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INTRODUCTION

Magnetic multipole elements play an important role in particle accelerators. The main
purpose of this paper is to obtain accurate values of the magnetic field (satisfying Maxwell
equations exactly), which can be used in theoretical computations. For red dipoles and
quadrupoles, made of iron and cails, thisis almost impossible because of construction errors,
limited accuracy in magnetic design codes, and, last but not least, computing time. For that
reason we decided to take into account only magnetic fields created by currentsin vacuum.

We started with numerica calculations similarly to ref. [1,2,3]. Being our work purely
speculative, our current distributions were not linked to practical realization. Thanks to this
conceptual freedom we discovered an interesting property. We simulated each pole of a
quadrupole (see Fig. 1) with a series of rectangular coils with the currents along the
longitudinal sides distributed according to

[(6) = I cos 20

Figure 1 - Coil network generating quadrupolar field plus odd harmonics

Anayzing the generated field we found as expected the presence of the odd harmonic
terms starting from the dodecapole. These terms did not change meaningfully distributing the
current of each pole on more coils and therefore we attributed the higher harmonics to the
coil shape. In fact the higher harmonics disappeared changing the leaning of the head
currents from the chords of the end circumferencesto their arcs (see Fig. 2).

Figure 2 - Coil network generating pure quadrupolar field
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Subtracting the currents of Fig. 1 from those of Fig. 2, the currents leaning on the longi-
tudinal sides disappear and the result are coils of currents leaning only on the cylinder basis
and each of them made up of a chord and the corresponding piece of arc (see Fig. 3). This
arrangement of currents neutralizes the dodecapole and successive terms. We cannot avoid
thinking that the usual way of neutralizing the unwanted dodecapole of a norma quadrupole
with chamfers on the quadrupole ends and the previous modification of the current
arrangement in our model are equivalent.

Figure 3 - Coil network generating high harmonic terms

Later on we discovered that these current arrangements are mathematically managesble.
The conceptua path from the numerical to the anaytical approach was very exciting. This
paper will discuss only the analytica one. It will be shown that there exists a mathematical
treatment which holds for rectangular dipoles, quadrupoles, sextupoles, etc.

1) POTENTIAL AND FIELDSOF MULTIPOLES
1.1) Magnetic Potential

In the current-free region the magnetic field components of a multipole magnet can be
obtained as gradient of a scalar potential. Different mathematical approaches can be used to
determine the potential. We will do large use of the formulae developed in [1,2,34]. For the
developmentsin the following of this paper we report in this paragraph the most important.
Using cylindrical coordinates the potential corresponding to the harmonic m can be written
as.

rmsin meg
Pm(r,0.2 = —m—— Gm("2 1.1.1)

Replacing the factor sin m¢ by cos m¢ the potential represents skew elements. In the
solenoidal case (m=0) only the cosine choice is meaningful and the potential coincides
directly with Gpy(r,2) (see paragraph 3). For the other cases, assuming:

Gr(r,2)= EO Grrp(2) 12P 1.1.2)
p:
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the different terms G, (p>0) are related to the function Gy by the formula:

m! d2me0

= (-1)P :
Grmop(@ = (-1) P(mep)ipl 02P 1.1.3)
and the potential for a single harmonic becomes:
rmsin me
P02 = {6Gmo(@ +Gm2(2) 12+ Gmu(?) r4 +... } 1.1.4)

L et us emphasize that:

i) The potential isa 2D potential times a function G(r,z), and the dependence on ¢ is the
same of the 2D solution.

ii) Once fixed m, al the potentia is deducible from the function Gny(2).

iii) The order of the harmonic mis also the power of r. This assures that if a potential can
be written as:

Pm(r.¢,.2) = sinm¢ Q(r,2) 1.1.5)

the lowest power of r isalso m, namely:

Q) =rmX ; Gmzp(2) 1P 1.1.6)
p:

The potentia in eg. 1.1.4) can be differentiated m times with respect to r a the point
r=0. Theresult, which will be useful in the following to deduce Gny(2), is:

1.1.7)

P (r,0,2

1.2) Magnetic Field

Since the scalar magnetic potentia isjust amathematical tool we define the magnetic field
smply as its gradient, without the usual negative sign. The three field components in
cylindrical coordinates are hence:

B/(r,0,2 = %m"bz (Mm+2p) Grzp(2) r2p+m-1 1.2.1)
p=0
By(r.¢,2) = %%n%z Gnpp(2) raptml 1.2.2)
p=0
B,(r,¢,2) = WZ Grp+1(2) rerm 1.2.3)

p=0
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where writing Gnp+1(2) we mean the derivative with respect to z of Grpp(2):

dGmzp(2)
Gm2p+1(2) = Tj‘z 1.2.4)

From the transverse cylindrical components the cartesian ones are simply obtained:

Bx = By cos¢ - By sing 1.2.5)

By = Br sing + By cos¢ 1.2.6)

From the point of view of the magnetic field the adoption of a scalar or a vector potential
are equivalent. Deduction of 1.2.1/1.2.3 from a vector potentia are known since 1966 [5,6].
We discovered these two referencesin [7] where they are applied to understand the effect of
the fringing fields of the insertion quadrupolesin DORIS.

