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1. INTRODUCTION

The analytical study of the longitudinal dynamics of a beam interacting
with an RF cavity is generally performed only in the case of small oscillations
of equispaced equal bunches around their synchronous phase[1]. Furthermore
a complete analytical treatment of the dynamics in the presence of a bunch-
by-bunch feedback system to control longitudinal coupled bunch instabilities
has not yet developed.

The purpose of this note is to describe the main features of a simulation
code that executes a tracking of the longitudinal oscillations of the bunches
for DAΦNE, with the aim of including the main phenomena affecting the beam
dynamics (i.e. the bunch-by-bunch feedback, the effect of the HOMs, the
synchrotron radiation).

2. THE SIMULATION CODE

The code can simulate different starting conditions. In order to study the
transient beam loading effects on the HOMs that may be dominant in high
intensity accelerators, such as DAΦNE, we have simulated the injection of a
bunch, assuming all the others already stored in the ring.

We model each bunch as a single particle of given charge. Under this
condition it is possible to simulate only the "rigid" oscillations that, however,
are the most dangerous for the beam stability and, at the moment, the only
ones that will be cured with the longitudinal feedback system.

Basically the core of the algorithm can be divided into three main parts:

1) propagation around the ring
2) feedback effect
3) beam-cavity interaction.

In Fig.1 we show a simplified flow chart of the code. The input data have
been divided into three files: one for machine and cavity parameters, another
for all the bunches, and the last one for the longitudinal feedback system.
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We have chosen to track the synchrotron motion of all bunches, first
along the ring and the feedback system, and then through the cavity. This
choice reduces the computation time.

As output data, we obtain the phase oscillations of three selected
bunches, the invariant amplitude of their motion (used in the evaluation of
the instability growth rates), the maximum phase excursion of each bunch,
and the kicker voltages.

OUTPUT: PHASE, INVARIANT AMPLITUDE OF 
THE MOTION, VOLTAGE OF THE KICKER

FOR THREE GIVEN BUNCHES

CAVITY
INTERACTION

INITIAL
CONDITIONS

READ INPUT
FILES

PROPAGATION AROUND
THE RING

FEEDBACK
SYSTEM

FOR EVERY BUNCH

FOR EVERY BUNCH

ALL OVER THE TURNS

Fig. 1 - Flow chart.

2.1 Propagation around the ring

The quantities necessary to describe the motion of a single bunch in the
machine, are the energy deviation ∆E  with respect to the nominal energy Eo,
and the phase ∆ϕ taken, in our case, with respect to the maximum of RF
voltage.
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In the propagation around the ring, each bunch loses energy due to the
broad band impedance (Ubb) that does not depend on the energy of the bunch,
and because of radiation effects (Ur) . For this last quantity we can work out
the linear expression (as function of ∆E)[2]

Ur = Uo 1 + 2
∆E

Eo





 (1)

where Uo is the energy lost by a synchronous particle.

It is therefore possible to correlate the quantities ∆E and ∆ϕ at the en-
trance of the feedback kicker with those outside the RF cavity. Since the kicker
and the RF cavity are supposed dimensionless, the phase does not undergo any
other change. The matrix that describes the motion in the machine can be
written as
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
 (2)

where 'i' means at the entrance of the kicker, 'o' means outside the RF cavity,
h is the harmonic number, and αc is the momentum compaction.

2.2 The feedback effect

Because of the high current stored, coupled bunches instabilities driven by
the resistive impedance of the HOMs in the accelerating cavity have fast rise
times.

A powerful longitudinal feedback[3,4] is necessary to damp the "rigid"
oscillations and the injection transient.  In the code subroutine shown in Fig.
2, all the devices are properly simulated.

The feedback system provides the "correction" energy to each bunch at
every turn by means of a longitudinal kick. The phase-errror signal, detected by
a longitudinal pick-up, is digitized and processed with a DSP digital filter
which computes the correction signal Kk by the algorithm[3]:

Kk = G ci∆ϕk−i
i=1

N
∑ (3)

where the filter coefficients ci are computed in order to provide the 90° shift
necessary to convert the phase error into the energy correction. The DSP
output is amplified and sent through a digital-analog converter to a kicker
amplifier.



G-19  pg. 4

In the input file concerning the feedback, it is possible to change the
system configuration: we can vary the gains of the different devices, the
number of coefficients, the coupling between consecutive bunches, the noise
and the maximum kicker voltage. We can also simulate, by changing the
coefficients ci, different digital filters as: delay line, high and low pass, and
resonant filters.

