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1.  Introduction

The longitudinal size of a single bunch in the DAΦNE storage rings is of
crucial importance for reaching high luminosity. To avoid geometrical lumi-
nosity reductions (the so-called "hour-glass effect"), the bunch length has to
satisfy the empirical rule[1]:

σz ≤
βy

1.5
(1)

where βy is the vertical betatron function at the interaction point.

On the other hand, a too short bunch produces strong parasitic losses,
fast mode-coupling instabilities, and short Touschek life-time. For DAΦNE, a
bunch length σz = 3 cm has been chosen as a reasonable compromise.

Preliminary calculations on bunch lengthening in DAΦNE have shown
that the final bunch length is less than 3 cm, and additional lengthening may
be necessary[2]. This can be done, for example, by decreasing the main RF
voltage. However, this implies a substantial reduction in the acceptance,
which leads to a reduction in Touschek life-time. Therefore an alternative
method to control the bunch length should be proposed.

The lack of a reliable theory describing the strong turbulent lengthening
regime (expected for DAΦNE) is another reason to develop a system able to
cope with any unforeseen effect in beam behavior which may shorten or
lengthen the bunches.

An effective control on the longitudinal bunch size is obtained by
changing the voltage slope seen by every bunch at each turn by means of a
higher harmonic cavity[3].

In this note we shall analyze the effect of a higher harmonic cavity on the
longitudinal dynamics and estimate the requirements for bunch length
control.
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We assume that the voltage of the main cavity seen by a particle is:

V τ( ) = V̂g cos −ωτ + ϕso( )   (2)

where V̂g  is the RF peak voltage, and τ is the time distance from the
synchronous particle (taken as positive ahead of the bunch: τ=-t). From eq.(2),
when τ=0, we have the synchronous phase ϕso determined by the conditions:

cos ϕso( ) = Uo / e( )
V̂g

            sin ϕso( ) > 0 (3)

where Uo is the energy loss per turn. The voltage induced by the beam in the
fundamental mode is considered to be perfectly compensated by a feedback
system.

2.  Active control of the bunch length

An active external power supply controls the voltage of the higher har-
monic cavity. As in the main cavity, the voltage induced by the beam is sup-
posed to be compensated so that for the higher harmonic cavity we have:

Vn τ( ) = kV̂g cos −nωτ + nϕo( ) (4)

(n=3 -> third harmonic cavity).

Under this condition there are two free parameters that allow bunch
length control: k (the ratio between the peak voltages of the two cavities) and
the initial phase nϕo.

Since the bunch length is determined by the slope of the total voltage, the
best efficiency is reached when Vn(0) has the maximum slope, that is:

nϕo = 2m +1( ) π
2

         - >     Vn 0( ) = 0 (5)

(m=1,2,3...).

It is easy to see that even values of m, which increase the negative slope
of the voltage, shorten the bunch, while odd values act in the opposite way.
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We shall evidence this behaviour by putting a double sign ± in front of k,
the upper one referring to the shortening regime. The total voltage is then:

V τ( ) = V̂g cos −ωτ + ϕso( ) ± k sin nωτ( )[ ] (6)

In Fig. 1 we show the voltages assuming k=.2 and n=3 in the
lengthening regime. Under condition (5) the higher harmonic cavity does not
accelerate the bunch and the length can be controlled by changing k.
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Fig. 1: Voltages with a third harmonic cavity in the
lengthening regime with k=.2.

In order to provide phase stability, the synchronous phase must be such
that:

dV τ( )
dτ

 
 τ=0

> 0 (7)

which implies:

  
m

kn

sinϕso
< 1 (8)

This condition could not be satisfied in the lengthening regime when:

k > sinϕso
n

(9)
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However it is easy to see from the plot of the potential well shown in Fig.
2 that under this condition there exist two "mini-buckets" close to the syn-
chronous phase, and the bunch shape is strongly deformed with two 'horns'
and strong lengthening (Fig. 3).
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Fig. 2: Potential well for n=3 and k=.4 in arbitrary units.
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Fig. 3: Longitudinal bunch shape with n=3 and k=.4.
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From eq.(6), we obtain the potential:

  

ϕ τ( ) = αc
E / e( )To

V̂g

ω
sin ϕso( ) ± kV̂g

nω
−

V̂g

ω
sin ϕso − ωτ( )







+

           m
kV̂g

nω
cos nωτ( ) − Uo / e( )τ







(10)

with αc the momentum compaction, E the nominal energy of the particles, and
To the revolution period.