2) CURRENT DISTRIBUTIONS

2.1) Current Distributions Generating Pure Multipole Potentials

Whileinrefs. 2, 3 the purpose is the computation of the potential starting from fixed cur-
rent distributions, in this paper we face the following question: do a current distribution in
vacuum exist such to realize a pure multipolar potential?

The answer is pogitive, as aready mentioned in the introduction. Figure 4 shows a cylin-
drical geometry of a current distribution which realizes a pure multipole of order m. The
current 1(6) circulating on the two circumferences of the basesis:

1(6) = lcsinmé 2.1.1)

1)

Figure 4 - Current distribution generating a pure multipole

On the lateral surface of the cylinder the linear current density J (A m'1) must be such
that:

J(6) RdO = 1(6+d0) - 1(6) 2.1.2)
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from which:
1di(6) mlc
JO)=Rgg =R Cosmé 2.1.3)

To simplify the problem we consider a network made of a finite number of current wires
instead of the continuous distribution. The final result will be obtained by alimit process. Let
us consider Fig. 5.

Figure5 - Net of current wires generating multipolar potentials

We have N wires, leaning on the lateral surface S separated by an angle
A0 = 27N 2.1.4)

and N wires leaning on each of the two basis. The ki current on the latera surface is placed
at an angle f:

B =k A8 2.1.5)

Figure 6 - Net of coils generating multipolar potentias
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Figure 6 shows how the current distribution of Fig. 5 can be considered made of N
rectangular coils adjacent to each other. The kth coil is characterized by its average angle 6x:

o= (k-3 ) A0 2.1.6)
and its current:
1(6) = 1¢.Sin mék 2.17)

The decomposition of the current distribution in asum of coils is useful for the potential
calculation. A coil carrying acurrent | induces at the point Qo (r,¢,2) apotentia [8]:

!
AP= 2% A0 2.1.8)

where Aw denotes the solid angle under which the coil is seen from Qq(r,¢,2). Analogoudly
to the network of currents we restrict the possible values of the Qo coordinate ¢ to N vaues,

namely:
dn=n A6 2.1.9)

The potential generated at a point Qq(r,dn,2) by al the coils can be written as:

|
P(Qo) = /ffnckz A6, Pn) Sin mby 2.1.10)

It can be observed that:
i) for geometrical reasons the solid angle Aa(6k,¢n) depends only on the difference 6x-
¢n. Through 2.1.6) and 2.1.9) we obtain:

1
O-¢n=(k-n-3)A60= 6k-n 2.1.11)
and writing Aax-n instead of Aax{6k-n), the potential P(Qo) can be expressed as:
Mo lc .
P(Qo) = ﬁkz A®xn SN(Mn + M) 2.1.12)

ii) for geometrical reasons as well, Aax-n is an even function of 6., therefore inside
sin(mbyx-n + m¢gp) only the even terms in 6y., contribute to the sum. The potential can be
rewritten;

|
P(Qo) = 52 sin Mo 2 Aaxcn C0S Méir, 2.1.13)

iii) the dependence on n of the sum in 2.1.13) is equivalent to a permutation of the N
terms. Thisisininfluent on the sum and we can write:

|
P(Qo) = 2 sin mon 2 Aax cos e 2.1.14)
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Inside the sum, Aax is now the solid angle under which the coil k is seen from the point
of coordinates (r,0,2) and not (r,¢n,2). At the limit of infinitesimal coils, Aax becomes:

dax(Qo) ---> aaf(—,gﬁ do 2.1.15)

and the potential, writing explicitly the dependenceonr, is:.

2r
Mo IC . 860(!‘,9)
Pm(r.0.2= 77 sinm¢ J —5p—cosmé do 2.1.16)

0

The potential depends on ¢ only through the factor sin m¢ and this guarantees that it
corresponds to a pure multipole according to 1.1.5) and 1.1.6).

Looking at the deduction of the result, we observe that the key point of the cylindrica
geometry is its invariance under rotation. So we can extend the result to any surface S
invariant under rotation around the z axis.

The surface Sis completely defined by acurve R(2) (-Z. < z < Z;). Figure 7 shows two

examples with a sinusoidal R(2) function. The current density J(6) of 2.1.3) in this case
depends also on z according to:

mi¢
J(z,6) = R(@ Co0s mo 2.1.17)

Figure 7 - Cylindrical geometries with dependence on z generating multipole potential

2.2) Current Distributions Generating Analytical Potentials

Let us show now that the function Gmp(2) (1.1.7) can be expressed analyticaly if the
surface S coincides with the lateral boundary of a cylinder of radius R.

