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ABSTRACT

The prototype of the DAΦNE wiggler, built by DANFYSIK, has been delivered to
LNF in January 94. Measurements of the magnetic field have been carried out1.
From the analysis of these measurements the nominal beam trajectory inside the
wiggler has been calculated and the multipolar expansion of the field has been
deduced.

1. INTRODUCTION

Wigglers have been included in the DAΦNE lattice to increase damping and
tune the emittance for luminosity optimization. Four of them are placed inside the
achromats, where the dispersion is high (see Fig. 1). Their field modifies the
synchrotron integrals I2, I3, and I5

2
, thus changing the emittance and the natural

energy spread of the beams. Taking into account only linear terms in its field ex-
pansion, a wiggler acts as a drift in the horizontal plane, while in the vertical one it
is equivalent to a distributed quadrupole. The vertical beam size is kept small and
almost constant along the wiggler by forcing the betatron function to coincide with
the self-beta of the equivalent quadrupole. At the second order the wiggler has real
sextupolar terms and pseudo sextupolar terms3.
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Fig. 1 - DA NE main rings layout
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The DAΦNE wiggler is composed by 5 full poles plus two half poles at the ends,
with a maximum field of 1.8 T and a total length of 2 m. Two power supplies per
wiggler are used, the first for the 5 central poles, the second for the two end poles,
so that adjustments to the field integral can be made by changing the end pole
field.

The field model used up to now for lattice calculation purposes, shown in
Fig. 2, represents each pole by a central parallel face bending magnet, with a half
field rectangular magnet on each side, which accounts for the fringing fields. The
nominal central trajectory, given in Fig. 3, lies on one side of the machine axis,
with a maximum displacement with respect to this axis of 2.469 cm.
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Fig. 2 - Wiggler field model
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Fig. 3 - Beam central trajectory corresponding to the field model
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The analysis of field measurements allowed to check the reliability of this model
and to investigate the effects of the wiggler on the storage ring optics.

2. MAGNETIC MEASUREMENTS ANALYSIS

The complete description of the mechanical and electrical parameters of the
wiggler is given in [1], together with the results of magnetic measurements.
In our coordinate system x, y, and z correspond to the horizontal, vertical and
longitudinal directions respectively.

The field is measured by longitudinal scans of the vertical field component at
fixed horizontal and vertical positions. Each scan delivers therefore a table con-
taining the value of the vertical component of the magnetic field, By, for constant x
and y, along the z direction, in steps of 2 cm, for a total number of 140 points,
extending 40 cm before and after the mechanical length of the device. Scans at
different values of x have been performed, both on the symmetry plane of the
wiggler, corresponding to y = 0, and on the two planes y = ± 5 mm. For y = 0 and
y = -5 mm it is possible to scan the horizontal position of the probe from -2 cm to
+3 cm from the wiggler axis in 5 mm steps. For y = 5 mm, the horizontal range is
from -3 cm to + 3 cm. As it will be described in the following, this system is not
optimized for our purposes, where neighbouring points in x and y are compared to
find out high order derivatives. We strongly suggest to repeat the measurements
with the three dimensional coordinatometer now available in the magnetic
measurements laboratory.

Among all the performed measurements1, those used for our field analysis are
summarized in Table I.

Table I - Summary of analyzed data

  I I X Y ∫Bdl
SCAN Date Central Poles End Poles

(A) (A) (cm) (cm) (g m)
                                                                                                                                               

1 21.3.94 712.8 562.1 -2 0.0 -1.5
2 21.3.94 712.8 562.1 -1 0.0 3.5
3 21.3.94 712.8 562.1 0 0.0 5.4
4 21.3.94 712.8 562.1 1 0.0 2.4
5 21.3.94 712.8 562.1 2 0.0 -1.0
6 21.3.94 712.8 562.1 3 0.0 -4.4

7 23.3.94 712.8 562.1 0 -0.5 8.8
8 23.3.94 712.8 562.1 0 0 6.7
9 23.3.94 712.8 562.1 0 0.5 6.6

A sketch of the grid in the (x,z) plane is shown in Fig. 4. From the value of the
field on the grid nodes we extrapolate the field inside each case. An example of the
field behaviour (corresponding to scan n.3) along z is given in Fig. 5, while an
example of the behaviour along x at the pole center (taken from scans 1 to 6) is
shown in Fig. 6. It is reasonable to use a different kind of interpolation for the two
directions.
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Fig. 4 - Data grid in the plane (x,z)
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Fig. 5 - Measured By along z (data n.3)
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Fig. 6 - Measured By along x (data n.1/6)

Polynomial interpolation along z

The function By(xi,yk,z) for each longitudinal segment of the grid (see Fig. 4) is
represented as a 3rd order polynomial

By(xi,yk,z) = 
 4
 Σ
j=1

  Aij z j-1

The coefficients are computed from the two edge points of the segment plus
the two adjacent ones, by a polynomial interpolation, using the NAG library routine
E01AEF4 .