- Linear approximation.

In the linear approximation (ωτ<<1) we have:

ϕ τ( ) = αc
E / e( )To

V̂g ω sin ϕso( ) 1± kn

sin ϕso( )









τ2

2
(11)

From Haissinski's equation[2] in absence of turbulence regime and in the
linear approximation, it is possible to make a rough estimate of the power
required by the cavity to lengthen the bunch. In fact we can write:

I τ( ) = Io exp − 1

σo
2 1± kn

sinϕso






τ2

2













(12)

where σo is the rms size of the bunch distribution in the time domain due to
the main cavity only. From eq.(12) we get:

σ = σo

1± kn

sinϕso

(13)

It is worth noting that the same relation could be obtained by considering
that [4]:

σ
σo

= V̇

V̇o
(14)
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The power required by the higher harmonic cavity is:

P =
k2V̂g

2

2Rs
(15)

with Rs the shunt resistance of the first fundamental mode. Substituting k
from eq.(15) into eq.(13) we obtain:

σ = σo

1±
n 2RsP

V̂g sinϕso

(16)

which relates the bunch length with the power fed to the higher harmonic
cavity.

Under the assumption ωτ<<1, the RF acceptance is [3]:

∆Etot = ∆Emain 1± k

n
(17)

As it can be easily calculated, for a third harmonic cavity with k =
sin ϕso( )

n
and sin ϕso( ) ≈ 1, the change in RF acceptance due to the introduction of the

higher harmonic cavity does not exceed ±6%.

- Exact equations.

The equations of the linear approximation are no longer valid when k gets

close to 
1
n

 because other terms in the expansion of (10) must be taken into

account. In general, we must use the exact equation:

      I τ( ) = Io exp
1

σo
2ω2 sinϕso






*

* sin ϕso − ωτ( ) ± k

n
cos nωτ( ) + Uo

V̂g
ωτ



















(18)
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where:

Io =
Qb

exp
1

σo
2ω2 sinϕso

sin ϕso − ωτ( ) ± k

n
cos nωτ( ) + Uo

V̂g
ωτ
























dτ

−∞

+∞

∫
with Qb the total charge of a bunch. The rms bunch length is defined by:

σ = 1
Qb

I τ( )τ2dτ
−∞

+∞

∫ (19)

In Fig. 4 we plot the normalized bunch length versus k in the case of a
third harmonic cavity at different values of σo. As obtained in the linear ap-
proximation, for short bunches the ratio σ/σo does not depend on σo, while for
longer bunches σ/σo is rather sensitive to σo.:
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Fig. 4: Bunch length versus k with a third harmonic cavity.

Finally we must mention a particular case of active bunch length control
considered for LEP [5,6], where the parameters k and nϕo are determined by the
conditions that maximize the bunch length:

dV τ( )
dτ  τ=0

= 0 (20)

d2V τ( )
dτ2

 τ=0

= 0 (21)
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In Fig. 5 we show the voltages obtained under these conditions in the case
of a third harmonic cavity. Anyway this situation gives only a fixed bunch
length with no possibility of variation.
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Fig. 5: Voltages in case of zero slope at the synchronous phase.

3.  Passive control of the bunch length

In a passive higher harmonic cavity (with no external power supply), the
voltage is induced by the beam itself and technical complexity and cost are
greatly reduced[7].

Let us assume that N bunches of charge Qb are stored in the machine,
and let us consider only the term of frequency nω in the Fourier expansion of
the current (n=3 -> third harmonic cavity), i.e. the only current spectrum line
that couples to the fundamental mode impedance:

ib τ( ) = −2
Qb N

To
cos nωτ( ) (22)
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If we define:

Vb =
Qb N

To
Rs (23)

the induced voltage is[8]:

Vb τ( ) = −2Vb cos φy( )cos nωτ + φy( ) (24)

where:

φy = arctg Q
nω
ωr

− ωr
nω















 (25)

with Q and ωr respectively the quality factor and the resonant frequency of the
higher harmonic cavity.

The total voltage is then:

V τ( ) = V̂g cos −ωτ + ϕs( ) − 2Vb cos φy( )cos nωτ + φy( ) (26)

In this case the higher harmonic cavity accelerates the bunch and the
synchronous phase changes. The new synchronous phase is determined by the
condition:

cosϕs =
Uo / e( ) + 2Vb cos2 φy

V̂g
(27)

with:

sinϕs > −
2nVb cosφy sinφy

V̂g
(28)

Positive values of φy, by increasing the negative slope of the voltage,
shorten the bunch, while negative values give the opposite result.

