σ x

2
−

1
σ y

2





















0

a

∫ . (C.7)
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Appendix D:

“Calculation of the Electric Field due to a Clearing Electrode for
a rectangular box of infinite length”

In order to evaluate the behaviour of electric field due to a DC biased electrode we can consider
the case shown in Fig. D.1.: a rectangular conductive box with three sides at ground potential and
the fourth with a strip of length ∆ at the potential Φ=V.

The definition of the Green’s function in the two-dimensional case is* :

∇2G x, ′x , y, ′y( ) = −δ x − ′x( ) y − ′y( ) (D.1)

For the delta function we can write** :

δ x − ′x( ) =
1

2a
e

imπ

a
x− ′x( )

n=−∞

∞

∑ , (D.2)

x

y

b

a
2

−
a
2

∆

2
−
∆

2

Φ=0

Φ=0

Φ=V
Figure D.1. Bi-dimensional case of a
rectangular box with three sides at
ground potential and the fourth centrally
biased at Φ=V for a total length ∆.

and for our Green function :
                                                
* M.K.S. units.
**  It’s always possible to expand a function f(x) as a series of orthonormal functions.  The
generic function f(x)  may be expanded between -π, π  as:

f (x) = f me− imx

m=−∞

∞

∑

where:

f m =
1

2π
f x( )eimxdx

−π

π

∫ .

Therefore:

f x( ) = f y( ) ⋅ 1
2π

eim x− y( )

m=−∞

∞

∑








dy

−π

π

∫

and for the delta function it holds :

δ x − ′x( ) =
1

2π
eim x− ′x( )

m=−∞

∞

∑ .

In our case x ≤
a

2
 and ′x ≤

a

2
 so x − ′x ≤ a , and the representation for the delta-function is:

δ x − ′x( ) =
1

2a
e

imπ

a
x− ′x( )

m=−∞

∞

∑
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∇2G = −δ y − ′y( ) ⋅ 1
2a

e
imπ

a x − ′x( )
m=−∞

∞

∑ . (D.3)

We are looking for a solution like:

G =
1

2a
gm y, ′y( )e

imπ

a
x− ′x( )

m=−∞

∞

∑ ; (D.4)

where gm satisfies:

∂ 2

∂y2
−

m2π2

a2









gm = −δ y − ′y( ). (D.5)

Therefore for y < y’ :

gm y, ′y( ) = c1 ′y( )e
−

mπ

a
y

+ c2 ′y( )e
mπ

a
y
, (D.6)

while for y >y’ :

gm y, ′y( ) = d1 ′y( )e
−

mπ

a
y

+ d2 ′y( )e
mπ

a
y
. (D.7)

With the help of the equation D.5 and the boundary conditions:

gm 0, ′y( ) = 0

gm b, ′y( ) = 0





(D.8)

we obtain for y < y’ :

gm y, ′y( ) =
a

mπ

sinh
mπ
a

b − ′y( )





sinh
mπ
a

b





sinh
mπ
a

y























, (D.9)

and for y >y’ :

gm y, ′y( ) =
a

mπ

sinh
mπ
a

b − y( )





sinh
mπ
a

b





sinh
mπ
a

′y























. (D.10)
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Therefore our Green function will be:

G y, ′y( ) = g0 y, ′y( ) +
1

2a
gm y, ′y( ) ⋅

m=1

∞

∑

⋅2 cos
mπ
a

x





cos
mπ
a

′x





+ sin
mπ
a

x





sin
mπ
a

′x











,

(D.11)

with:

g0 y, ′y( ) =
y b − ′y( )

2ab
for  y < ′y

g0 y, ′y( ) =
′y b − y( )
2ab

for  ′y < y









   . (D.12)

The Green theorem states that:

G∇2Φ − Φ∇2G( )d3 ′x∫ = d ′S G
∂Φ
∂ ′n

− Φ
∂G

∂ ′n




∫ ; (D.13)

from which we obtain :

−Φ ′x( )δ x − ′x( ) + G x, ′x( )ρ ′x( )
εo









d

3 ′x =
V
∫ Φ

∂G

∂ ′n
− G

∂Φ
∂ ′n






d ′a

S
∫ . (D.14)

Since in our caseρ ′x( ) = 0 inside the volume V, and G S, ′x( ) = 0, we obtain:

Φ x, y( ) = − Φ
∂G

∂ ′n
d ′a

S
∫ = Vappl. d ′x

∂G

∂ ′y−∆ 2

∆ 2

∫
′y =0

. (D.15)

Therefore:

Φ x, y( )
Vappl.