The interpolated function, together with the measured values (scan n. 3), are
plotted in Fig. 7.

Figure 8 shows a zoom of the same plot, to check the continuity of the function
in the grid points.
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Fig. 8 - Zoom of By(0,0,z) from Fig. 7
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As explained in [1] successive measurement at different x can be performed
only after completely extracting the carriage from its guiding box outside the
wiggler; the initial carriage positioning accuracy is of the order of 0.1 mm. To
correct the longitudinal shifts of the data from different scans, we have applied a
realignment procedure: all the points of each scan have been shifted on the in-
terpolated function by a quantity <∆z>, which is the average shift of the four
central zeros of the function By(xi,yk,z) with respect to the zeros of the function
By(0,yk,z) Table II gives the values of <∆zi>; the table shows also the values of a
second shift <∆z'i>,where the difference is taken with respect to By(0,0,z). Of
course, being y=0 in the first 6 scans (see Table I), <∆zi> and <∆z'i> are the same.
After correction the values of the single zeros of the interpolated functions coincide
with the reference scan at x=0 within ≈10 µ, demonstrating that the assumption of
a shift in the initial position is correct.

TABLE II - Relative shifts of different scans

SCAN DATE <∆zi > (m) <∆z'i> (m)
                                                                                                        

1 21.3.94 -9.08 10-5 -9.08 10-5

2 21.3.94 6.01 10-5 6.01 10-5

3 21.3.94 0. 0.
4 21.3.94 1.47 10-4 1.47 10-4

5 21.3.94 -6.26 10-5 -6.26 10-5

6 21.3.94 1.46 10-4 1.46 10-4

7 23.3.94 -2.73 10-4 6.08 10-4

8 23.3.94 0 3.35 10-4

9 23.3.94 4.95 10-5 3.85 10-4

Parabolic fitting along x

From the functions By(xi,0,z) we can now obtain By(x,0,z) as:

By(x,0,z) = 
 2
 Σ
j=0

  aj(z) xj

where the coefficients aj(z) are fitted over the values of By(xi,0,z) for 1≤ i ≤ 6.

Parabolic interpolation along y

The variation of By along y has been derived from scans 7÷9, measured on the
same day. Having only three points for each value of z, a parabolic interpolation
has been performed.

By(0,y,z) = 
 2
 Σ
j=0

  bj(z) yj
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3. TRANSVERSE FIELD COMPONENT ALONG Z

Expressing By(x,0,z) as the quadratic function:

By(x,0,z) = ao(z) + a1(z) x + a2(z) x2

the three coefficients ao(z), a1(z), a2(z) are shown in Figs. 9 for scans 1÷6, while the
vertical behaviour corresponding to x=0 is:

By(0,y,z) = bo(z) + b1(z) y + b2(z) y2

and coefficients b1(z), b2(z) are represented in Figs. 10 for scans 7/9. (bo(z) = ao(z)).

The second derivative ∂2By(0,0,z)/∂z2 with respect to z is plotted in Fig. 11 for
scan n. 3.

The dipolar ao(z) term represents of course the field behaviour on the wiggler
axis. The a2(z) and b2(z) terms, proportional to the second derivatives of the field
with respect to x and y, and the second derivative with respect to z will be used to
compute the multipolar expansion of the field. The horizontal quadrupolar term a1(z)
is very weak, and its presence can be explained as a right-left asymmetry with
respect to the longitudinal axis of the structure. The vertical quadrupole term b1(z)
has not been explained; it may come, in principle, from an asymmetry between the
two vertical positionings of the probe, within the experimental errors, producing a
linear component of the field proportional to the quadratic term.
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Fig. 9a - Function ao(z)
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Fig. 9b - Function a1(z)

0 0.5 1 1.5 2 2.5

40

20

0

20

40 a2(z)  (T/m2)

z (m)

Fig. 9c - Function a2(z)