If (28) is not satisfied, which happens only in the lengthening regime
(sinφy < 0), the potential well splits into two buckets as in the active control
case (see Fig. 2).
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Using the same procedure of the active control, in this case the potential
is:

ϕ τ( ) = αc
E / e( )To

V̂g

ω
sin ϕs( ) + 2

Vb
nω

cosφy sinφy






+

−
V̂g

ω
sin ϕs − ωτ( )−2

Vb
nω

cosφy sin nωτ + φy( ) − Uo / e( )τ


(29)

In the linear approximation we can write:

ϕ τ( ) = αc
E / e( )To

V̂g ω sin ϕso( )*

*
sin ϕs( )
sin ϕso( ) +

2nVb cosφy sinφy

V̂g sin ϕso( )












τ2

2

(30)

and the current is:

I τ( ) = Io exp − 1

σo
2

sin ϕs( )
sin ϕso( ) +

2nVb cosφy sinφy

V̂g sin ϕso( )












τ2

2












(31)

so that:

σ = σo

sin ϕs( )
sin ϕso( ) +

2nVb cosφy sinφy

V̂g sin ϕso( )

(32)

The power dissipated by the beam in the higher harmonic cavity, which
has to be recovered by the main cavity is:

P = 2
Vb

2

Rs
cos2 φy = 2

NQb
To







2

Rs cos2 φy (33)
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therefore:

σ = σo

sin ϕs( )
sin ϕso( ) +

n 2RsP sinφy

V̂g sin ϕso( )

(34)

If the dissipated power is small, so that the relation:

2Vb cos2 φy =
P

N Qb
To







<<Uo (35)

is verified, then the synchronous phase remains approximately unchanged,
that is:

sin ϕs( )
sin ϕso( ) ≈ 1 (36)

To reduce the power and, at the same time, change significantly the
bunch length, from (33) and (34) we must increase the shunt impedance as
much as possible and detune the cavity so that φy ≈ ± 2

. Under this condition
we can write:

sinφy = ±1 (37)

and (34) becomes:

σ = σo

1±
n 2RsP

V̂g sin ϕso( )

(38)

which is the same equation obtained with the active control.

Also in the passive cavity, when the induced voltage Vb cosφy  is high, we
can not use the linear approximation but need to evaluate the exact
Haissinski's equation

I τ( ) = Io exp − E / e( )To

αc σo
2ωV̂g sinϕso

ϕ τ( )











(39)
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from which:

σ = 1
Qb

I τ( )τ2dτ
−∞

+∞

∫ (40)

Even without the linear approximation, if the shunt impedance is high
and the dissipated power is small, the potential can be written as

φy = ±
π
2

,  ϕs = ϕso




 :

ϕ τ( ) = αc
E / e( )To

V̂g

ω
sin ϕso( ) ±

2Vb cosφy / V̂g( )
nω

V̂g







+    

           

−
V̂g

ω
sin ϕso − ωτ( ) m

2Vb cosφy / V̂g( )
nω

V̂g cos nωτ( ) − Uo / e( )τ






(41)

which coincides with the potential obtained in the case of active control.

We can therefore conclude that for sufficiently small values of the dissi-
pated power so that (35) is satisfied, and for very high values of shunt
impedance so that, from (33) φy = ± 2

, both active and passive control of the
higher harmonic cavity produce the same effect on bunch length.

However, we want to remind that in the passive mode the voltage Vb

depends on the stored current, so that the effects on the bunch length may
change, and with few bunches it may be impossible to reach the desired length.
Another difference arises in the case of the lengthening regime for which the
tuning angle φy is negative and the Robinson instability induces dipole
oscillations.

4.  Landau damping

In order to control the bunch length we have to change the slope of the
total voltage. As a consequence, the higher harmonic cavity introduces some
non-linearities on the restoring force acting on the single particle, which
increase the synchrotron frequency spread, thus stabilizing the coherent
oscillations through the Landau damping mechanism.

Let us consider the case of very high shunt impedance and small power,
so that the total voltage can be written as:

V τ( ) = V̂g cos −ωτ + ϕso( ) ± k sin nωτ( )[ ] (42)
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where:

k =
2Vb cosφy

V̂g
(43)

in the case of passive control.

