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1. Introduction

The beam-cavity interaction due to the parasitic modes of an RF cavity,
can lead to a strong instability expecially in the case of high current
colliders, such as DAΦNE. The analysis of the dynamics of kb equispaced
bunches interacting with the long range wakefields is performed by computing
the coherent frequency shift predicted by the Sacherer theory [1] or by
equivalent analysis given by Pellegrini-Wang, Laclare, Besnier and others2.
The instability rise time can be obtained from the real part of this complex
frequency shift derived by considering the coupling of the beam with the
HOMs.

In this note we use the Laclare formalism of the multibunch instability,
both longitudinal and transversal, in the simple case of a single resonant
mode coupling the bunch motion, for evaluating the rise times of the dipole
and quadrupole modes for the two cavity shapes proposed for DAΦNE, namely
the rounded and that with nose-cones.

Let us consider a Gaussian bunch. Its stationary distribution go(τ) in the
phase space is given by:

og τ( ) = 1
2π τ

2σ
 exp - 1

2

2

τ / τσ( )[ ]   (1)

where στ is the bunch length in the time domain, and go is normalized with
respect to polar coordinates, that is

dψ
o

2π
∫ go(τ)τdτ = 1

o

∞
∫ (2)

Any perturbation of the bunch distribution is developed as sum of
multipole coherent modes ∆Ψm. Under the effect of long range wakefields the
coherent mode of oscillation "m" (m = 1 dipole, m = 2 quadrupole and so on)
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can grow or decay in amplitude:

∆Ψm =  mg τ( ) exp j( cmω − m sω )[ ]     (3)

where gm is the perturbation amplitude, ωs is the unperturbed synchrotron
frequency, and ωcm - mωs is a complex frequency shift.

 In the frequency spectrum, the coherent mode of perturbation "m" will
have an amplitude at the frequency ω=pωo+ωcm, with ωo the revolution
frequency and -∞ < p < ∞, proportional to:

mσ ( p) =  −mj mJ
o

∞

∫ ( p oω τ) mg τ( )τ dτ
  

 (4)

where Jm is the Bessel function of the first kind.

If this signal, at frequency ω=pωo+ωcm, excites resonant fields, described
by the impedance Z(ω), from the linearized Vlasov equation, one derives the
following equation3:

j cmω − m sω( ) mσ (l) =

= − m cα Io

sω (E / e)
Z( p oω + cmω )

pp
∑ hσ ( p)

h
∑ ∂ og

∂τ
o

∞

∫ mJ ( p oω τ) mJ (l oω τ)dτ

 (5)

where Io is the average beam current, αc the momentum compaction, E the
beam energy, and e the electron charge.

Once the machine impedance and the bunch spectrum of a perturbed
beam are known, one can derive the effective impedance seen by the beam
and  the coherent complex frequency shift of a relative mode.

The customary way of computing the coherent frequency shift considers
the bunch spectrum  at frequencies

 ωp=(pkb + n + mνs) ωo  (6)

with 1< n < kb , i.e. the spectrum of a bunch with m-pole perturbation
executing "natural" oscillations in absence of any growth rate or damping.
This procedure leads to the solution of a linear equation system for the
unknown  ωcm.  This is not exactly what is prescribed in Eq.(4)  where the
impedance has to be computed at frequencies that include the coherent
frequency shift. As matter of facts, the system in Eq.(4), is an "eigenvalue"
problem for the coherent shifts ωcm. Computing the impedance at the bunch
spectrum sidebands (5) leads to an inexact estimate of the growth rates,
especially for the cases of high intensity, high Q resonance4.
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2.  The case of a single resonator.

