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Introduction

One of the main problems in the beam dynamics in DAΦNE are the
multibunch instabilities caused by the strong coupling between the beam and
parasitic HOMs of the RF cavity [1].  Strong efforts have been done to
optimize the RF cavity shape [2] and to apply different HOM damping tech-
niques in order to reduce the growth rates of the instabilities [3].
   

In spite of the satisfactory results in HOM damping, due to the high
beam current in DAΦNE, a feedback system or another damping mechanism
is still needed to kill the residual coherent oscillations. A digital bunch-by-
bunch feedback system [4] is planned to be installed in the DAΦNE main
rings to fight the dipole (rigid motion) coupled-bunch longitudinal instability.
   

As it has been shown in [1], the longitudinal quadrupole modes (and,
probably, higher modes) can be also dangerous if special measures to damp
them are not undertaken, while at the moment no  feedback system is fore-
seen to deal with the quadrupole (and higher) modes. So, to avoid using a
feedback system we have to investigate whether another damping mechanism
exists to cope with the quadrupole mode instability.
  

Landau damping is a possible candidate for this purpose. In the following
we consider Landau damping of both the dipole and quadrupole modes due to
nonlinearities of the RF fields and discuss the necessary conditions to keep
bunch motion stable.

Stability diagrams

  We assume that a particle distribution function may be represented as
the sum of a stationary distribution g0(τ) and a coherent perturbation:

Ψ( ψ0, τ, t ) = g0(τ) + gm(τ) e-j m ψ
0 e j (Ω m - m ωs ) t∑

m   
  

         
(1)

where τ and ψ0 are polar amplitude and phase coordinates in the longitudinal
phase space; ωs is the angular incoherent synchrotron frequency; Ωm is the
angular frequency of the mth coherent mode.
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Then the linearized Vlasov equation gives the following equation of co-
herent motion for the mth mode [5]:

  
j1 - m[ Ωm - m ωs(τ) ] τ gm(τ) = - m α I

ωs(τ) (E/e)
 
∂g0

∂τ
 

Z//(p)
p  Jm (p ω0 τ ) σm (p)∑

p  
  (2)

 
Here  σm(p)  is  the  spectrum  amplitude  of  mth  mode  at  frequency ωp

= pω0 + Ωm with the index p = Mk + n , where M is the number of bunches in
a beam, k the revolution harmonic, and n the coupled bunch mode number:

               
σm (p) = j-m Jm ( p ω0 τ ) gm(τ) τ dτ

0

∞

 
(3)

 Z//(p) is the longitudinal impedance due to higher-order modes at fre-
quencies ωp; Jm is the Bessel function; α the momentum compaction; I the
average beam current; E the energy of particles.

The dependence of the synchrotron frequency on the amplitude of syn-
chrotron oscillation τ appears due to the nonlinearity of the RF field:

ωs(τ) = ωs0  1 - h ω0
4

2
 τ2

 (4)

 Two comments should be made on eq. (2):

 - Here we consider only "the most coherent modes" when the azimuthal
mode number is equal to the radial one. These modes have the shortest
rise times.

 - Eq. (2) implies that the coherent frequency shift ∆Ω = Ωm - m ωs is small
compared to the angular synchrotron frequency ωs. This allows to neglect
the coupling between modes with different m.

Multiplying both sides of eq. (2) by

                                

Jm ( l ω0 τ )

Ωm - m ωs(τ)

and integrating  from 0 to ∞ we arrive to the dispersion relation:

   

 - m Jm (l ω0 τ )gm(τ) τ dτ
0

∞

 = j m α I
ωs0 (E/e)

  Z//(p)
p    σm (p) ∂g0

∂τ
 Jm (p ω0 τ ) Jm (l ω0 τ )

[ Ωm - m ωs(τ) ]
dτ

0

∞

∑
p

  
(5)

As far as for our set of parameters (see Table 1 below) the synchrotron
frequency spread due to RF field nonlinearities is small compared to the an-
gular synchrotron frequency ωso and ∆Ω << ωs we used the following approxi-
mation in getting (5):

                 ωs(τ) [ Ωm - m ωs(τ) ] = ωs0 [ Ωm - m ωs(τ) ]

Let us assume that the coherent motion is driven by a narrow band res-
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onant impedance and the only line of  the bunch spectrum lies within this
narrow frequency band. Then, the sum over  p  is  eliminated and putting   p
= l we reduce the dispersion relation to the form:

1 = j m α I
ωs0 (E/e)

  
Z//(p)

p   
∂g0

∂τ
 

Jm
2  (p ω0 τ ) 

[ Ωm - m ωs(τ) ]
dτ

0

∞

 

     (6)

We consider a stationary Gaussian amplitude density distribution:

                        
g0(τ) = 1

2 π στ
2
 exp  - 1

2
 τ

στ

2
                  (7)

Then, we rewrite the dispersion relation (6) taking into account (4)  and
(7):

        
1 = - j 4 α I

π ωs0
2  (E/e) (h ω0)2 στ

4
  

Z//(p)
p    

exp ( - x )Jm
2  (p ω0 στ 2 x ) 
[ x - y ]

dx
0

∞

  (8)

where

                         
y = - 

8 (Ωm - m ωso )

m ωso (h ω0 στ )2  
                   (9)

It is convenient to present the dispersion relation (8) in terms of the
imaginary and real part of the longitudinal impedance. For the dipole mode
(m = 1) we have:

                 
Im {Z//} = 

π (h ωs0 στ )2 (E/e)
2 p α I

 Re{G1(y)}
    

(10)

                  
Re {Z//} = - 

π (h ωs0 στ )2 (E/e)
2 p α I

 Im{G1(y)}
         

(11)

where we define G1(y) as:

               
G1

-1(y) = 2
(p ω0 στ)2 

     
exp ( - x )J1

2 (p ω0 στ 2 x ) 
[ x - y ]

dx
0

∞

         (12)

The stability limit is found by imposing Im(y) --> 0-. The threshold curve
of the instability is given by the curve traced out by G1(y) in the complex
plane (See Fig. 1).
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Fig. 1 - Stability diagram for longitudinal dipole mode at pωoστ = 1.

It worth noting that for very short bunches with pωoστ << 1 we can ex-
pand Bessel function in (12) in series keeping only the first term of the ex-
pansion:

J1(z)~ z/2      for z << 1    (13)

Then we will get exactly Wang's dispersion relation for short bunches [6].

In the case of full coupling with a higher-order mode, Im{Z} is equal to 0
and Re{Z}= Rs, where Rs is the shunt impedance of the mode. So, the limit on
Rs is defined by intersection of the curve G1(y) with the axis Re{G(y)} = 0.

              
Rs

max = - 
π (h ωs0 στ )2 (E/e)

2 p α I
 Im{G1(y)}|Re{G1(y)} = 0   (14)

This means that the condition Rs < Rsmax must be fulfilled to keep
bunch motion stable. It should be noticed that Rsmax does not depend on the
momentum compaction, while it is inversely proportional to the beam
current. The dependence of Rsmax on the bunch length is hidden in the
product στ2Im{G}|Re{G}=0 and on the frequency - in Im{G}|Re{G}=0/p. Fig. 2
shows the dependence of Im{G}|Re{G}=0 on the parameter pωoστ.
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Fig. 2 - Dependence of Im{G}|Re{G}=0 on the parameter pωoστ.

 For the quadrupole mode (m = 2) we can rewrite the dispersion relation
(8) in the following form:

                   
Im {Z//} = 

4π (h ωs0 )2 (E/e)

ω0
2 p3 α I

 Re{G2(y)}
 

(15)

                   
Re {Z//} = - 

4π (h ωs0 )2 (E/e)

ω0
2 p3 α I

 Im{G2(y)}
                  

(16)

where

                 
G2

-1(y) = 16
(p ω0 στ)4 

     
exp ( - x )J2

2 (p ω0 στ 2 x ) 
[ x - y ]

dx
0

∞

        
   (17)

For very short bunches pωoστ << 1 we can use an approximation:

                    
J2(z) ~ z

2
2 1

Γ(3)
 = z

2

8
      for z << 1                 (18)

and it is easy to see that eqs. (15)-(17) are transformed into Wang's disper-
sion relation for short bunches [6].

The stability boundary curve for the quadrupole mode is shown in Fig. 3.
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Fig. 3 - Stability diagram for longitudinal quadrupole mode at pωoστ=1.

In the case of full coupling Rs must be less that Rsmax to keep
quadrupole motion stable:

                   
Rs

max = - 
4π (h ωs0 )2 (E/e)

ω0
2 p3 α I

 Im{G2(y)}|Re{G2(y)} = 0
                 

 (19)

We should mention here that the stability limit has much stronger de-
pendence on frequency and weaker dependence on the bunch length (only
through G2(y)) than that found for the dipole motion (See eq. (14) for com-
parison). Fig. 4 presents Im{G2}|Re{G2}=0  as a function of pωoστ.
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Fig. 4 - Im{G2}|Re{G2}=0  as a function of pωoστ.



G-21  pg. 7

Stability limits

In this section we apply the stability diagrams to find stability limits on
Q for the case of full coupling. We assume that the ratio R/Q is kept con-
stant.

Table1 gives the DAΦNE single ring parameters which we used in our
calculations. If the parameters change, eqs. (14), (19) (and Fig. 2 and Fig. 4)
can be applied as a scaling to find stability limits on the shunt impedance of
HOMs.