G-27 pg. 10

0 0.5 1 1.5 2 2.5
-2

-1

0

1

2

b1(z)   (T/m)

m
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4. BEAM CENTRAL TRAJECTORY

Let 's assume that the wiggler has a mechanical symmetry with respect to the y
= 0 and x = 0 planes and to the center of the z axis (z = 0); in this case the field
By(x,0,z) coincides with the total field. A trajectory with initial conditions y = 0, y' =
0 remains in the y = 0 plane for any initial conditions xin, and xin'. From the beam
dynamics point of view the trajectories at the nominal energy which satisfy the
conditions:

xfin = xin,

x'fin = x'in = 0

are particularly important. Each of them can be a "beam central trajectory" if the
wiggler axis is displaced from the ideal ring orbit by xin. Denoting by zF and zC the
coordinates of the end and central points of the wiggler, the field integral along
these trajectories must vanish, namely:

⌡⌠
0

s(zF)

By ds  = 0.0

and due to the symmetry assumptions also:

⌡⌠
0

s(zC)

By ds  = 0.0
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It is clear that for given main pole and end pole currents the previous condi-
tions are satisfied only for a particular xin.

Figure 12 shows the value of the field integral along the trajectory as function
of xin for the main and end pole currents in Table I.
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Fig. 12 -  Field integral along the trajectory as function of initial coordinate

In this case the right xin should be ≈ -1.5 cm. It is clear that modifying the end
pole currents we can satisfy the previous conditions for a large range of different
xin.

Figure 13 shows the integral field measured on the wiggler axis (not on the
trajectory), giving a good approximation to variation of the integral on the trajectory
as a function of the end poles current.
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Fig. 13 -  Field integral on axis as a function of end poles current
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Therefore in principle we could choose any xin. However, we can base the
choice of xin on the following physical considerations.

When the field integral is zero on the axis, and the initial trajectory coordinates
are (0.,0.) the trajectory is not compensated. In fact the trajectory spends almost
the same time where the field is negative and where it is positive; entering on the
axis, it passes through the negative field where this one is at its maximum absolute
value, while through the positive one it is displaced by ≈2.5 cm from the axis,
where the field is lower because of its quadratic behaviour (see Fig. 6); the field
integral on the trajectory is therefore negative (of the order of 0.01 T m). But this is
not the main drawback of this choice for the initial conditions. As explained before,
by varying the end poles current it should be possible to get also in this case a
central beam trajectory. The main problem of this choice is that the trajectory lies
all on a single side with respect to the wiggler axis, and therefore it does not exploit
50% of the good field region. The best choice, from this point of view, is to displace
the wiggler axis with respect to the ideal beam trajectory in the straight section by
half the amplitude of the trajectory in the wiggler: according to the data, for 712.8
A in the central poles, yielding a maximum field of 1.8 T, and 562.1 A on the end
poles, corresponding to almost vanishing field integral, the wiggler axis must be
displaced with respect to the ring axis by 1.45 cm.

For the set of data 1÷6 in Table I the central beam trajectory has been com-
puted. Fig. 14 shows the trajectory starting on axis, and the one entering with
xin=-1.451 cm; the latter comes out with an angle negligible with respect to the
measurement error in the field integral and xout=-1.471 cm; The 0.2 mm difference
between xin and xout is due to a small asymmetry of the wiggler field with respect
to its center; its value is within the alignment tolerances of the ring, and hence
manageable with the orbit correction scheme.
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Fig. 14 - Beam central trajectories: xin = 0. and xin

corresponding to the compensated trajectory
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On the compensated trajectory the values of the synchrotron integrals I2 and I3
are:

I2 = 1.38 m-1 I3 = 1.33 m-2

giving for the whole ring

I2 = 10.01 m-1 (9.76 m-1) I3 = 8.52 m-2 (8.07 m-2)

quite similar to those within brackets computed with the previous field model5.

5. MULTIPOLAR ANALYSIS

The general scalar magnetic multipolar potential of order m in cylindrical
coordinates can be written as3

Pm(r,θ,z) = 
rm sin(mθ)

m!
  Gm(r,z) 5.1)

where the condition of satisfying the Laplace equation is equivalent to:

 
∂2Gm

∂r2   +  
2m+1

r
  

∂Gm

∂r   +  
∂2Gm

∂z2  
  = 0 5.2)

Writing the solution of 5.2) as

Gm(r,z) = 
 ∞
 Σ
k=0

 Gm2k (z) r2k 5.3) 

one can demonstrate that:

Gm2k(z) = (-1)k 
m!