According to the considerations of the previous paragraph we need to compute the solid

angle da Q) under which aninfinitesimal region on the cylinder placed around a point
Q(R,6,2) is seen from apoint Qq(r,0,2). We can write:

ds
dw (Qo) = 2 Cos o 2.2.1)
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where dSisthe infinitesimal surface around Q(R,0,2) (see Fig. 8), s the distance between Q
and Qo, and § the angle between Q,Q and the normal to the cylindrical surface at the point
Q. The surface element on the cylinder is:

dS= Rdedz 2.2.2)

Figure 8 - Sketch of the geometry used to determine the analytical potential

L et us now introduce the point Qp, projection of Q on thez axis.

The cartesian coordinates of Q, Qg and Qp are respectively (Rcosb, Rsind, 2), (r, 0, 2)
and (0, 0, Z). Naming s the vector joining Qo t0 Q (sitsmodule), R the onejoining Qp to Q
(Ritsmodule) we obtain:

s=4/R2 + r2 - 2Rr cos 6+ (Z- 2)2 2.2.3)
sR R-rcos@
csé=gR=""s5 2.2.4)

and finally, substituting inside 2.2.1):

R-r cos @
dw (Qp) = 3 Rdodz 2.2.5)
Defining:
_ R-rcos6 95
we can write:
ow
20 = 9(r,0) RdZ 2.2.7)
and eg. 2.1.16) becomes:
z
IcR 2
Pm(r,0,2= #Z; sinmg de fg(r,@) cos mo do 2.2.8)

-7 0
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Comparison between 2.2.8) and 1.1.7) gives for Gy(2):

Gro(2) = Ho a1 R JL dz Jﬂ cosmé@ (&“g(r Q)LO do 2.2.9)

Instead of using the definite integral on z it is convenient to use the indefinite one
Gmo(Z,2):

R 2% )
Go(Z D= 5 sz Jcos me (%J de 2.2.10)
0 r=0
from which G (2 is:
Gmo(@d = Go(ZL,2) - Go(-ZL,2) 2.2.11)

The derivatives with respect to r and the integration on 6 appearing in 2.2.10) ae
performed in the first part of Appendix A and the integration on Z in the second part.
Defining:

t=2-7 22.12)
Alt) = VR2 +12 2.2.13)
i) = (%J " (h=0,1,..09) 2.2.14)
thefind result is:
1y k+1
ool = e ey 2.0 BT () rea 2219

Thisformulaisvalid only for m>0.

2.3) Computation of high order terms of the field

The derivation of the high order terms of the field transverse components needs the even
order derivatives of the function Gmo(2) (2.2.15) where the fou+1(t) appear. The even
differentiation with respect to z is equivaent to the one with respect to t (see 2.2.12); the
second order derivative with respect to t of the fok+1 is performed in Appendix B.
Substituting in eg. B.8) the index h with 2k+ 1 we can write:

2f
82t;+1 R2 ((4k2+ 2K)fok-1 - (12K2+ 12K+ 3)f ok 1 +

2.3.1)
+ (12k2+ 18k+6)for+ 3 - (4k2+8k+3)fou+5)
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The 2nd order derivative of fois 1 is alinear combination of functions fo.1, foks1, foke3,
fokss: it introduces for.1. Whatever the odd initid value of 2k+1 is, by taking successive
derivatives, weend up with f1. At this point, applying 2.3.1) we can see that no terms lower
than f1 are introduced:

92h(t) _ - 3f(t) + 6f3(t) - 3fs(t)
P 7 R2

2.3.2)

Equation 2.3.1) suggests the definition of amatrix M associated to the second derivetive.
Only odd rows and columns of M must be considered and we can define:

Mok-1,2k+1 = 4k2 + 2k
Mo+ 1,2k+1 = - (12k2+ 12k + 3)
233)
Mok+3,2k+1 = 12k2+ 18k + 6

Mok+5,2k+1 = - (4k2 + 8k + 3)

The sum of the elements of any column of M vanishes. Since, according to 2.2.14),
asymptotically every fokr1is+1lat + 00 and -1 a -, al the even derivatives of foxs1 vanish
for t. -> . The following table shows the first elements of M.

Tablel - Matrix M

n Mn,1| Mp3| Mps| Mnp7 [ Mng|Mn11|Mn,13|Mn,15|Mn,17[Mn,19(Mn,21|Mn 23
1 -3 6 0 0 0 0 0 0 0 0 0 0
3 6 -27 20 0 0 0 0 0 0 0 0 0
5 -3 36 -75 42 0 0 0 0 0 0 0 0
7 0 -15 90 -147 72 0 0 0 0 0 0 0
9 0 0 -35 168 -243 | 110 0 0 0 0 0 0
11 0 0 0 -63 270 -363 156 0 0 0 0 0
13 0 0 0 0 -99 396 -507 | 210 0 0 0 0
15 0 0 0 0 0 -143 | 546 -675 272 0 0 0
17 0 0 0 0 0 0 -195 | 720 -867 | 342 0 0
19 0 0 0 0 0 0 0 -255 | 918 | -1083 | 420 0
21 0 0 0 0 0 0 0 0 -323 | 1140 | -1323 | 506

