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Introduction

  It is widely believed that the overlap of nonlinear resonances can create a
beam-beam limit. The instability occurs at a certain value of the tune shift param-
eter when the stochastic layers of the resonances touch each other and a particle
has a possibility to travel from one resonance to another and eventually to higher
amplitudes. For the complete description of the effect see [1].

The synchrobetatron resonances are more closely spaced in phase space than
the pure betatron resonances. Clearly, the synchrobetatron resonances tend to
overlap before the betatron ones setting a lower limit to the dynamical stability of a
beam. Indeed, in the example considered in [2] the beam-beam limit can be reached
already at   ξ ~ 0.03 ÷ 0.04.

In this paper we make an attempt to choose the DAΦNE working point in order
to minimize the harmful influence of beam-beam resonances. In particular, we try
to keep a working point far from dangerous sum resonances and to have
synchrobetatron resonances well separated.  

 In the following we consider a single interaction point, head-on collisions, no
parasitic crossings, weak-strong interaction. It is supposed that the synchro-
betatron sideband resonances are created by the betatron tune modulation due to
synchrotron oscillations. Analytical formulae which we use for the resonance pa-
rameter calculations can be found in [3].

Synchrobetatron beam-beam resonances

 In order to demonstrate the synchrobetatron resonance overlap effect we will
use a simple nonlinear mapping analogous to that of [4] but written for the case of a
very flat bunch with 

  
R = σy / σx << 1 (we remind that for DAΦNE R = 0.01) :

     

xn+1 = xn cos 2πνx0 + x 'n sin 2πνx0

x 'n+1 = − xn sin 2πνx0 + x 'n sin 2πνx0 + ∆x 'n+1

yn+1 = yn cos 2πνyn + y 'n sin 2πνyn

y 'n+1 = − yn sin 2πνyn + y 'n sin 2πνyn + ∆y 'n+1

νyn+1
= νyo + ∆ν sin 2πνsn

     

(1)
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 Here the dimensionless variables x = x / σx ; y = y / σy  and 
 
x ' = βx

*x '/σx ; y ' = βy
*y'/σy

have been introduced with 
  
βx,y

*  being the betatron function at the interaction point.
The transverse kicks for the flat bunch are given by [5]:

    

  

∆x ' = − Nre
γσx

2π
1 − R2 Im f bb{ }

∆y' = − Nre
γσx

2π
1 − R2 Re f bb{ }

        (2)

where

  
f bb = W (u + iRv) − exp −(1 − R )(u + v ){ }W (Ru + iv)

  W (z ) is the complex error function and

      

u = x

σx 2(1 − R2 )
; v = y

σy 2(1 − R2 )

Figure 1 shows an example of trajectories in the vertical phase space for the
case with 

  
νy0 = 0.7; ξy = 0.01; νs = 0.004; ∆ν = 0.01. The phase space coordi-

nates of a particle have been plotted once per synchrotron period. For all traced
particles   x = 0; x ' = 0 in order to decouple vertical and horizontal motions. The
synchrotron sidebands of order 4,5,6 of a 10th order betatron resonance are clearly
seen. The other sidebands are not shown just not to overcrowd the picture. The
sideband resonances are well separated and narrow stochastic layers are observed
around separatrixes and near the points where the resonance islands touch each
other.
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Fig. 1 - The 4,5,6 synchrotron sidebands  of the betatron resonance 

 10νy = int .
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 When the layers overlap the motion in phase space gets stochastic and a
particle tends to diffuse to larger amplitudes. This is exactly the case for the
working point with 

  
νx0 = 5.18; νy0 = 6.15 and 

  
ξx = ξy = 0.04 . In Fig. 2 we can

see a regular structure of the phase space trajectories near the betatron resonance
of the sixth order mentioned in [3] in absence of synchrotron motion.

  
Fig. 2 - Phase space trajectories near the resonance 6νy = 37 .

The synchrotron motion leads to the appearance of synchrotron sidebands and
their overlap. Fig. 3 shows the stochastic behavior of the particle executing the
synchrotron oscillations with amplitude   cτ̂ = σz  and initial transverse coordinates

  x = x ' = y' = 0  and 
  
y = 2σy .

 

Fig. 3 - Stochastic behaviour of a particle in the phase space.
The particle was traced over 200000 turns.