=
b − y( ) ⋅ ∆

2ab
+

sinh
mπ
a

b − y( )





sinh
mπ
a

b





cos
mπ
a

x





m=1

∞

∑ ⋅
1
a

d ′x
−
∆

2

∆

2

∫ cos
mπ
a

′x




. (D.16)



G-38  pg. 24

Carrying out the integration we obtain:

Φ x, y( )
Vappl.

=
b − y( ) ⋅ ∆

2ab
+

2
mπ

sin
mπ
2a

∆





cos
mπ
a

x





sinh
mπ
a

b − y( )





sinh
mπ
a

b





m=1

∞

∑ . (D.17)

The value of the vertical component of the electric field, at the beam centre, is:

Ey x, y( )
Vappl.

= −
∂Φ x, y( )

∂y
=

∆
2ab

+
2
a

sin
mπ∆
2a







cos
mπx

a






cosh
mπ
a

b − y( )





sinh
mπb

a






m=1

∞

∑ . (D.18)

In Fig. D.2. the behaviour of Ey, at the beam centre, vs. the Clearing Electrode width is

reported; the considered vacuum chamber cross section has dimensions a=7.5cm, b=5.3cm.. In

Fig. D.3. and D.4 the electric field Ey vs. the transverse co-ordinate is shown.
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Figure D.2. The behaviour of the vertical component of electric field due to the Clearing Electrode CE, at x=0,
y=b/2, normalised to the applied voltage Vapp., vs. the electrode width ∆.
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Figure D.3. The behaviour of the vertical component of electric field due to the Clearing Electrode CE,
normalised to the applied voltage Vapp.., for an electrode width ∆, at y=b/2, vs. the x co-ordinate. (Bending
Magnet zone)
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Figure D.4. The behaviour of the vertical component of electric field due to the Clearing Electrode CE,
normalised to the applied voltage Vapp.., for an electrode width ∆, at y=b/2, vs. the x co-ordinate. (Wiggler)
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Appendix E:

“Calculation of the Electric Field due to a Clearing electrode for
a circular box of infinite length”

Following the notation of Appendix C.1, in this case we have for the potential only the
contribution from the surface, (see eq. 16, p. 6)* :

Φ r,θ( ) = −
1

4π
d ′a

S
∫ −V

∂G

∂ ′r






=

= V
a

4π
d ′θ

∂
∂ ′r

g0 r, ′r( ) + 2 cos m θ − θ'( )[ ]gm r, ′r( )
m=1

∞

∑






 ′r =a− θ̂

2

θ̂
2

∫
. (E.1)

Inserting in the above equation the solution C.4, we obtain:

Φ r,θ( ) = −
V

π
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sin
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
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 cos mθ( )
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 . (E.2)

a- a

=VΦ

θ/2

=0Φ

Figure E.1. Bi-dimensional case of circular box of infinite length where the external surface is kept at ground
potential except for an arc of aperture θ.

                                                
* C.G.S. units.
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The electrical field is given by:
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∞
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Expressing  
r
r  and  

r
θ  as :

  

r
r = cosθ

r
x+ sinθ

r
y

r
θ = −sinθ

r
x+ cosθ

r
y

(E.4)

we can write the equation E.3 as:

  

r
E

V
=

2
aπ

sin
mθ̂
2




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




rm−1
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∞

∑ ; (E.5)

and for r = 0  we obtain:

E
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


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


2
2

sin
θ̂
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Appendix F.1 :

“DAΦNE Electron Main Ring Layout”
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Appendix F.2 :

“DAΦNE First Bending Quadrant Layout”
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Appendix G :

“Other results of tracking for trapped ions in the second Bending Quadrant
 of DAΦNE Electron Main ring”
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Figure E.1. The potential Φ(x, Xc,y,Yc,s) due to the electron beam, calculated in the beam centre position (see
Sect. IV), plotted vs. the longitudinal co-ordinate s for the second Bending Quadrant, BQ, of the DAΦNE Main
Ring for electrons.
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Figure E.2. The transverse co-ordinate x of the tracked orbit of a mass 44 ionised in the point a).
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vertical direction.
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