4k(m+k)! k!
  

∂2k Gmo

∂z2k   5.4)

If there is no dependence on z, the potential contains only the first term of the
sum 5.3) for each multipole: for example a pure dipole is described in Cartesian
coordinates with r2=x2+y2 by:

P1(x,y) = y G10 5.5)

while if there is dependence on z, as for example in the wiggler, the dipole potential
becomes:

P1(x,y,z) = y [ G10(z) + G12(z) r2 + G14(z) r4 + ... ] 5.6)

The measured By(0,0,z) coincides with G10(z).
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We will try to fit the wiggler potential on the data with a dipole plus a sextupole
term namely:

P(x,y,z) = P1(x,y,z) + P3(x,y,z) 5.7)

Using 5.1) and 5.3) and dropping of order higher than third we get:

P(x,y,z) = y G10(z) + (x2y + y3) G12(z) + 
3x2y - y3

6
  G30(z) 5.8)

and hence:

Bx(x,y,z)= xy [2 G12(z) + G30(z)] 5.9)

By(x,y,z)= G10(z) + (x2 + 3y2) G12(z) + 
x2 - y2

2
  G30(z) 5.10)

Bz(x,y,z)= y 
∂G10

∂z   + (x2y + y3) 
∂G12

∂z   + 
3x2y - y3

6
  

∂G30

∂z  5.11)

From the condition on the Laplacian:

∆P=0 5.12)

and by derivation with respect to each coordinate xi (i = x,y,z) we get:

∆ ∂P
∂xi

  = ∆Bi = 0 5.13)

Applying to the vertical component we deduce easily:

 
∂2By 

∂x2   = 2 G12(z) + G30(z) 5.14)

∂2By 

∂y2   = 6 G12(z) - G30(z) 5.15)

∂2By 

∂z2   = 
∂2G10

∂z2   = - 8 G12(z) 5.16)

∆By can be made to vanish with any arbitrary G10(z) and G30(z).
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The Laplacian computed with the three second derivatives of By derived from
the field measurements (see paragraph 3) comes out to be different from zero: the
data are not completely consistent. This is due with the limited range of vertical
positions reachable by the probe, which considerably restricts the sensitivity of the
second derivative measurement. We can partially face this inconvenient by taking
into account only a consistent set of measurements. These are of course By(0,0,z)
and By(x,0,z), from which one can deduce ∂2By /∂z2 and ∂2By/∂x2 . From the
previous formulae we get G12 and G30 (see Figs. 15 and 16).

m

G12 (T/m2)

Fig. 15 - Function G12(z)

G30 (T/m2)

m

Fig. 16 - Function G30(z)
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The G30(z) term corresponds to a normal sextupole component. It is present
also on pole centers, while the pseudo sextupole G12(z) arises only on the fringing
regions. The integrals of the two components over the whole wiggler are:

⌡⌠

0

zF

 G30(z) dz  = - 2.3 T/m 5.20)

⌡⌠

0

zF

 G12(z) dz  = - 4 .0x10-5 T/m 5.21)

i.e, the total integral of the pseudo sextupole G12 is zero, while there exist a net
component of the 'normal' sextupolar field, in good agreement with the value es-
timated in [1].

Using 5.9), 5.10) 5.14) and 5.15) we can write the quadratic components of the
field as:

Bx =  
∂2By 

∂x2   xy 5.22)

By =  
∂2By 

∂x2   
x2

2
  +  

∂2By 

∂y2   
y2

2
 5.23)

which in terms of the functions defined in paragraph 3 become:

Bx = 2 a2(z) xy 5.24)

By = a2(z) x2 + b2(z) y2 5.25)

The function b2(z) can be obtained from formula 5.15) using the same set of
data (1÷6) used for the computation of a2(z). The integrals of the two functions on
each pole are:

Table III - Integral of sextupolar components on Wiggler poles

POLE ⌡⌠ a2(z) dz ⌡⌠ b2(z) dz  

NUMBER (T/m) (T/m)
                                                                                

1 4.1 -13.2

2 -11.1 26.2
3 11.2 -26.5
4 -11.0 26.3
5 11.1 -26.2
6 -11.2 25.4
7 4.5 -10.9

Total integral -2.3 1.1
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For tracking purposes the function a2(z) can be approximated on each full pole
by two thin lenses with an integrated strength of ± 5.5 T/m (with alternating signs),
centered on the maximum of the function, occurring at ~10 cm from the pole
center. In the two end poles the same approximation is made with two lenses
positioned at 5.5 cm from the pole center and with integrated strength of 2.17
T/m. The algebraic sum of the strengths is equal to the total integral (-2.3 T/m). It
is worth recalling that the value of the horizontal coordinate x must be corrected
with the offset of the central orbit, which in the position of lenses corresponds to
±7 mm with respect to the wiggler axis.