M does not depend on the multipole order m and on the order of derivation p. In the
first column -3,6,-3 are the coefficients of the second derivative of 1, in the second column
6,-27,36,-15 those of the second derivative of f3 and so on.
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Let's now introduce a vector Fpy, associated to the function G (see 2.2.15) with
components:

(2m1)! m+k+1 (k)

FmO 2k+1 = ( 1) 4m (m 1)| 2k+ 1 234)

Functions Gmpp (defined in 1.1.3) are proportional to the even derivatives of G . So,
introducing the matrlx M, associated to the second derivative of functions fok+1, We can
associate to each Gypp the vectors Frop:

__(hPm! MP E 235)
2p = 4P(m+p)!p! mo 3.
with components:
(-1)Pm! p
I:m,2p,2k+ 1= 4P(m+p)!p! (M F mO)2k+ 1 2.3.6)

All Frop oK+ 1 are zero for k> m+ 2p, so that eq. 1.1.3) can be rewritten:

_ Holc
Gmzp(t) = Rmsz Finzpie 1 ke 1) 2.3.7)

Finally, passing from the indefinite to the finite integration from -Z_to Z,_ :

_ Molc
Gmzp(2) = szpZ Frnzp2ke1 (oket (@ D)+ 1(Z +2)] 2.3.8)

We can notice that while Gupp(t) isan odd function, Gnp(2) is an even function.

To obtain B(r,¢,2) each fox+1 must be differentiated once. At Appendix B it is shown
that the derivative of fok+1(t), that we call gy, 1 (t) can be written

dfpk+2(t)  (2k+ 1)R2
Gour1® =" =" a3 T 2.3.9)

From the above equation and definition 2.2.14) it results that fox+1(t) and gy, 1(t) have
opposite parities. Recalling egs. 1.2.4) and 2.3.8) we can write:

Holc §
Gmzp+1(2) = R+ 2p ¢ Z Fr2p.2ke1 [92ke 1(ZL + D) - Goe 1(Z1L - 2)] 2.3.10)

S0 Gmzp+1(2) is odd.
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From the above considerations the fundamental role of the odd functions f, , 4(t) and
their derivatives g,., 1(t) appears. The behaviour of the functions f,, 1(t) and gok+1(t) is
shown in Fig. 9 for k=1,2,3.

T 1 T L T 25 LI LI T T L

1.0 I }F I | 1

- £ v 82k+]
. 2k+] 20— 1 -
0.5 f ] C / ]
: 1 b | .
0.0 r 2 ]
- 1 o -
0.5 [— — - ) .
i - 5— ]
ey ] » ]
l.O _l [ 1 i ] 1 L H L 1 1 1 1 E 1 1 L '_- O 1 1 1 1 1 L 1 1 [ 1 M | 1 l-‘_-]"_"!—-

-0.2 -0.l 0.0 0.1 0.2 0.2 -0.1 0.0 0.1 0.2
T () T im)

Figure 9 - Functionsf,, , 1(t) and gok+1(t) for k=1,2,3.

Tables containing the coefficients F, ,, 5,1 for the dipole and the quadrupole are re-
ported subsequently as an example which Shows the spectrum of functions foxs1(t) for the
functions Gppp(t) and the spectrum of functions gok+1(t) for the functions Grop+1(t) -

In table Il the first column (p=0) contains the coefficients of f1 and f3 in G1o(2) except
for the factor u, 1/R. The second column the coefficients of f1, f3 and fs in G12(2) except for
the factor u, 1J/RS, etc. Passing from the dipole to the quadrupole the spectrum of fou: 1
inside Gyo(2) (seefirst column in tables|l, [11) adds fs.

Table |l - Dipole coefficients F1 2p 2k+ 1

« Pl o 1 2 3

1 .5 375 .3515625 341796875

2 -.25 -1.21875 -2.55859375 4.31518554685
3 0 1.3125 6.796875 20.0463867185
4 0 -.46875 -8.5546875 -47.5354003905
5 0 0 5.1953125 64.0185546875
6 0 0 -1.23046875 -49.7570800785
7 0 0 0 20.8666992185
8 0 0 0 3.66577148435
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Table Il - Quadrupole coefficients F2,2p,2k+ 1

c Pl o 1 2 3
0 1.125 .78125 7177734375 692138671875
1 -1 -3.4375 -6.5625 -10.51025390625
2 375 5.625 22.4560546875 59.03173828125
3 0 -4.0625 -38.5546875 172.72705078125
4 0 1.09375 35.7861328125 297.568359375
5 0 0 -17.2265625 314.53857421875
6 0 0 3.3837890625 201.33544921875
7 0 0 0 -71.84912109375
8 0 0 0 10.997314453125

Figure 10 represents an example of the functions Gy up to the 7th order. According to
1.2.1-3, Gyg is proportiona to the basic focusing components of the fields, Go; to the first
term of the longitudina component, G2 to the pseudo-octupole components of the
transverse fidds, Gosz to the second term of By and so on.