The transverse coordinates are printed after each synchrotron period.
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The nonlinear mapping does not take into account the helpful effect of aver-
aging over the betatron phases for the bunches with a length comparable to the
betatron function at the interaction point. In the following we proceed using ana-
lytical expressions of [3] to estimate the resonance width and the resonance overlap
effect.

In Fig. 4 we show the same sixth order betatron resonance with its syn-
chrotron sidebands.

The resonance widths are shown in the vertical betatron amplitude plane as a
function of the amplitude of the synchrotron oscillations. Here again we consider
particles with   x = x ' = 0 . Due to the symmetry of the beam-beam kicks this allows
us to decouple vertical and horizontal oscillations in order to simplify the
visualization of the overlap effect.
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  Fig. 4 - Overlap of synchrobetatron sidebands  of the resonance 6νy = 37
in the amplitude plane. The lower pair of solid  lines corresponds
to the primary resonance;   the upper one - to the second sideband.

The dashed lines limit the first sideband.

 The resonance overlap in the amplitude plane not necessarily means overlap in
phase space as far as resonance sideband islands are somewhat shifted in phase
with respect to each other, as it can be seen, for example, in Fig. 1. But in the
above case the deep intersection of the resonance bands in the amplitude plane will
certainly lead to stochastic particle motion.

The best way to avoid synchrobetatron sideband overlap is to move the
working point into the region of the resonances of higher order. In order to
demonstrate this let us move the working point closer to the integer where the
bunch footprint is crossed by the betatron resonance of 8th order.

The first four synchrobetatron sidebands for the case are shown Fig. 5.
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   Fig. 5 - Overlap of synchrobetatron sidebands of the resonance 8νy = 49
in the amplitude plane.

The sidebands are well separated in the amplitude space and this guarantees
the separation in phase space.

It should be noted that the particle amplitudes at which the resonant condi-
tions are satisfied in Fig. 4 and Fig. 5 are the same. This was done intentionally in
order to make a correct comparison between resonances. We remind that the
resonance width depends not only on the order of the resonance but also on the
particle amplitude at which the resonance condition is satisfied.

On the choice of the working point in DAΦNE

Some cautions must be taken in order to minimize degradation of beam-beam
performance due to nonlinear beam-beam resonances:

 - possibly avoid strong sum resonances being the source of the beam streaming
and phase convection;

 - eliminate conditions for resonance overlap. The difference resonances must
also be considered in this case.

 - strong difference resonances capable to push particles to high amplitudes have
to be avoided.

The grids of the sum and difference resonances up to the tenth order are
shown in Fig. 6 and Fig. 7, respectively.

The shaded triangular approximates the beam footprint corresponding to the
working point with 

  
vx = 5.18; νy = 6.15.
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 Fig. 6 - Sum resonances: solid thick lines - sixth order resonances;
solid thin lines - eighth order resonances;

dashed line -  tenth order resonances.
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Fig. 7 - Difference resonances

As we have discussed above and in [3], the working point is not the best choice
because of the strong sum betatron resonances crossing the beam footprint and the
overlap of the synchrobetatron sidebands. So we tried to find a suitable working
point in order to reduce the influence of beam-beam resonances on the machine
performance. The task is not easy for DAΦNE for the following reasons:

- it is impossible to place the triangle with a side of 0.04 between the strong
beam-beam resonances, while keeping an enough distance from integer reso-
nances.

- the working points in the vicinity of the integers have small dynamic apertures
in DAΦNE [6];

- the separation between synchrobetatron sidebands is small in DAΦNE due to
the small synchrotron tune   νs = 0.0078.
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A working point which could be a possible choice is 
  
νx0 = 5.15; νy0 = 6.05.

Let us consider this point in detail. Fig. 8 shows the beam footprint with the in-
tersecting resonances. The numbers in brackets correspond to the resonance
numbers: 

  
(l,m,k ) ⇔ l(νx − 5) + m(νy − 6) = k .
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Fig. 8 - Beam footprint for the working point 
  
νx = 5.15; νy = 6.05

Fig. 9 presents the betatron resonances, except 6νx = 37, in the transverse
amplitude plane. As it can be seen, neither the bunch core nor the bunch tail are
affected by the resonances substantially. The resonance widths are relatively small.
The difference resonance 6νy = 2νx  crossing the bunch tail and having the largest
width does not contribute to the resonance streaming.
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Fig. 9 - Betatron resonances in the amplitude plane
for the working point 

  
νx = 5.15; νy = 6.05.

