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1. Introduction

Multibunch instabilities caused by narrow band impedances existing in the
DAΦNE main rings are damped by a bunch-by-bunch feedback system [1]. A
longitudinal kicker is necessary to give the energy correction to each bunch. The
already proposed stripline kickers [2] have come out to have several HOMs with
quite high shunt impedances that further excite the beam, and they contribute a
relevant amount to the total broad band impedance [3].

We have therefore explored the possibility of using a waveguide loaded RF
cavity as longitudinal kicker [4]. With the same broad band impedance this
device gives a higher transfer impedance, while the waveguides, conceived to
enlarge the fundamental mode bandwidth, give as a welcome by-product the
damping of the cavity HOMs.

In this note we investigate the impact of this kind of kicker on the feedback
efficiency by means of our time domain code simulating the multibunch
longitudinal dynamics [5].

2. The simulation code

The main difference between the stripline kicker and the RF cavity from the
point of view of the feedback efficiency is essentially due to the different band-
width of the two devices. This means that the "memory" of the RF cavity can
perturb the energy kicks given to the bunches and, depending on the value of
the quality factor Q, may cause coupling between neighbouring bunches.
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In Fig. 1a we have represented the block diagram used in the code. To
simulate the finite filling time of the RF cavity we have used a parallel RLC
model, as shown in Fig. 1b.

An external amplitude modulated RF generator of fixed frequency ωe excites
the cavity in order to give the proper energy correction to each bunch. After the
passage of the (k-1)th bunch the amplitude of the external generator suddenly
changes to the value of the kick pertaining to the kth bunch, while the value of
the phase ϕk  can remain constant or jump at the bunch passage depending on
the operating conditions as explained later on in this paragraph.
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Fig. 1A: Block Diagram of the bunch-by-bunch longitudinal feedback system

Fig. 1B: Equivalent circuit implemented in the simulation code

The total voltage seen by a particle is the sum of the voltages induced by the
beam and the external generator. The first contribution can be treated just as an
extra resonant impedance of the ring.
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For what concerns the second contribution, if we call Tb  the bunch time
spacing and consider k −1( )Tb < t ≤ kTb , we can write:
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with
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        ωr = α2 + β2 (3)

where ωr  and α  are the cavity resonant frequency and damping factor, and Vk
is the amplitude of the kick pertaining to the kth bunch.

If we consider M bunches, and therefore M coupled-bunch oscillation modes,
in the frequency domain we obtain a spectrum with sidebands:

pM + n + νs( )ωo (4)

where p  is an integer, n  is the mode oscillation number, νs  is the synchrotron
number, and ωo  is the revolution frequency. Since p  can be either positive or
negative, it is easy to see that a frequency range of only Mωo / 2  centered
around the mode n = M / 4  contains the sidebands of all the modes. This means
that in order to damp every possible coupled-bunch mode minimizing the cavity
bandwidth we have to choose ωr ≈ M( p +1 / 4)ωo. For the DAΦNE case, where
the harmonic number is 120, we have chosen ωe = 390ωo = 3.25ωRF.
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The convenience of this choice can be explained also in the time domain. In
fact, as shown in Fig. 2, the kick given to each bunch does not perturb the
following one so that the bunch coupling due to the finite cavity filling time is
weakened.
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t
Fig.  2: Voltage given to the first bunch.

 Since ωe is not a multiple of ωRF  , if the phase ϕk  were a constant not all
the bunches could get the desired energy kick when the machine is running at
full current (120 bunches in the DAΦNE case). In order to do that, it is
necessary to shift the phase by π / 2  every TRF  that is at every bunch passage.
This task is accomplished by a QPSK (Quadrature Phase Shift Keyed) device
introduced in the control electronics of the power amplifier feeding the kicker
(Fig. 1a). Therefore just after the (k-1)th bunch has passed in the cavity, the
external generator, restarting from zero, induces a voltage with an amplitude
equal to the energy kick pertaining to the kth bunch. When the kth bunch enters
the cavity it gets the kick and the generator starts again from zero, and so on.
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Fig.  3: Time evolution of the voltage in the RF kicker.
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The plot of the kicker voltage is shown in Fig. 3. The dotted and solid lines

represent respectively the 1st and 2nd terms of eq. (1).