The function b2(z) has four peaks on each pole: the two on the side are
compensated by those of the adjacent pole and can be neglected. The two higher
peaks, centered on the same position of the a2(z) peaks, can be represented by
thin lenses with integrated strength ± 12.5 T/m. The two end poles can be
represented by a one lens of 13 T/m centered on the pole end, and two lenses of -
12.5 T/m, centered also in the same position of those of a2(z).

6. LIMIT FOR Bx ---> 0

We can observe that, on the average, ∂2By/∂x2 is very small with respect to the
other two second derivatives. This can be explained by observing that the wiggler
gap has an horizontal size much larger than the vertical one. Let us assume
therefore the limiting case, where the field does not depend on x at all. We assume
furthermore that the potential has contributions from dipole, sextupole and
decapole:

P(x,y,z) = y G10(z) + (x2y + y3) G12(z) + (x4y + 2x2y3 + y5) G14(z) +

+ 
3x2y - y3

6
  G30(z) + 

3x4y + 2x2y3 - y5

6
  G32(z) + 6.1)

+ 
5x4y - 10x2y3 + y5

120
  G50(z)

From 5.4) we get:

G12 = -
1
8
 
∂2G10

∂z2  6.2)

G14 = 
1

192
 
∂4G10

∂z4  6.3)

G32 = -  
1
16

  
∂2G30

∂z2  6.4)
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The coefficient of the x2y term in 6.1) vanishes if:

G30 = - 2 G12 = 
1
4
 
∂2G10

∂z2  6.5)

and therefore:

G32 = - 
1
64

 
∂4G10

∂z4  6.6)

Similarly the coefficient of x4y is zero if:

G50 =
1
16

 
∂4G10

∂z4   6.7)

The potential can then be written as a function of G10 only:

P(x,y,z) = y G10(z) + 
∂2G10

∂z2  





- 
x2 y + y3

8
 + 

3x2y-y3   

  24
   +

6.8)

+ 
∂4G10

∂z4  



x4y + 2x2y3 + y5

192
 - 

 3x4y + 2x2y3 - y5 

 384
 + 

 5x4y - 10x2y3 + y5  

 1920 
  

where we can verify that any the dependence on x disappears:

P(y,z) = y G10(z) - 
y3

6
  

∂2G10 

∂z2   + 
y5

120
  

∂4G10

∂z4  6.9)

By and Bz must satisfy Maxwell equations in the (y,z) plane. From the expression
above we obtain:

By(y,z) = G10(z) - 
y2

2
 
∂2G10

∂z2   + 
y4

24
 
∂4G10

∂z4  6.10)

Bz(y,z) = y 
∂G10

∂z   - 
y3

6
 
∂3G10

∂z3   + 
y5

120
 
∂5G10

∂z5  6.11)

If we try to verify that div(B)=0 and curl(B)=0 we get:

∂By

∂y   + 
∂Bz

∂z   = 
y5

120
  

∂5G10

∂z5  6.12)

∂By

∂z   - 
∂Bz

∂y   = 
∂G10

∂z   - 
y2

2
 
∂3G10

∂z3   + 
y4

24
 
∂5G10

∂z5   - 
∂G10

∂z   +

6. 13)

+  
y2

2
 
∂3G10

∂z3   - 
y4

24
 
∂5G10

∂z5   = 0
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Therefore Maxwell equations are satisfied up to the fifth order. Clearly, more
high order multipoles are taken into account, more precisely the deviations are
defined.

It is amusing to verify that by choosing G10(z) = kz, we get a quadrupole

By(y,z) =kz Bz(y,z)= ky 6.14)

if G10(z)=kz2 we get a sextupole

By(y,z) = k(z2 - y2) Bz(y,z) = 2 k yz 6.15)

and with G1o(z) = kz3  an octupole

By(y,z) = k(z3 -3 y2z) Bz(y,z) = k(3 yz2 - y3) 6.16)

and so on.
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