Let us assume that there is a single resonant mode coupling the relative
bunch motion, at a frequency ωr and let R and Q be the resonator
parameters. In this simple case the system (4) simplifies to only one
equation:

j cmω − m sω( ) = − m cα I

sω (E / e)

Z( p oω + cmω )

p

∂ og

∂τo

∞

∫ m
2J ( p oω τ)dτ

  
(7)

where

Z( p oω + cmω ) =   
R

1 + jQ opω + cmω
rω

− rω
opω + cmω





    

 (8)

For simplicity Eq.(6) is given in the compact form:

j cmω − m sω( ) =  mθ ( p) 
Z( p oω + cmω )

p     
(9)

In Fig. 1 we show the behavior of θm(p)/p, versus "p", for m=1, 2, 3 and
σ=3 cm, computed for DAΦNE.

In the realistic case that ωcm <<ωr , the impedance can be approximated
by :

Z( pωo + ωcm ) ≈ R

1 + jωcm

α
+ jtg Φr( )

       

(10)

where

α = rω
2Q      

(11)

is the filling rate of the resonant mode, (τf  = 1/α = filling time) and

tg Φr( ) = Q
pωo

ω r

− ω r

pωo






   (12)

defines the "detuning" of the resonant mode with respect to the line "p" of
the  bunch spectrum.



G-18  pg. 4

Fig. 1 - DAΦNE : θm(p)/p, versus "p", for m=1, 2, 3 and σ=3 cm.

With these definitions and approximations, the coherent tune shift is
obtained by solving the following equation:

ωcm
2 + αtg Φr( ) − mω s − jα[ ]ωcm − α mω stg Φr( ) − θm ( p)R

p
− jmω s









 = 0 (13)

which gives

ωcm = α
2

mω s

α
− tg Φr( )



 + j





+

− − j + tg Φr( ) − mω s

α












2 α 2

4
+ α mω stg Φr( ) − θm ( p)R

p







− jmω s











(14)

where the plus sign has been excluded since leads to unphysical results.

Hereafter we shall consider some relevant cases.

2.1   Dipole modes, (m=1).

The complex frequency shift of the dipole modes excited by a single
resonator is given by Eq. (13) with m=1. Of particular interest is the on
resonance beating case (full coupling) which will be first examined.  

m=3

m=2

m=1
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a) Full coupling condition:

Let us assume a resonator at ωr = pωo+ ωs , we get:

tg Φr( ) = − ω s

α
   (15)

ωc1 = ω s + j
α
2

1 − 1 + 4
θ1R

pα








   (16)

 As expected, in the full coupling condition there is no shift of the real
synchrotron frequency, whereas the imaginary  shift gives the growth rate of
the instability. We recognize in the term

p

θ1R
= τ1         (17)

the instability rise time usually obtained from  Eq. (4). This rise time is
inversely proportional to the beam current Io  times the shunt impedance R.
It is interesting to analyze two different regimes.

For  τ1>> τf  , we get:

ωc1 ≈ ω s − j
1

τ1

      (18)

In this case, therefore, the rise time computed with Eq. (16), can be
considered as a fairly good approximation.

Quite different results are obtained in the other case, namely when  τ1<<
τf .  In fact we get:

ωc1 ≈ ω s − j

τ1τ f       
(19)

 The effective rise time τeff  results to be the geometric mean of τ1 and τf,
One could argue from the above equation that superconducting cavities,
characterized by an extremely long filling time, should be preferred for what
concerns multibunch instabilities. This, however, is not exactly true. In fact,
expliciting the two terms  in the rise time of Eq.(18) we have:

τeff = 2 p

θ1ω r Rs / Q( )







1

2

       
(20)
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This means that the effective rise time is inversely proportional to the
square root of the ratio R/Q. Therefore, by increasing Q keeping R/Q
constant, the effective rise time reaches an asymptotic value no more
dependent on the cavity filling time.

For short bunches, it is useful to write down the effective rise time in
the form:

τeff = 8π E / e( )νs

Ioαc







1

2 1

ω r Rs / Q( )
1

2

   (21)

where νs is the synchrotron tune.