D
   A

      C

∆ϕ
fb= ∆ϕ - ∆ϕs

FOR EVERY TURN AND FOR EVERY BUNCH

∆ϕ

Feedback
on

no

yes

Kick ∆V
New

sampling
no

yes

Coupling

FEEDBACK
SUBROUTINE

Mixer

Noise

A
   D
      C

DSP: GΣ ci ∆ϕ
fbi i

Kicker

New value for ∆V

To the cavity

Coupling

Fig. 2 - Feedback routine.
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2.3 Beam-cavity interaction

The cavity is simulated as a series of parallel RLC circuits representing the
HOMs. When a charge qb crosses the cavity, it perturbs the total voltage. The
induced voltage ∆Vm of each mode depends on the shunt resistance Rsm and the
quality factor Qm of that mode. We assume that the cavity-beam energy
exchange occurs at a single point in the ring.

In order to take into account the bunch length, assuming a gaussian dis-
tribution, the shunt resistance is corrected by a factor[5]

exp − ωmσ t( )2[ ] (4)

where ωm is the resonance angular frequency and σt the RMS bunch duration.

The RF generator voltage is given by

Vg = V̂g cos(∆ϕ ) (5)

Since the beam loading in the fundamental cavity mode is very heavy, RF
cavity feedback will be necessary to compensate it. In the simulations to date,
we have assumed that the compensation is perfect, i.e. the fundamental mode
of the wake field is not present in the cavity.

With the purpose of following the behavior of the induced wake voltage for
each mode "m" in a matrix form, we use the conjugated variables vm(t) and the
current in the inductance im(t). Between the passage of two bunches, these
quantities execute free oscillations that can be represented by the
homogeneous solution of the differential equation of an RLC parallel circuit.
We can therefore write[5]

vm (t)

im (t)






= exp −αmt( )
cos βmt( ) − αm

βm

sin βmt( ) − ωm Rsm

βmQm

sin βmt( )
ωmQm

βm Rsm

sin βmt( ) cos βmt( ) + αm

βm

sin βmt( )

















vm (to )

im (to )






 

(6)

where αm is the cavity damping factor, βm the natural angular frequency and
vm(to) and im(to) are the starting conditions.

When a bunch crosses the cavity, it is sufficient to increase vm(t) by the
kick ∆Vm and continue the propagation. The total wake voltage seen by a single
bunch is the sum all over the modes:

Vb = vm (t)
m
∑ (7)
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The total energy gained by the bunch in the RF cavity is therefore

Ec = e V̂ cos(∆ϕ ) + Vb + 1
2

∆Vm
m
∑





 (8)

where the last term takes into account the fundamental theorem of beam
loading: a bunch sees half of the wake voltage it induces during its passage.

3. COMPARISONS WITH ANALYTICAL RESULTS

3.1 Full coupling with a single resonator

For the computation of the growth rates, we have simulated the instability
exciting only one mode of oscillation, leaving all the other modes unperturbed.

To do that, we have considered a single HOM with a resonant angular
frequency equal to (full coupling)

ω r = pωo + ω s (9)

With the feedback off, and with all the bunches at the equilibrium phase,
a small perturbation excites the selected mode of oscillation. We have then
calculated the growth rates with an exponential fit over the invariant
amplitude of the motion.

Fig.3 shows the results obtained varying the Q value of an HOM with
p=500, R/Q=1, and Itot=1.4A: the dots represent the values of the growth rates
(α) given by the simulation code, the two curves are computed according to
Laclare theory of the bunched beam coherent instabilities[1]: the 'a' curve is
derived by calculating the HOM impedance at the unperturbed synchrotron
frequency (that is the customary way of computing the rise time with codes
such as BBI, ZAP), while the 'b' curve represents the more accurate result
found solving the eigenvalues problem[6].

Log10 (α)

Q

a

b

  

Fig. 3 - Growth rates for a single HOM versus Q.
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3.2 Off resonance coupling

If we vary the resonant frequency of a single HOM (Q=1000, R/Q=1,
p=500), in the neighbourhood of pωo+ωs, we obtain a synchrotron frequency
shift and a growth rate depending on the frequency of the HOM itself.

As in the full-coupling case, we have compared the growth rates and the
frequency shifts obtained by the code, with those predicted by Laclare theory.
Figures 4 and 5 show that also in this case the results are very satisfactory.

α

ωr (MHz)

Fig. 4 - Growth rate of a single HOM versus ωr.

ω ωs so-

rω

Fig. 5 - Synchrotron frequency shift of a single HOM versus ωr.
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3.3 Feedback damping time

Once we have determined all the parameters of the feedback system,
namely the kicker voltage, the filter coefficients, and the internal gains, it is
possible to "measure" the overall gain g (Volt/rad) with a code that gives the
feedback response to a sinusoidal signal.

With the formula[3]

1

τ
= 1

2
f rf

αc

Eo

ωog
1

ω s

(10)

we can therefore compute the damping time of the feedback in the linear
approximation.

This damping time has been compared with the damping time derived from
simulating an off-energy beam, in absence of HOMs and radiation losses.
Under this condition there is no coupling between the bunches and only the
feedback is responsible of the damped oscillations.

The exponential fit over the invariant amplitude of the motion gives a
damping time that, in the worst case, differs only of few per cent from that
obtained with the equation (10).