 In the 30 bunch operation the bunch spacing is equal to 4TRF  and therefore

it is not necessary to provide the QPSK phase jump because, considering ϕk =

const = π / 2  in eq. 1, every bunch enters the cavity when the voltage is at the

maximum value (ωe is a multiple of ωRF / 4 ). In the simulation code we can

include or exclude the phase jump at will.

In the following we will call "efficiency" ε  the ratio between the actual kick

Vrk  given to the kth bunch and the ideal value Vk  corresponding to the

amplitude of the driving generator. The efficiency depends on the operating

conditions (number of bunches, coupled-bunch mode considered, kicker filling

time, ...). Since the bunch is kicked during the transient regime of the cavity,

the actual kick amplitude is lower than the ideal value corresponding to the

kicker voltage at the stationary regime.

The kicker shunt impedance is defined as the stationary regime ratio be-

tween the square of the longitudinal voltage and the forward power at the kicker

input Rs = V2 / 2Pfw ; then it is straightforward that the "actual" shunt

impedance, i.e. the ratio between the square of the actual kick and the forward

power at the kicker input, scales as ε2 .

3. Results with 30 bunches

The use of the QPSK is not convenient in the 30 bunch operation since it in-

troduces some useless transient terms that reduce the feedback efficiency. In

fact, by excluding the phase jump, the external generator can maintain the

amplitude and phase constant for a 4TRF  period, corresponding to 7-8 filling

times of the cavity kicker. Therefore there is enough time to let all the transients

decay and every bunch gets the same kick it would receive with an ideal flat-

band kicker, i.e. ε ≈ 1. This means that the starting conditions of the cavity

voltage do not influence the kick energy.

On the contrary, if we introduce π / 2  phase shift every TRF , the starting

conditions through the inertia of the cavity can influence the energy kick and

the simulations show that, with a quality factor of 5.25 (which is the expected

value for our kicker cavity), the efficiency is about 87% and the actual shunt

impedance is reduced to 76% of its original value.
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4. Results with 120 bunches

The QPSK phase jump is necessary in the 120 bunch operation. In this case
the bunch spacing is just TRF  so that there is less than 2 cavity filling time be-
tween 2 bunch passages. As a consequence the kick of the kth bunch depends
on the initial conditions, that is on the voltage seen by the previous bunches.
This explains why the efficiency of the feedback depends on the excited
coupled-bunch mode. The results of the simulations show that the efficiency has
an almost flat value higher than .82 for Q=5.25, while it would strongly depend
on the coupled-bunch mode if the Q value were much higher (Q=20 for
instance).

In Fig. 4 we report the two fitting curves obtained by exciting each single
oscillation mode in our simulation code. The curves are symmetrical with
respect to the mode 60.

An efficiency of 82% causes the actual shunt impedance to be reduced to the
67% of its original value. Since the shunt impedance of the DAΦNE cavity
kicker, as given by e.m. simulation codes, is about 750 Ω, the available shunt
impedance on the whole operating bandwidth is always higher than 500 Ω.

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60
Coupled bunch mode

Q=5.25

Q=20

ε

Fig.  4: RF cavity efficiency versus oscillation mode.

The efficiency curve is also reported in Fig. 5, compared to the result ob-
tained for a cavity kicker having the same bandwidth but centered at 3ωRF in-
stead of 3.25ωRF  and driven without phase jumps. In this last case the effi-
ciency, which is very close to 1 for the 0th coupled-bunch mode, gradually de-
creases down to 0.75 for the mode 60. The available impedance for this last
mode would be about 420 Ω.
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The bunch-by-bunch longitudinal feedback system has to cure in principle
any possible coupled-bunch mode with the same effectiveness; this explains
why the configuration characterized by ωr = 3.25ωRF  and operated with the
QPSK phase jumps is preferred.
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Fig.  5: RF cavity efficiency with and without QPSK.