In Fig. 2 we plot, as function of Q, the growth rates α1 =1/τ1  and
αeff=1/τeff  computed for DAΦNE, assuming a sample parasitic resonance with
R/Q=1, at ωr = 500 ωo+ ωs, exciting the motion of 30 bunches of 3 cm length
and for a total current 1.4 Ampere. The upper curve is the growth rate α1(Q)
while the lower one is αeff(Q). We note that at high Q's the difference between
the two curves becomes larger and larger. In order to verify the correctness of
the Eq.(15)  we have reported on the same plots the instability growth rates
(dots) obtained from the time domain simulation code recently developed[5].
The concordance of the results goes beyond the expectations.

 

α1

αeff

Log  
10

(α)

  

Fig. 2 - DAΦNE Growth rates α1 (Q)  and αeff (Q), for an HOM with R/Q=1

For the DAΦNE cavity only few HOM's with a relatively high shunt
impedance give a τeff significantly higher than τ1. In Table I we report the
results relative to the HOM's of the "round shape cavity". The rise time of the
dipole mode computed with Eq.(18) are given in column 5. We have to remark
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that a factor 5 is gained on the mode TM011 where we have τeff ≈ 11µs  instead
of τ1  ≈ 2.2 µs. In column 6 we give the Q values which, in full coupling, lead
to a rise time of  100 µs and 200 µs, such to be damped, if considered
separately, by the longitudinal feedback system [6]. In Table II we give the
same results computed for the the HOM's of the "nose cone cavity". We note
that there is an appreciable difference only on the TM011 mode, more
favorable for the nose cone cavity.  However, once we assume to adopt a
HOM's damping system, the overall behavior of the two cavities is not
significantly different.

Table I Rise time of the dipole mode (round shape cavity)

Frequency MHz Q R/Q τ τ eff           Q100µs, 200µs

734.42663 51875 13.4847 42 ms 11 µs 1240 620

797.89267 85575 0.0265 47 ms 763 µs --------

1006.20602 68418 0.00422 15 s 5 ms --------

1086.43925 68709 0.11035 4.9 ms 219 µs --------

1163.18159 61292 0.24326 4 ms 119 µs ----28700

1234.49657 73587 1.49657 115 ms 29 µs 9700 4600

1317.27807 60346 0.33961 300 ms 90 µs 44400 21500

1357.49229 74703 1.36814 180 ms 29 µs 10500 5200

1429.05804 62789 0.72471 270 ms 48 µs 20300 10000

1527.46005 65748 0.06644 1.8 s 363 µs --------

1529.25741 61751 1.88715 74.8 ms 25 µs 7900 3900

1619.86464 74241 0.82329 54 ms 41 µs 18900 9000

1643.96878 67986 1.2874 110 ms 30 µs 12000 5900

1725.0832 79431 0.72091 32 ms 45 µs 22500 11100

1762.6359 69885 2.25743 77 ms 21 µs 7200 3600

1767.80826 73737 0.82520 3.2 ms 41 µs 19800 9700

1800.69538 76277 0.21935 385 ms 119 µs ----37800

1869.62599 76875 0.10493 655 ms 230 µs --------

1890.1208 64890 0.7321 16 ms 50 µs 23700 11700

1978.9835 78377 0.23656 117 ms 115 µs ----37800

1985.50556 96935 0.18573 3 ms 122 µs ----48500
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Table II Rise time of the dipole mode (nose cone cavity)