J=0 ,LQEH\HH\J“:ZH

I IR (- P IR B
-04 -1.2 1.d 0.2 0.4 -0.4 -1.2 D.D 02 0.4

Figure 10 - Functionglej (1=0,1,..,7) for aquadrupole with Z, =0.2mand R= 0.1m.
The factor R2p+C2 has been omitted and therefore the vertical scalesare
dimensionless for the even terms and (nr1) for the odd ones.
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3) SOLENOIDAL CASES

3.1) The m=0 case.
For m=0 only the case with cos m¢ is meaningful. The potentid is:
Po(r,2) = {Goo(2) +Goa(2) 12 +Goa(2) 14 +... } 3.1.1)

and the components of the magnetic field (By is always vanishing):

B(r2 =22 pGoyp() rl 3.1.2)
p=1

Br2) =2 Gozp+1(2) 2P 3.1.3)
p=0

Thefirst termin B, is proportional to Goi(2), and in B, proportional to Gp(2).

Using the scheme of N coils lying on the surface S (see Fig. 5) the solenoidal case
presents unusual peculiarities. Since m=0, the current running through adjacent coils (see
Fig. 6) is aways the same, the two currents of adjacent meridians compensate each other
exactly and the resulting scheme becomes two end coils (TEC) with opposite currents.
Nevertheless the interpretation of the current network as sum of N rectangular coils remains

valid.

It could be remarked that the TEC case could be obtained simply by superposition of two
coils, but infact it is useful in our analysis for two reasons: first it is the natural extrapolation
to m=0 of the series m=2 (quadrupole), m=1 (dipole), and second its solution is strictly
linked to the solenoid case (see paragraph 3.2).

At the limit of a continuos distribution of currents adopting eg. 2.2.9) with m=0 and r=0
we obtain Goo(2) :

,Uo c f R?
Goo(Z) de \/[R2 N (Z 2)2]3 de 3.1.4)
0

The integration over 6gives smply a factor 2z and introducing the variable t, Ggp(2)
becomes:

0
2 R2
Ko c o it 3.15)
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Finaly:
I
Goo(2) = [f1(zL- 2 + fi(zL + 2] 3.1.6)

In Ggo(2) an odd fi+1 appears, analogously to the cases with m>0. The vector Fog
components are now deduced from expression 3.1.6):

1
Foo1=7 Foox+1=0 k=12 3.1.7)

Using the vector Fqg al the formulae from 2.3.5) to 2.3.10) can be applied. We report
only the most meaningful ones:

(-1)P p
Fo2p.2k+1= 4p(p!)2 (M F00)2k+1 3.1.8)
Holc
Gozp(d = Tzp Z  Fozpace [fa 1@+ o121+ 2)] 3.1.9)
Holc
Gozp+1(2) = Eéo Fo,2p,2k+ 1 [-92k+ 1(ZL-2)+ Gpr 1(Z1+ 2)] 3.1.10)

Choosing only the second term of 3.1.9) and 3.1.10) and putting z. =0, i.e. placing the
coil at the origin, we obtain the formulae for a single coil. We report for smplicity only
Geo(2):

Geo(d = 5 1,(2) 3.1.11)

We observe that the absence of the two limits of 3.1.6) changes the parity of G¢g(2) with
respect to Gop(2).

From 3.1.8) we deduce the table of coefficients F 20,2k 1 valid for the Coil and the TEC
cases. They arereported intable | V. o

TablelV - Coefficients F 5, 5, 1 corresponding to the Coil and TEC

" P 0 1 2 3
0 5 375 3515625 341796875
1 0 -.75 -1.875 -3.41796875
2 0 375 3.515625 12.509765625
3 0 0 -2.8125 -22.6953125
4 0 0 .8203125 22.080078125
5 0 0 0 -11.07421875
6 0 0 0 2.255859375
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3.2) Solenoid
~ Beinglsthetotal current of the solenoid, the density function Jg(Z) on its laterd surface
is.
Is
J5(2) = 270 [u(Z+2) - u(Z-2))] 3.2.1)

We can consider a solenoid as a set of coils covering uniformly the space between -Z;
and Z; . The potential on the axis (see 3.1.11) is:

Gy = ’% ofo IS2) f1(z-2) dz 3.2.2)

-00

Integrating this expression with respect to z we obtain:

liols VR2+ (z+2.)2 - VR2+ (z-Z,)2
Gg)(Z) =27 2 3.2.3)

and Gg;(2) becomes:

Gsi(2) = 42 [f1(2+Z|_) f1(z-2)] 3.24)

By successive derivatives dl Gsop(z) and Gsop+1(2) functions can be obtained, and
remembering 2.3.5) and 2.3.11) we can deduce that any Gspp+1(2) is made up of f
any Gspp(2), with the only exception of Ggy(2), is made up of g To ograln the
correspondlng coefficients we first observe that Gg1(2) (3.2.4) and éoo](z) relative to the
TEC (3.1.6) have the same behaviour, and we can writefor p= 0,1,2,..