The efficiency can also be calculated analytically as shown in the appendix.
The results are reported in Fig. 6. In the plot the dots represent the results ob-
tained with the simulation code. For very low Qs the efficiency value gets close
to 1.
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Fig.  6: Kick efficiency obtained analytically.
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5. Injection error with 120 bunches

We have also simulated the longitudinal dynamics of 120 bunches injecting
the last bunch with an error of 100 psec. In this case we have a superposition
of all the multibunch oscillation modes. For the first turns we have also the
saturation of the feedback system. The time domain responses of an ideal flat-
band kicker and the band limited RF cavity (Q=5.25) are shown in Fig. 7. We
can see that also in this case the response difference is about 20% both in the
linear and in the saturated regime.
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Fig.  7: Bunch oscillations at injection.

5. Conclusions

The time domain simulation code has been used for evaluating the impact of
a finite bandwidth kicker on the beam longitudinal dynamics. The simulations
have shown an almost flat response (Q=5.25) for all the oscillation modes. With
30 bunches the feedback system does not need to be operated with phase
jumps in the driving voltage and the efficiency is practically equal to the case of
an ideal flat-band kicker. The transmission efficiency is instead higher than 0.8
for 120 bunches. This value can be used to estimate the power of the amplifiers
necessary to feed the cavity.

The transfer impedance of the broadband RF cavity (≥ 500 Ω on the whole
operating bandwidth) is higher than that of a stripline kicker[2]. Moreover, a
broadband cavity does not introduce other sharp longitudinal and transverse
impedances in the ring.

The results of the simulation code are well confirmed analytically by studying
the system in the frequency domain.
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APPENDIX

Let us call A t( )  the signal of the beam detected at a given position in the ring
by a pickup. The corresponding energy kick should be proportional to A t( )
opportunely delayed (π / 2  in the longitudinal phase space). If we consider M
bunches separated by TRF  that are oscillating longitudinally, we can write for
the oscillation mode n :

A t( ) = A qTRF( ) = cos ωsqTRF + 2π
M

m −1( ) n − νs( )




δq,kM+m−1

m=1

M

∑ (A1)

where we have evaluated the signal every RF period and δh,k  is the Kronecker
delta. This signal is processed by the feedback system and, by ignoring the
phase delay, we can assume that the energy kick in the ideal case is propor-
tional to A qTRF( ).

 Also in the RF cavity the external generator induces a voltage proportional to
A qTRF( ). But in this case the voltage oscillates with a frequency ωe. Due to the
QPSK, the signal that enters the cavity during a period between qTRF  and
q +1( )TRF  can be written as:

Sq t( ) = A qTRF( )sin ωe t − qTRF( )[ ] H t,qTRF( ) − H t, q +1( )TRF( )[ ] (A2)

where H t,qTRF( )  is the Heaviside step function. The Fourier transform of this
signal is:

Sq ω( ) = 1
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A qTRF( )exp −iωqTRF( )F ω
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(A4)

The overall signal is 
q=−∞

. After some manipulations we can
write:

S x( ) = F x( )
2ωo
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∞
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(A5)

where x = ω / ωo  and δ  is the usual delta function.
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To obtain the cavity voltage we have to multiply the signal by the cavity
transfer function. The cavity voltage in the time domain is obtained by the
Fourier inverse transform and can be written as:

V t( ) = 1
4π

F −h + νs( )Z ωo −h + νs( )[ ]exp i
M −1

M
π n + h − νs( )





exp iωo −h + νs( )t[ ]

h=−∞

∞
∑ +

                    F h − νs( )Z ωo h − νs( )[ ]exp −i
M −1

M
π n + h − νs( )





exp iωo h − νs( )t[ ]


                    
sin π n + h − νs( )[ ]

sin
π
M

n + h − νs( )





                                                       

(A6)

The voltage evaluated at the passage of a given bunch m gives the efficiency
of the RF cavity. If we evaluate the kick at the time

t = m −1

M
+ p



To (A7)

with p integer, we obtain the curves of Fig. 6 for the different oscillation modes.
For a correct response at very low Qs, due to the Fourier expansion that
approximates a discontinuity with the sum of continuous functions we have to
evaluate the voltage at the time:

t = m −1

M
+ p



To −

2π
ωe

(A8)

that is at the maximum RF cavity voltage preceding the bunch passage (or the
discontinuity).
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