Frequency MHz Q R/Q τ τ eff Q100µs,  200µs

703.664 30391 4.033 79 ms 27 µs 4300 2100

1077.551 56920 0.264 137 ms 119 µs ---- 27900

1115.394 42102 0.19 1.8 s 198 µs ---- ----

1157.494 45723 0.049 1 s 655 µs ---- ----

1297.383 56139 0.227 487 ms 131 µs ---- 31800

1378.898 51298 0.302 475 ms 110 µs ---- 24200

1433.226 61704 0.428 1 ms 74 µs 35000 17000

1461.218 39830 1.4 14 ms 36 µs 10400 5200

1526.019 73465 1.011 112 ms 36 µs 15100 7300

1550.471 50192 0.143 405 ms 225 µs ---- ----

1627.805 58302 0.19 1.2 s 156 µs ---- 41300

1666.862 54095 1.026 24 ms 39 µs 15100 7500

1755.688 52166 0.804 11 ms 50 µs 19800 9900

1775.060 57886 3.284 56 ms 18 µs 4800 2400

1807.090 37277 0.345 50 ms 138 µs 49500 24200

1910.564 56912 1.531 128 ms 30 µs 11300 5600

1981.762 132261 0.022 5.8 s 650 µs ---- ----

1996.561 60832 0.91 196 ms 45 µs 19800 9900

2060.516 60302 0.533 336 ms 72 µs 36000 17600

2316.240 64694 1.092 54 ms 41 µs 19800 9900

2409.977 64745 2.091 40 ms 27 µs 10800 5400

2492.123 66749 2.665 1.6 ms 21 µs 9000 4500

2617.936 49845 0.907 3.2 ms 66 µs 28800 14000

2673.274 70704 2.552 3.6 ms 23 µs 10400 5200

For sake of completeness, we want to stress that the growth rates have
been worked out assuming an individual coupling of one sideband with a
single resonator. These calculations neglect the superposition of the shunt
impedance, of several HOM's on the same relative mode. This effect can en-
hance (sum of shunt impedances) or reduce (difference of shunt impedance)
the coupling. The time simulation code shows, in the presence of the HOM's
damping  system, that for DAΦNE this effect is generally negligible.
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b) Off resonance coupling:

The analysis of the coherent frequency shift (13) for a parasitic resonator
moving around a sideband at ω = pωo+ ωs is also  interesting. A first problem
arising in the calculation of ωc1  is the following: as consequence of the
coupling to the imaginary part of the impedance the sidebands ωp, Eq.(5),
shifts  toward  the resonant frequency ωr of the HOM; this shift leads to a
stronger coupling with the resistive impedance and to a further, even though
lower, shift of ωp toward ωr. Iterating the procedure, every coupled sideband
should see, at the end, the maximum shunt impedance. Fortunately, the
right expression of ωc1 Eq.(13) shows that the sideband finds a new
equilibrium frequency, which in the cases of interest, is not significantly far
from the unperturbed position.

A sample HOM with Q=10000, R/Q=1 and p=500, has been chosen to
compare Eq.(13) with the time domain simulation code. Also in this case the
agreement is quite satisfactory, as shown in Figs. 3 and 4 where both the
growth rates and frequency shifts predicted by Eq. (13) are reported together
with the time domain results.

  

α
eff

ω 

[10   rad/sec]6
 

Fig. 3 - DAΦNE: Growth rate αeff (ω) for R/Q=1, Q=104, p=500.

      

ω   − ωs so

ω [10   rad/sec]
6

Fig. 4 - DAΦNE: Frequency shift ∆ωs(ωr), [rad/s], for R/Q=1, Q=104, p=500.
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2.2   Quadrupole (m=2) modes.

The resonant modes of the cavity can enhance the amplitude of the m-
pole  perturbation of the bunch distribution. It is clear that  these modes are
harmful when the  sidebands of a given relative quadrupole mode beat the
HOM's close to the resonant frequency. The growth rate can be very high, and
unlike the dipole mode, no feedback system is, at moment, foreseen to damp
this instability. We can rely only on the reduction of growth rate caused by
lowering the "Q", and on the Landau damping.

Analogously to the dipole mode, let us analyze the simple case of a
parasitic resonance at the frequency:

ω r = pωo + 2ω s (21)

which corresponds to a detuning angle:

tg φr( ) = − 2ω s

α
(22)

and a coherent frequency shift:

ωc2 = 2ω s + j
α
2

1 − 1 + 4
θ2R

pα








 (23)8

We recognize in the term

τ2 = p

θ2R
(24)

the rise time one obtains in the perturbation approximation, which works
rather well under the condition τ2 >> τf , for which we find:

ωc2 ≈ 2ω s − j

τ2

(25)

                     
while is inaccurate in the other case τ2 << τf  for which we have:

ωc2 ≈ 2ω s − j

τ2τ f

(26)

In Table IIIa and IIIb, for both cavities, we give the growth times for each
HOM assumed to be beaten at the resonant frequency. In the last column we
give the Q corresponding to a shunt impedance of 500 Ω, impedance limit
obtained from the stability diagram due to the Landau Damping (see next
Section).