4. APPLICATION TO DAΦNE

When several HOMs are present in the cavity, it is difficult to calculate
analytically the rise time of all the possible modes of oscillation. There could
be compensation between different HOMs, or, at the opposite, their effects
could sum up. To compute exactly the growth rates with the Laclare theory, it
should be necessary to  solve a non-linear equations' system.

We have performed different simulations with 30 bunches, considering all
the measured HOMs Q values (up to 2 GHz) of the  cavity with nose-cones
(waveguide loaded).

For lack of measured data, the R/Q values are those computed by URMEL
code.

Since the frequency may vary during the machine operations, we have
chosen the worst case: all the HOMs are in full coupling with the unstable
sidebands of the beam spectrum.

We have first run the code with the feedback off, assuming 29 bunches at
their synchronous phases, and simulating the injection of the 30th with an
initial error of 100 psec. This last bunch perturbs all the others that begin to
oscillate with growing amplitude.
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Tab.1 - HOMs values for the cavity with nose-cones.

Qm Rm/Qm(Ω) ωm  (*106) ωm/ωRF

180 4.033 4415.806 1.9804
6800 0.002 5977.642 2.5834
1000 0.264 6768.201 2.9251
650 0.190 6999.584 3.0251

1000 0.008 7828.707 3.3834
500 0.227 8156.500 3.5251
160 0.302 8657.830 3.7418

1100 0.428 9004.905 3.8918
360 1.400 9178.442 3.9668

1260 1.011 9583.363 4.1418
465 0.143 9737.618 4.2084
400 0.190 10219.666 4.4168

1960 1.026 10470.331 4.5251
300 0.804 11029.507 4.7668
245 3.284 11145.199 4.8168
650 0.345 11357.300 4.9084
814 0.002 11762.220 5.0834

2150 1.531 12012.885 5.1918
1580 0.022 12456.370 5.3834
570 0.910 12552.779 5.4251

The phase oscillations of the injected bunch are shown in Fig. 6 over the
first 5000 turns. Figure 7 shows the growing amplitude of a bunch among the
others in the same range.

     Phase 

Turns

Fig. 6 - Phase oscillations of the injected bunch with the feedback off.
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 Phase

Turns

Fig. 7 - Phase oscillations of a bunch with the feedback off.

We have afterwards found a feedback configuration (Tab. 2) such to damp
the oscillations with a kicker voltage of 400 Volt. Fig. 8 and Fig. 9 show the
same bunches with the feedback on. In this case the whole system is stable.

Tab. 2 - Feedback parameters.

DOWN SAMPLING FACTOR 29
NUMBER OF FILTER COEFFICIENTS 5
FILTER COEFFICIENTS 3.5415E-01

9.9797E-01
2.3239E-01

-8.6138E-01
-7.3866E-01

PICK UP IMPEDANCE 1.0
ATTENUATOR + COMB COEFF. 1.0
AMPLIFIER GAIN 10.87
MIXER CONVERSION RATE 0.5
LOCAL OSCILLATOR GAIN 4.0
PHASE ERROR FOR L.O. 0.0
MATCHING AMPLIFIER GAIN 4.0
MAXIMUM INPUT VOLTAGE FOR ADC .25
NUMBER OF BIT FOR ADC 8
PICKUP COUPLING FACTOR (%) 3.0
KICKER COUPLING FACTOR (%) 0.1
NOISE COEFFICIENT (%) 1.0
DSP GAIN 1.0
DAC GAIN 5.0
NUMBER OF BIT FOR DAC 8
MAX VOLTAGE FOR THE KICKER 400.0
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   Phase

Turns

 
Fig. 8 - Phase oscillations of the injected bunch with the feedback on.

 
    Phase

Turns
 

Fig. 9 - Phase oscillations of a bunch with the feedback on.

To be sure that the injection of the 30th bunch was the most dangerous for
the stability point of view, with the same feedback parameters, we have
simulated the injection of the nth bunch with n-1 bunches at their syn-
chronous phases. We have then reported the maximum phase excursion of the
bunch more perturbed by this injection versus the number of the bunch
injected. As expected the oscillations becomes larger increasing the total
current stored in the machine.
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Fig. 10 - Maximum perturbation of the stored bunches.

Comparison of results obtained by a similar code developed at SLAC[7,8]
shows some inconsistencies in the case of low quality factor Q of the HOMs.
We presume that this is due to the approximations on the wake field ex-
pressions, valid only for high Q, adopted in the SLAC code.

5. CONCLUSIONS

The comparison between the simulation code and the theory results is
satisfactory. We have found that with reasonable feedback parameters, even in
the worst case of full coupling, it is possible to control the longitudinal dipole
instabilities due to the HOMs, and to stabilize the beam. Furthermore we have
now the possibility to simulate cases that could not be predicted analytically,
and interesting for DAΦNE.
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