dGep(d  Wols T
Cop+1(d="dz = SRrep 7 Z I:o 2p.2ke 1 T 1(ZH20) - T 1(z21)] - 3.2.9)

and by derivation with respect to z:

dZGSZp(Z) Mo ls
a2 - 2Rz = Z Fo,2p,2k+ 1 [ 92k 1(2+ 21) - Gopa 1(Z21)] 3.2.6)

Using eg. 1.1.3) we deduce:

P26y 1 d?Ggy(?)
+1 p
G82p+ 2= (- 1)P* 4P+ 1(p +1)12 dz2p+2 4(p+ 1)2  dZ2

3.2.7)

and eg. 3.2.6) can be rewritten:

1 Hols
Geop+2(2) = " A(p+1)2 2R20Z, kZ Foop2ke 1 (9 1(ZH20) - O 1(z21)] - 3.2.8)
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and introducing for simplicity new coefficients Do 2p+2,2k+1 defined as:

1
D0,2p+ 2,2k+1= - Ap+ 1)2 F0,2p,2k+1 3.2.9)

Hols
Gsop+2(2) = m Z Do,2p+2,2k+ 1 [ Gy 1(Z+Z1) - Gopa 1(Z21)] 3.2.10)

from which:

Hols S
Gsop(2) = m Z Do,2p,2k+1 [Gpk+ 1(Z+ Z1) - Yoy 1(Z-Z0)] (p>0) 3.211)

Let us summarize: the functions Gepp. 1 are obtained with the coefficients Fq o, oy, 1 re-
ported in table IV, while the functions Ggpp contain the modified coefficients | Q2g2k+1:
The parity of the solenoidal function is opposite to the one of the multipoles with m>

Figure 11 represents an example of the functions Gg(z) up to the 7th order for a
solenoid with Z = 0.2 m and R = 0.05 m. The functlons Wlth odd j determine the
longitudinal component of the field, those with even j determine the radia component. From
the point of view of field components Ggy can be ignored.

0.2 Lof
O,Qi
0.6F

0.4F

0.2f

0.0k
0.10F

a.0sf
0.00F
-0.05F
-0.10F

0,05k

0.00F

-0.05]

] 5
0.04f
GEOZ%
0.00E
‘a.02f
B I T Sl S
04 02 00 02 D4

Figure 11 - Functions Gg (j=0,1,. 7)foraso|er]0|dW|ch|_—02mandR 0.05m.

They are plotted normalized to the factor 2‘;%” 7 and therefore the vertical scales

are dimensionlessfor odd j and (ml) for evenj.
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3.3) Comparison With Other Solutions for the Coail

While our analytical solutions for dipoles, quadrupoles and in general for m>0 are new
(asfar aswe know), for the coil case anaytical formulae are aready known in the literature.
For instance in [9] two expression of the vector potentid originated by a coil are given in
polar coordinates using eliptica integrals or spherica harmonics. A third solution in
cylindrical coordinates expressed as function of Bessal functionsis explicated in [8]:

R ttols %2
L0 [ k4 (kR 1(kr) coskz dk <R 33.1)

0

A¢:

R ttols %2
Eos [11(R) Ky(kr) coskz dk >R 332)

0

A(]):

To show the equivalence between our solution for r<R and the one expressed by 3.3.1)
we will obtain the scalar potential from the vector one. We first deduce B, from 3.3.1):

OA A I f I dl
oo 0+ 20 - B | (2 B e s34
0

and successively by integration on z we obtain a potential that we call Psg(r,z) (B for
Bessdl).

di1)sinkz
Pep(r.2) = ols j Kl(kR)(1+ dr)snk dk 3.35)
0

We recall that the potential near the region r=0 is defined by the potential on the axis.
From well known properties of the function I1(kr) (seefor instance [10] p. 375) we deduce:

I1 dll)
(7+ ar - =k 3.3.6)
and from 3.3.5)
Ruols 7
Psp(02) = == f Ky(kR) sinkzdk 33.7)
0

Pss(0,2) coincides with Ggn(2) and consequently Psg(r,z) coincides with G4(r,2) if:

z

2R
Nk S Ky sin ke ck 339)
R2+7 0

and thisis shown in Appendix C.
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4. FINAL CONSIDERATIONS

The formaism which describes the magnetic potential near the axis of a multipole,
developedin[1,2,3,4] and recalled in thefirst paragraph, has been largely used in this paper.
This approach, in spite of the smplicity of the proof, is enormoudly powerful.

We have demondgtrated that cylindrical distributions of currents can be managed
analytically and generate pure 3D magnetic multipoles. The genera formulae for any order
have been obtained; the specific formulae relative to dipoles and quadrupoles have been
developed in detail. The dipole formulae correspond to rectangular dipoles. Nevertheless we
observe that being them vdid for any length we can obtain the magnetic field of a sector
dipole as a sum of very thin dipole-quadrupole distributed aong the arc. The only
inconvenient of this solution, which satisfies Maxwell equations, is the long computing time.