Table 1 -  DAΦNE parameters used in calculations

   Revolution frequency, MHz
   Harmonic number
   RF frequency, MHz
   Energy, MeV
   Momentum compaction
   Synchrotron frequency, kHz
   Bunch length, cm
   Average current/bunch, mA
   Number of bunches

  
3.069

120
368.25
510

0.005846
22.877
3

43.75
30

Table 2 gives calculated parameters of HOM modes of the DAΦNE RF
cavity and rise times of the dipole mode.  Table 2 is mostly drawn from [1]
except for  the last column where we give values of quality factors which it is
necessary to reach by damping techniques to keep coherent dipole oscillation
stabilized by Landau damping.

Table 2 - Rise times of dipole modes and Q's required to be Landau damped

f, MHz R/Q Q0 τ Qdamped

734.42 13.5 52000 11 µs 97
797.89 0.02 85000 763 µs 61680

1006.20 0.004 68000 5 ms -------
1086.44 0.11 69000 219 µs 9510
1163.18 0.24 61000 119 µs 4160
1234.49 1.49 74000 29 µs 625
1317.27 0.33 60000 90 µs 2740
1357.49 1.37 75000 29 µs 650
1429.06 0.73 63000 48 µs 1190
1527.46 0.06 66000 363 µs 14210
1529.25 1.88 62000 25 µs 450
1619.86 0.82 74000 41 µs 1020
1643.96 1.28 68000 30 µs 650
1725.08 0.72 79000 45 µs 1145
1762.63 2.25 70000 21 µs 365
1767.80 0.82 73000 41 µs 1000
1800.69 0.22 76000 119 µs 3720
1869.62 0.10 76000 230 µs 8140
1890.12 0.73 64000 50 µs 1115
1978.98 0.23 78000 115 µs 3520
1985.50 0.18 96000 122 µs 4490
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Table 3 gives calculated parameters of HOM modes of the DAΦNE RF
cavity and rise times of the quadrupole  modes. In the last column we give
the limiting values of Q. Below these values the quadrupole mode coupled-
bunch longitudinal instability is damped.

Table 3 - Rise times of quadrupole modes and Q's
required to be Landau damped

f, MHz R/Q Q0 τ Qdamped

734.42 13.5 52000 43 µs 2500
797.89 0.02 85000 5.6 ms -------

1006.20 0.004 68000 29 ms -------
1086.44 0.11 69000 827 µs -------
1163.18 0.24 61000 360 µs 44090
1234.49 1.49 74000 65 µs 6900
1317.27 0.33 60000 237 µs 24240
1357.49 1.37 75000 61 µs 5470
1429.06 0.73 63000 104 µs 9180
1527.46 0.06 66000 800 µs -------
1529.25 1.88 62000 43 µs 3120
1619.86 0.82 74000 70 µs 6390
1643.96 1.28 68000 50 µs 3980
1725.08 0.72 79000 68 µs 6540
1762.63 2.25 70000 30 µs 2000
1767.80 0.82 73000 63 µs 5470
1800.69 0.22 76000 192 µs 19760
1869.62 0.10 76000 349 µs 40950
1890.12 0.73 64000 72 µs 5500
1978.98 0.23 78000 162 µs 16360
1985.50 0.18 96000 165 µs 20706

Below, for the comparison with the analytical results, we reproduce the
table of experimental results obtained by equipping the test cavity with 5
waveguides and ferrite loads [3] for some highest HOM:

Table 4 - Cavity model test result (Monopoles)

Mode f, MHz Q0 R/Q, Ω Qdamped Rsh, kΩ

0-MM1 747.5 24000 16 60 0.96
0-EM2 796.8 40000 0.5 270 0.13
0-MM2 1023.6 28000 0.9 ------  ---------
0-EM3 1121.1 12000 0.3 600 0.21
0-MM3 1175.9 5000 0.6 140 0.08
0-EM4 1201.5 9000 0.2 110 0.02
0-EM5 1369.0 5000 2.0 300 0.6
0-MM4 1431.7 2000 1.0 150 0.15
0-EM6 1465.0 2000 0.1 200 0.02
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Conclusions

We can conclude from comparison of analytical results (Tables 2, 3) and
experimental results (Table 4) that:

- Obtained experimental damped Q values are well below the stability limit
values for quadrupole modes. So we can expect that quadrupole coherent
oscillations are to be stable and no additional feedback system is neces-
sary.

- For the dipole modes experimental value are close to those obtained ana-
lytically. Keeping in mind that the stability limits scales approximately as
σ2.4 for the range of interest of σ and can be much lower for shorter
bunches we see that Landau damping can not fight the dipole mode in-
stability alone.
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