The equation of motion for a single particle is:

˙̇τ = − αc
ETo

eV̂g cos ϕso − ωτ( ) ± k sin nωτ( )[ ] −Uo








(44)

By using a perturbative method[9], it is possible to obtain the solution of
(44) and the frequency of the oscillation (synchrotron frequency) in terms of
power of the maximum amplitude of the first fundamental oscillation
harmonic. If we call this amplitude   ̂τ and limit ourselves to the first five terms,
the solution of (44) is:

τ t( ) = τ̂ cos ψ( ) + τ̂
2

4
cot gϕso

1± kn

sinϕso







1− 1
3

cos 2ψ( )




+  

             

− τ̂3

192

1± kn3

sinϕso








1± kn

sinϕso







cos 3ψ( ) + τ̂
4

16
cot gϕso

1± kn

sinϕso







− 1
4
+ 1

9



cos 2ψ( ) +

+ 1
180

cos 4ψ( )

+ τ̂5

3072

1± kn5

sinϕso











1± kn

sinϕso







cos 3ψ( ) + 1
15

cos 5ψ( )




+O τ̂5( )

(45)

where:

ψ = ωst + θo (46)
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with ωs the synchrotron frequency, θο a starting condition, and:

ωs τ̂( ) = ωso 1± kn

sinϕso
1−

ωτ̂( )2

16 1± kn

sinϕso

















1± kn3

sinϕso













+

+ 5
3

cot g2ϕso

1± kn

sinϕso

















+
ωτ̂( )4

64 1± kn

sinϕso







1
6



1± kn5

sinϕso









 +           

− 5
48

1± kn3

sinϕso








2

1± kn

sinϕso







+ 7
6

cot g2ϕso

1± kn

sinϕso


















+ 0 τ̂5( )













(47)

with

ωso =
αcωeVg sinϕso

ETo
(48)

To calculate the Landau damping effect, we have to use (47) into the
dispersion integral and evaluate the corresponding longitudinal impedance at
the stability boundary[10]. If we want to estimate the accuracy of our ap-
proximation and the possibility of neglecting also fourth power terms in   ωτ̂ in
(47), we can proceed as follows.

Let us assume to have a Gaussian distribution and consider the average
of the synchrotron frequency weighted over the bunch distribution, namely:

< ωs >=
2

2πσ
ωs τ̂( )exp − τ̂2

2σ2












dτ̂

o

∞

∫ (49)
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Using (47) in the integral, we obtain:

< ωs >= ωso 1± kn

sinϕso
1− ωσ( )2

16 1± kn

sinϕso

















1± kn3

sinϕso













+

+ 5
3

cot g2ϕso

1± kn

sinϕso

















+ 3 ωσ( )4

64 1± kn

sinϕso







1
6



1± kn5

sinϕso









 +   

 

       

− 5
48

1± kn3

sinϕso








2

1± kn

sinϕso







+ 7
6

cot g2ϕso

1± kn

sinϕso


















+ 0 σ5( )













(50)

Given k, n, σ, and ϕso, we can compare the terms of different powers in   ωτ̂
and see which order we can neglect. In case of a third harmonic cavity, the
terms inside the square brackets are approximately of the same order of
magnitude, so that the difference between the second and the fourth power of

  ωτ̂ depends only on the bunch length. For DAΦNE (σ = 3 cm -> ωσ = .23 rad)
the difference is a factor 20, and therefore we limit ourselves to the second
power of   ωτ̂. If we take also cotgϕso = 0, it is possible to compare the Landau
damping effect without and with the higher harmonic cavity. In the first case
we write:

ωs = ωso 1−
ωτ̂( )2
16













(51)

from which we get the relation

Z( p) =
p E / e( )πωso

2 σ2ω2

4Ibαc

πe−yJm
2 pωoσ 2y[ ] + jℑpv

ℑpv
2 + πe−yJm

2 pωoσ 2y[ ]





2

























(52)
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where Z(p) is the maximum longitudinal shunt impedance at the stability
boundary, p is an integer number, Ib the average beam current, ωo the revo-
lution angular frequency, Jm the Bessel function of the first kind of the mth

order, ℑpv the principal value of the integral:

ℑpv = P.V.
e−x Jm

2 pωoσ 2x[ ]
x − y

dx

o

∞

∫ (53)

and y a function which depends on the coherent synchrotron frequency.

To obtain the stability region, we plot the real and the imaginary part of
Z(p) with the real part of y varying from 0 to ∞ and the imaginary part equal to
0+. The stability region in this case is shown in Fig. 6 for the dipole mode of
oscillation and for p=500.
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0
[k    ]Ω

[k    ]Ω

Fig. 6: Stability region for the dipole mode of oscillation with p=500.