For none of these resonances the criterion of synchrobetatron resonance
overlap is fulfilled. As an example, we show in Fig. 10 the first sidebands for the
resonance 6νy = 2νx  which is the strongest at the given working point.
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Fig. 10 - Synchrobetatron satellites for the resonance  6νy = 2νx .
The primary resonance is within thick solid lines.

The sidebands are well separated. In plotting Fig. 10 we suggested that all the
sidebands have their maximum width at the same time. This leads to overestimate
of the overlap effect. The sidebands have maximum width at different amplitudes of
the synchrotron oscillations and therefore are even more separated than in Fig. 10.

Some words must be said about the purely horizontal betatron resonance
6νx = 37. Its resonance condition and width practically do not depend on the
vertical transverse coordinate of the particle. The oscillations in the resonance are
executed in the horizontal plane so that the resonance streaming along the vertical
direction is hardly possible. The resonance does not have synchrobetatron satellites
due to the finite bunch length as far as   βx

* >> σz .

But it also can be somewhat dangerous. The resonance region spreads from

  Ax = 1.54  to   Ax = 2.46 and mutual action of the resonance and radiation damping
can distort the particle distribution in that region. While damping reduces the
amplitude of oscillations, the resonance pushes it back. If the resonance period is
shorter than the damping time the particle distribution in the resonance region can
differ from gaussian, i.e. some horizontal blow-up can take place. It is not expected
to be serious, although numerical calculations have to be done to check it.

The best way to avoid also the strong horizontal resonance would be to move
the working point closer to the horizontal integer. But this is not an acceptable
choice because the dynamic aperture is getting rapidly smaller. Numerical simu-
lations showed that it is unacceptably small already for the working point with

  
νx = 0.09; νy = 0.06  [6].

Another working point we would like to discuss is 
  
νx = 5.13; νy = 6.10 . The

beam footprint and the betatron resonances affecting it are shown in Fig. 11 and
Fig. 12, respectively.
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Fig. 11 - Beam footprint for the working point 
  
νx = 5.13; νy = 6.10

  
0

2

4

6

8

0 1 2 3 4

A

Ay

x

(0,8,1)

(6,0,1)

(4,-6,0)

(4,4,1)

(8,-2,1)

(2,6,1)

Fig. 12 - Betatron resonances in the amplitude plane
for the working point 

  
νx = 5.13; νy = 6.10 .

 The resonances crossing the bunch core are weak and not expected to affect
the bunch distribution strongly. A small contribution to the background can be
given by the sum resonance 4νx + 4νy = 45 passing through the beam tail. Some
problems can arise due to the strong sum resonance 6νx + 2νy = 33 affecting the
extreme tail of the bunch. We show this resonance separately in Fig. 13. For this
particular resonance the analytical model can be used only as an approximation
because it looses accuracy when the resonance width is comparable to the ampli-
tudes satisfying the resonance condition. Numerical simulations with the mapping
(1) have shown that the resonance width is even wider than that shown in Fig. 13.

 Certainly, this resonance may transport particles to larger amplitudes and its
synchrobetatron sidebands overlap, but it covers a region with low particle density.
Its actual influence on machine performance can be evaluated by a detailed
numerical simulations.
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The resonance could be removed by slightly shifting the horizontal working
point towards 6.135 (as an example). However, one should remember that this
would increase width of the resonances passing through the bunch core.
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  Fig. 13 - Sum resonance 6νx + 2νy = 33 in the amplitude plane.
Arrows show the direction of oscillations.

Discussion

 1. The main reasons which complicate the optimal choice of the working point for
the beam-beam performance are the following:

- influence of the nonlinear beam-beam resonances on the beam dynamics is
weaker for working points placed in the vicinity of integers but the dynamic
aperture of DAΦNE is small at such points.

- far from the integers the beam footprint with 
  
ξx = ξy = 0.04  is always

crossed by one or more strong beam-beam resonances.

- the small synchrotron tune helps the overlap of synchrobetatron resonances.

 2. In our opinion, among numerous analyzed working points the most favorable
are those with 

  
νx = 5.15; νy = 6.05 and 

  
νx = 6.10; νy = 5.13 . But these

working points are not free of drawbacks which are discussed in the text
above. The numerical simulation taking into account radiation damping, noise
and external nonlinearities could give more precise information about these
working points.
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