G-18  pg. 11

Table IIIa Rise times of the quadrupole modes (round shape cavity)

ωr(MHz) R/Q Qo τ2,eff Q (500 Ω)
734.42 13.5 52000 43.0 µs 40
797.89 0.02 85000 5.6 ms 25000

1006.20 0.004 68000 29 ms -
1086.44 0.11 69000 827 µs 4500
1163.18 0.24 61000 360 µs 2100
1234.49 1.49 74000 65 µs 330
1317.27 0.33 60000 237 µs 1500
1357.49 1.37 75000 61 µs 360
1429.06 0.73 63000 104 µs 680
1527.46 0.06 66000 800 µs 8300
1529.25 1.88 62000 43 µs 260
1619.86 0.82 74000 70 µs 600
1643.96 1.28 68000 50 µs 400
1725.08 0.72 79000 68 µs 700
1762.63 2.25 70000 30 µs 200
1767.80 0.82 73000 63 µs 600
1800.69 0.22 76000 192 µs 2270
1869.62 0.10 76000 349 µs 5000
1890.12 0.73 64000 72 µs 700
1978.98 0.23 78000 162 µs 2200
1985.50 0.18 96000 165 µs 2800

Table IIIb Rise times of the quadrupole modes (nose cone cavity)

ωr(MHz) R/Q Qo τ2,eff Q (500 Ω)
703.66 4.03 30000 165 µs 120

1077.55 0.26 57000 448 µs 1900
1115.39 0.19 42000 755 µs 2600
1157.49 0.05 46000 2.5 ms 10000
1297.38 0.23 56000 365 µs 2200
1378.90 0.30 51000 273 µs 1650
1433.23 0.43 62000 160 µs 1150
1461.22 1.40 40000 77 µs 360
1526.02 1.01 73000 64 µs 500
1550.47 0.14 50000 473 µs 3550
1627.80 0.19 58000 295 µs 2600
1666.86 1.03 54000 68 µs 500
1755.69 0.80 52000 81 µs 600
1775.06 3.28 58000 25 µs 150
1807.09 0.35 37000 223 µs 1400
1910.56 1.53 57000 46 µs 300
1981.76 0.02 132000 905 µs 25000
1996.56 0.91 61000 59 µs 550
2060.52 0.53 60000 90 µs 950
2316.24 1.09 65000 45 µs 500
2409.98 2.09 65000 27 µs 250
2492.12 2.67 67000 21 µs 180
2617.94 0.91 50000 63 µs 550
2673.27 2.55 71000 23 µs 200
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3. Longitudinal Landau Damping

Due to the non-linearity of the RF voltage, and in general, of the in-
duced wake fields, the incoherent synchrotron frequency varies within the
bunch. By rearranging the equation of the coherent frequency shift we get the
following dispersion relation integral:

1 = j cIomα
(E / e)ω s

Z( p)
p

 
∂go

∂τ
1
2J ( opω τ)

cmω s−mω (τ)[ ]o

∞

∫ (27)

Because of the non-linearity provided by the RF, there is a dispersion of
synchronous frequency ωs around  ωso :

ω s (τ) = ω so 1−
hωo

4















2

τ 2



















(28)

with h harmonic number.

Then, assuming a Gaussian bunch, for the dipole mode m=1, we define:

G−1(y) = 2

( pωoστ )2
 1

2Exp(−x)J ( opω στ 2x )

x − yo

∞

∫
  

(29)

with

y = c18ω
soω ( ohω στ )2

   (30)

The stability limit is found by imposing Im(ωc1)->0, (or Im(y)->0). The
corresponding impedance is:

Zi ( p) = π(hω soστ )2 (E / e)

2 pαc I

Gr (y)

Gro









 (31)

Zr ( p) = −π(hω soστ )2 (E / e)

2 pαc I

Gi (y)

Gro









 (32)

where Gro = Gr(y=0).
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The resulting stability diagram is shown in Fig. 5  

        

Fig. 5 - Stable region for the dipole mode (p=500).