The solenoidal cases, coil and solenoid have been treated, with some caution, as limit case
of our formulae for m=0 . Since the coil case has been dready treated anayticaly in the
literature using spherical and cylindrical functions, the equivaence of our solution with the
one which uses modified Bessal functions has been shown in a separated paragraph.

The cylindrical model here developed are very useful to represent the magnetic €lements
of accelerators in simulation codes to study the effect of non-linearities on beam dynamics.
Once known the field behaviour of an dement, either by 3-D codes, either by magnetic
measurement, it is possible to approximate the data one the function Gpy or acombination of
different Gy, just playing with the parameters R, Z|_ to fit the shape, and I to fit the vaue.
From there on the field is analytically determined up to any order, and this provides a wide
flexibility in the codes.

A first application has been the study of the interaction regions of DA®NE, the Frascati
d—factory storage ring [11,12]. Due to the beam-beam crossing angle, the beams pass off-
axis in low-beta quadrupoles and solenoids. Representing the fields with our anaytical
formulae it has been possible to study the modification of the linear optics and of the on-axis
compensation scheme. Also the effect of the pseudo-octupole present in the quadrupole
fringing region [7,13] isincluded.

Some examples of how the magnetic elements have been represented are shown in the
following figures: Figure 12 refersto the permanent magnet quadrupole that will be installed
in DA®NE low-beta region; the behaviour of the measured linear gradient is compared to the
function Gy fitting it. The dight asymmetry of the data is due to a geometrical asymmetry of
the quadrupole necessary to fit the detector space requirements. The two parameters which
have been used to fit thedataare R= 0.08 mand Z = 0.10 m, I = 30 KA.

Figure 13 represents the same curves referred to one of the norma conducting
quadrupole of thering. In this case the asymmetry of the data is due to measurement errors.
R=0.10m, Z = 0.15mand I = 66 kA have been used.

In Fig. 14 the longitudinal component of the magnetic field in one of the compensator
solenoids is represented; the stars correspond to the field calculated with a 3-D magnetic
code, the solid lines correspond to the field obtained with a combination of two cylindrica
solenoids centered in the same position, which fit reasonably the bumps in the fied
behaviour. In fact the two function parameters ae Rp = 0.128 m Ro = 0.265 m,
Z11=041m, Z2o=028m; Ip=-0.2611, 11= 156 KA.
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Permanent magnet quacdrupole
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Figure 12 - DA®NE permanent magnet quadrupole - «=++++ measured linear gradient;
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Figure 13 - DA®NE iron quadrupole - =«»x++x measured linear gradient;
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Figure 14 - DA®NE compensating solenoid - «=++x+ 3D code computed B

— B_ obtained with the combination of two Ggy
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APPENDIX A.

A1) mth derivative of g(r) and integration over 0 of Gyno(Z,2)

Let us consider the function:

R-rcos6

r) = All
alr) \ R2+r2-2Rr cos 6+ (Z-2)3 )
Defining:
s=\/R2+ r2-2Rr cos 6+ (Z- 2)2 Al.2)
f(r)= R-r cos 6 Al3)
h(r)=r-Rcos 6 Al.4)
we can smply write:
f(r)
g(r) = =) Al5)
Denoting by a prime the derivative with respect to r, we get:
f'=-cosf Al.6)
h'=1 AL7)
. h
s=3 Al.8)
From the above equations, putting r = 0 we obtain:
AZ-2) = 5(0) = \ R2 +(Z- 2)2 Al.9)
fO)=R Al1.10)
R
90) = 23 A1.11)
h(0) = - Rcos6 Al.12)

By differentiating g(r) m times, we get terms whose dependence on 6 is proportional to
cosh6 with n between 0 and m. If we look at the integration over 6 of 2.2.9) we adready have a
term cos mé. The integrals to be performed have the form:

2

T(m,n) = f cos mO cos"e do Al1.13)

0
Considering that:
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g+ i
cosb=—">5 Al.14)

cosné
and taking the nth power of A1.14) the sum of the first and the last terms gives ol - The

other terms contain alower integer multiple of 6. So we obtain:

1 2% 21
T(mn) = mf cosme cosnb do + const f cosme cos(n-2)0do +--  AL.15)
0 0

T(m,n) does not vanish only if nisequal to its maximum value m:

1 an V3
T(mm) = 5m1 cos?mo do = omi A1.16)
0
.. dMg(r) :
We can now face the problem of determining - Asshown in A1.11), g(0) does
not contain any factor cos 6. A factor cos 6 is generated only if one takes the derivative of
either the function s or the function f. Sincef ' vanishes the derivative must be like:

oG agfhm by f'hml
oam - @m3 T gml Al.17)

The coefficient ay, isthe product with aternating sign of the odd numbers starting from
1, namely:

p=m
am= (-1D)M 1 (2p+1) A1.18
p=1

In the mathematical literature for smplicity the two following definitions are routingly used:

m+)!! = p]f[r?Zp+ 1) A1.19
p=1

@2m! = p]i[r?Zp) Al1.20)
p=1

As the function p!! is not universaly known, in the text we will use the equivalent
formula:

(2m)!! = 2m m A1.21)

2m+t1)!  (2m+1)!
@m+ ! = eml = omm Al.22)
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bm can be derived by keeping separated the terms that are deduced from the derivation of
f. We obtain therefore:

Jg _ 3fh
W--—+

b

|

3f'h
&b

\_/%

Ry (15fh2 3f'h

s/ sd

339_ 105fh3 15f'h2 15f' h2 15f' h2
s U "o T T g

Every differentiation adds a new term equal to the ones aready obtained. Clearly after m
derivations we find:

bm= manp1 = m(-1)M1(2m-1)!! Al.24)
and grouping the two terms:

"9
Jrm

Cm+D!fh m2m-1)!f! ) A1.25)

:(-1)mhml( 2m3 T @mel

Substituting to the functions their value for r = 0, and using the definition A1.9) for s(0)
one obtains:

(ﬂ] = cosme((zm+ DIt RML m(2m-1)!!Rm1] AL26)
r=

arm A2m+3 A2mt+1

If we multiply A1.22) by cos mf and take into account eg. A1.16) and A1.22) we obtain
for the integral over 6 of eg. 2.2.9):

2

J (m) _ 4n(2m1)lRmL ((2m+ DR2 _m ]
cosmé| 5 _od0 = (me1y1am A3 A2l A1.27)

0

A2) Integration on Z of Gmo(Z,2)

Let us now face the integration over Z of eq. 2.2.10). By using A1.27) it can be rewritten:

Gmo(Z,2) =

/,LOIC(Zm-l)!Rm'lJ((2m+1)R2 m J . p21)

4M(m-1)! A2mH3 T pA2mtl

Recdling:
t=2-z A2.2)

A(t) = VR2 +t2 A2.3)
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let us consider the integral:

2m+1)R2  m

The two integrals of A2.4) have the following form:

_
Fm= A2m+1 A2.5)

fm(t) = (%)“ A2.6)

theintegral A2.5) can be written as[14]:

Defining :

-1
1 E' (‘1)kf2k+1(t)(m‘1)
R2m 0 2k+1 k

Fm= A2.7)

Applying eq. A2.7) thetotal integral in A2.1) becomes:

m-1
Inl) = o (Z (2 (1) ) e+ (o 1] p28)

k=0

Each coefficient inside the sum, using well known properties of binomial coefficients, can

be written as:
(2m+ 1)( m m (ml) (m+k+1l)(m
(2k+1) k) '2k+1( k ) - T(2k+1) (k) A2.9)
and therefore:
1| m foks 1
+
Im(®) = Rom Eo(m+ 1) () (ORFEL + () am A2.10)
If k= mtheresult of A2.9) isequal to 1. Therefore we can include the last term (-
1)Mf(t) of A2.8) inside the sum provided we extend it up to mand then:
1 E- k1 (m)
Im(t) = R2m < O(-l) okr 1 k7 faea(t) A2.11)
and:
_ Hole(2mr1)! N k1 (m)
Gmo®) = gmm-1)r RM < 0(-1) RFL N k/ () A2.12)



G-33 pg. 27

APPENDIX B.

Calculation of first and second derivative of fu(t)

Recalling the definitions A2.3) and A2.6):

At) = | R2 +1t2 B.1)

= (&) 52

and by using the partial result:

oAt
T =x = f1 BB)
it is easy to deduce:
Ifh R2
X - hﬁ fh-1 B.4)

and differentiating again:

ﬂ_i[ h(h-1)RE~ 3hR4 J

a2 ~ R2 G fh2 - A4 h B.5)

In order to eliminate the powers AS and A% B.1) suggests to replace R2 with (A2 - t2) ob-
taining:

RA= A4-2A212 + t4 B.6)

R6= AB-3A4t2+3A214- 16 B.7)

and then;

P (h%h)fn-p- 3h%f + (3h2+3N)fhs 2 - (2+2N)fhs 4



G-33 pg. 28

APPENDIX C.

Equivalence of the two coil solutions

We must prove the validity of eg. 3.3.8):

2R T
2 = [ Ky(kR) sinkz dk Cc.1)
R+ 22 0
Let usintroduce an integration on z
oRFA @
Z_ - Tf ds J Ky(kR) k cos ks dk c.2)
VR2+22 0 0

and the integral representation of K1(kR) ([10]:

Ky(kR) = J coskt c3)
1(kR) = :
k\/ R2+t2)3
C.2) becomes:
2R2
Z f ds f cos kt cos ks dk C.4)
JR2+ Z2 \/(R2+ t2)3

Theintegral on k can be written as:

oo 1 oo
J coskt cosksdk = 5. [cosk(s+t) + cosk(st)] dk =7 [&(s+t) + &(st)]  C5)
0 0

Only &(s+t) is effective and C.4) becomes.

Z
Z — RZJ L C 6
JR2+ 22 J(R2+12)3 '
0

whichiseasly proven by derivation.