In presence of the higher harmonic cavity, we obtain:

Z( p) = p E / e( )πω so
2 σ 2ω 2

4Ibαc

1± kn3

sinϕ so







*

*
±πe− y Jm

2 pωoσ 2y[ ] + jℑpv

ℑpv
2 + πe− y Jm

2 pωoσ 2y[ ]





2





















(54)

where the sign + or - in the double bracket depends on whether the term

1± kn3

sinϕso







 is positive or negative respectively.



G-24 pg. 17

When:

1± kn3

sinϕso







>0 (55)

from (54) we get the same stability region obtained with (52) but amplified by

the factor 1± kn3

sinϕso







 as shown in Fig. 7. On the other hand, if:

1± kn3

sinϕso







<0 (56)

the stability region is upside down and amplified by the same factor, as we see
in Fig. 8.

1 2 3 4 5 6

-60

-50

-40

-30

-20

-10

10

0

stability

instability

[k    ]

Re[Z(p)]

Im[Z(p)]

Ω

[k    ]Ω

Fig. 7: Stability region with p=500, k=.2, n=3 in the shortening regime.
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Fig. 8: Stability region with p=500, k=.2, n=3 in the lengthening regime.
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We can therefore conclude that in presence of a higher harmonic cavity,
limiting ourselves to the second power of   ωτ̂ in the expression of ωs(τ), we gain

a factor 1± kn3

sinϕso







 on the maximum value of the allowed longitudinal HOM

impedance.

5.  Application to DAΦNE.

In order to evaluate the bunch length in presence of the higher harmonic
cavity we have first solved Haissinski's equation with vanishing broad band
impedance, i.e. without any turbulence. At different values of the shunt
impedance of the higher harmonic cavity fundamental mode, we plot in   Fig. 9
the bunch length versus the power supplied by the higher harmonic cavity with
the active control, or by the main cavity with the passive one.
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Fig. 9: Bunch length versus power without broad band impedance
at different shunt resistances.

We have considered only the region where the potential well is not
significantly deformed by non-linearities, so that the  bunch remains practi-
cally gaussian, and the peak current required by the Boussard criterion can be
written as[2]:

Î =
Qb
2πσ

(57)
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Such a peak current, in the turbulent regime, changes the energy spread.
But a new value of energy spread leads to a new distribution of particles in the
potential well, and therefore, a new bunch length. With Haissinski's equation
we can take into account the distortion of the potential well due to the broad
band impedance, and calculate the new σ. If we assume that the bunch is still
gaussian so that (57) is verified, we find a new peak current which, again,
influences the energy spread.

The final bunch length is obtained by solving self-consistently Boussard's
criterion and Haissinski's equation together with (57).

In Fig. 10 we show the final bunch length versus power with different
shunt impedances and with the longitudinal broad band impedance estimated
so far for the DAΦNE main rings, while in Fig. 11 we have doubled the value of
the inductive component of the broad band impedance.

The two plots refer to both active and passive control of the higher
harmonic cavity, because the shunt impedance is very high (from .4 to 2 MΩ)
and the power small (less than 7 kW).
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Fig. 10: Bunch length versus power at different shunt resistances
with a broad band impedance of .42 Ω.
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Fig. 11: Bunch length versus power at different shunt resistances
with a broad band impedance of .78 Ω.

6.  Conclusions.

A higher harmonic cavity in the main ring gives an additional degree of
freedom to adjust the bunch length. An effective control on the longitudinal
bunch size is obtained by changing the voltage slope seen by the particles at
each turn by means of such a cavity.

We have shown that active and passive control of the cavity have the
same effect on the bunch length, provided the shunt impedance of the fun-
damental mode is very high. For DAΦNE we have shown that ≈2 MΩ resistance
allows to keep the bunch length under control with 1 kW assuming an
inductive broad band impedance in the range of 0.5 ÷ 1 Ω.

Furthermore there is an enhancement of the Landau damping effect,
beneficial for damping multibunch instabilities.

Another advantage comes from the fact that although the voltage slope
can be changed over a wide range, the variation of RF acceptance does not
exceed ±6% for the parameters of interest.
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A passive higher harmonic cavity seems to be preferable to an active one
because it greatly reduces cost and technical complexity due to the absence of
an additional power source. However, we must mention that the bunch length
changes with the number of bunches and with few bunches it may be
impossible to reach the desired bunch length. Furthermore the Robinson
instability can occur with the passive cavity in the lengthening regime, for
which the tuning angle is negative.
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