One can see that a shunt impedance less than 17Ω would be required to
keep the beam stable. For many HOM's, and expecially for the TM011, such a
strong requirement cannot be easily satisfied, even after a very strong
damping. Accordingly, we do not expect any beneficial effect of Landau
damping on the dipole oscillations for which we shall rely only on the feed-
back system.

For the quadrupole mode m = 2,  we define:

G−1(y) = 16

( pωoστ )4
 2

2Exp(−x)J ( opω στ 2x )

x − yo

∞

∫   (33)

The stability limit is found by imposing Im(ωc2)->0, (or Im(y)->0). The
corresponding impedance is:

Zi ( p) =   
4π(hω so )2 (E / e)

p3ωo
2αc I

Gr (y)

Gro











m=2

Zr ( p) = −4π(hω so )2 (E / e)

p3ωo
2αc I

Gi (y)

Gro











m=2

   (34)

0
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Fig. 6 -  Stable region for the quadrupole mode (p=500).

The stability diagram shows that for the quadrupole relative mode it is
necessary to keep the shunt impedance of the HOM's below 500 Ω if we want
the Landau damping to be effective. In table IIIa and IIIb we give the maxi-
mum Q's allowed  to keep the shunt impedance below this stability thresh-
old. One can note that only the TM011 and few other parasitic modes have to
be significantly damped.

 It is worth to remind that the above calculations depend strongly on the
bunch distribution. In fact if the bunch remains gaussian it is necessary to
include the nonlinearities of the self field; on the other side a parabolic
bunch does not introduce any linearity, but changes significantly the incho-
erent synchronous frequency. Accordingly a more accurate analysis of the
single bunch effects in DAΦNE is in progress to work out a reliable cal-
culation of Landau damping.

 4. Transverse Multibunch Instabilities

Analogously to the longitudinal case we consider a single transverse rel-
ative mode, (m = 0 is the lowest one) coupled to a transverse  resonance

Z⊥ ( p) = ωr
ω







′R⊥

1 + jQ
ω
ωr

− ωr
ω







(35)

STABLE

Zi

Zr
500.

500.

-500.

1000.
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where

′R⊥ = R

kra
2 = kr R⊥

Urmel (36)

The coherent frequency shift is:

ωco
⊥ ( p) = − jβ⊥Z⊥ ( p)θo

⊥ ( p) (37)

where  β⊥ is the beta function at the RF position and

θo
⊥ ( p) = − Iωo

4(E / e)
Jo

2 (( p + Q)ωo + ωξ )τ{ }
o

∞
∫ go(τ)dτ (38)

In the full coupling condition one usually gets:

β⊥θo
⊥ ( p) ′R⊥ = 1

τo
⊥ (39)

Whereas the coherent frequency shift is obtained by solving the following
approximate equation:

ωco
2 − jαωco + α

τo
⊥ = 0 (40)

which gives:

                   ωco
⊥ = j

1
2τ f

1 − 1 + 4
τ f

τo
⊥







(41)

Again we find two regimes:

τo
⊥ >> τ f ωco

⊥ ≈ j
1

τo
⊥ (42)

τo
⊥ << τ f

ωco
⊥ ≈ j

1

τ f τo
⊥ (43)
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Round shape - MM mode type:

ωr(MHz)
R/Q

(kr a)2 Qo τt- eff
  Qloaded  
τt- eff=1ms 

 533.7 5.1 55500 165.0 µs 9200

784.24 3.41 46600 220.0 µs 10000

889.25 1.64 58000 320.0 µs 18000

928.88 0.004 75500 82.0 ms

1056.18 0.137 51800 3.2 ms

1190.19 0.01 50700 38.0 ms

1254.9 0.294 67000 1.0 ms

1343.06 0.079 53900 4.0 ms

1457.4 0.013 53900 22.0 ms

1545.27 0.019 64800 12.0 ms

1598.28 0.065 69500 3.2 ms

1687.17 0.009 170000 10.0 ms

1696.83 0.004 77200 46.0 ms

1737.94 0.029 89300 5.2 ms

1804.48 0.026 96700 5.2 ms

1823.95 0.104 90000 1.3 ms

1918.93 0.02 71700 6.8 ms

1950.42 0.006 82000 28.0 ms

1969.88 0.149 97400 1.0 ms

2005.38 0.052 122000 2.0 ms

2056.69 0.001 82700 140.0 ms

2084.4 0.005 78100 30.0 ms

2146.33 0.122 109700 8.0 ms

2190.73 0.005 78200 28.0 ms

2318.65 0.002 82200 62.0 ms

2341.16 0.075 104500 1.3 ms

2366.44 0.003 141400 24.0 ms

2441.7 0.012 84600 10.0 ms

2522.41 0.026 113100 4.0 ms

2537.47 0.005 152600 12.0 ms

2549.47 0.014 102000 6.0 ms

2601.48 0.028 69500 5.0 ms

2709.48 0.011 148000 5.2 ms
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Round shape - EM mode type:

ωr(MHz)
R/Q

(kr a)2 Qo τt- eff
  Qloaded  
τt- eff=1ms 

530.98 16.1 52100 104.0 µs 5400

782.20 1.27 54400 720.0 µs 39000

961.84 0.23 51100 3.8 ms

998.32 0.064 74850 9.5 ms

1116.38 0.065 52200 13.5 ms

1236.21 0.035 56700 22.0 ms

1288.08 0.249 55600 3.5 ms

1326.75 0.014 73900 44.0 ms

1382.65 0.19 66500 3.8 ms

1423.82 0.168 69500 4.0 ms

1531.25 0.04 64300 18.5 ms

1603.19 0.02 107400 4.0 ms

1629.36 0.002 121700 200.0 ms

1666.94 0.006 65000 120.0 ms

1710.5 0.148 78800 4.0 ms

1796.89 0.004 76700 160.0 ms

1865.73 0.156 93200 3.5 ms

1935.49 0.004 103600 120.0 ms

1948.34 0.001 166200 335.0 ms

1980.67 0.002 73800 340.0 ms

2044.17 0.103 102700 4.8 ms

2098.55 0.006 70600 120.0 ms

2155.26 0.002 137600 185.0 ms

2226.02 0.02 114400 22.0  ms

2285.89 0.053 102750 9.5 ms

2313.24 0.004 122900 218.0 ms

2342.35 0.007 84000 88.0 ms

2369.31 0.038 108300 12.0 ms

2431.71 0.001 129400 400.0  ms

2441.99 0.056 97900 10.0 ms

2465.92 0.056 96700 10.0 ms

2519.24 0.007 78800 92.0 ms

2632.36 0.051 131250 8.0  ms
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Nose cone shape - MM mode type:

ωr(MHz)
R/Q

(kr a)2 Qo τt- eff
  Qloaded  
τt- eff=1ms 

655.84 0.85 40800 1.25 ms

756.84 2.94 33300 410.0 µs 1360

924.86 0.609 44000 1.3 ms

1048.57 0.21 61200 2.6 ms

1104.06 0.04 54900 15.0 ms

1232.4 0.077 47500 8.8 ms

1352.46 0.002 44900 355.0 ms

1441.82 0.15 41400 5.0 ms

1481.83 0.05 50900 12.5ms

1555.9 0.018 107300 16.5 ms

1608.15 0.001 63400 500.0 ms

1634.82 0.003 67100 160.0 ms

1739.16 0.034 69200 13.8 ms

1798.52 0.042 75000 10.0 ms

1876.74 0.056 72000 8.0 ms

1974.6 0.053 82000 7.5 ms

1985.38 0.002 141500 118.0 ms

2018.93 0.026 96700 13.5 ms

2044.25 0.001 112400 298.0 ms

2153.28 0.071 10800 4.7 ms
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