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Introduction
 
  In order to investigate single bunch instability it is sufficient to con-
sider short range wake potentials over the bunch length. This allows to re-
place the actual impedance, which can be a very complicated function of
frequency, by a broad-band model impedance. The broad-band model im-
pedance is simple and convenient in analytical calculations of stability
limits.
 
 The widely used broad-band resonator model of the impedance1 is de-
scribed by only three parameters: shunt impedance R, quality factor Q and
angular resonant frequency ωr. When the bunch length is long compared
with the beam pipe radius, the number of parameters is reduced to one: the
low frequency limit of the normalized longitudinal impedance Z/n = Rωr/ωo
(ω0 is the revolution frequency and ωr is close to the cutoff frequency of the
lowest TM waveguide mode in the vacuum pipe). But the broad-band
resonator model has its own limits for shorter bunches. For example, it fails
to describe high frequency behavior of a cavity with attached tubes or a
periodic array of cavities.
 

There is also another shortcoming of the broad-band resonator model.
The usual procedure to get the parameters of the model is to fit numerical
dependence of the longitudinal loss factor kl on the RMS bunch length σ.
But the loss factor is related only to the real part of the impedance and some
information about the imaginary part can be lost (namely, the imaginary
part is responsible for the potential-well bunch lengthening). Moreover, as
numerical calculations show, good fitting of kl(σ) does not necessarily imply
good fitting of the wake-functions, i.e. wake-functions corresponding to the
broad-band resonator model could be rather different from those given by
numerical codes.
 

Below we apply another recently proposed broad-band impedance
model2,3 which is described by expansion over √ω. It seems to be more
suitable than the usual broad-band resonator model to describe impedance
generating elements of the DAΦNE main ring. We have found that it is
enough to take only the four first terms in the expansion to get a
satisfactory fit to both the longitudinal loss factor and the wake-functions of
all vacuum chamber components simulated so far. The coefficients of the
expansion are extracted from wake-functions or loss factors given by
numerical codes TBCI or MAFIA4,5.
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Basic formulae

 The broad-band impedance is described by the expansion over √ω :
 

Z(ω) = - iωL + R +(1 - i) ωB +
1 +i

ω
Zc +. . .

        
(1)

 
 The coefficients L, R, B, Zc,..., are real. These coefficients can be ex-
tracted from wake-functions and loss factors given by TBCI and MAFIA
codes.

The wake-functions and longitudinal loss factors which correspond to
the impedance (1) are given by well-known expressions:

                                         

W(s) = 1
2π

 Z(ω) λ(ω) e-iωs/c dω
-∞

∞

                              
 (2) 

     

         

kl(σ) =
1

2π
Z(ω) λ(ω)

2
dω

-∞

∞

             

(3)

 
where ˜ ( )is the Fourier transform of the bunch line density. For Gaussian
density:

          

λ(ω) = exp{-
ω

2
σ

2

2 c
2

}

.       
(4)

 
1. Let us consider a purely inductive impedance for all frequencies in the

bunch spectrum:

            Z(ω) = -iωL,  ωσ/c <1               (5)

Then using the relation6:

  

dx x exp{-p
2

x
2

} sin ax =
a π

4 p
3

exp{ -
a

3

4 p
3

}

0

∞

   

(6)

λ ω



G-17  pg. 3

formula (2) gives:

          

W(s) = -
L c

2

2π σ
3

s exp{ -
1
2

s

σ

2

}
 (7)

This wake-function has a minimum (maximum) at s = -σ (+σ):

          

Wmax = - Wmin =
L c

2

2πe σ
2

       
(8)

The wake-function (7) is typical of small discontinuities, such as
shielded bellows and vacuum ports, slots, shallow cavities in flanges and
so on. The plot of -W(s)/|W|max which is suitable to be compared with
TBCI results is shown in Fig. 1.

The longitudinal loss factor for the inductive impedance is equal to:

            kl = 0.                 (9)

2. For a resistive impedance :

            Z(ω) = R,  ωσ/c < 1                 (10)

Fig. 1 - Normalized wake-function corresponding to
the inductive impedance Z(ω) = -iωL.
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eqs. (2) and (3) correspondingly give:

           
W(s) = -

R c

2π σ
exp{ -

1
2

s

σ

2

}
           

 (11)

           
kl =

R c

2 π σ      
 (12)

To get eq.(11) we used the relation6:

dx exp{-β x
2

} cos bx =
1
2

π

β
exp{ -

b
2

4 β
}

0

∞

 

(13)

 The function given by eq. (11) has the same dependence on s as the
charge  density  with  a  maximum  at  s = 0. -W(s)/|W|max  is shown in
Fig. 2.

3. Let us now consider the third term in eq.(1). It has the structure of the
resistive wall impedance:

    Z(ω) = ( 1 - i) B ω,  ωσ/c < 1     (14)

Fig. 2 - Normalized wake-function corresponding to
the resistive impedance Z(ω) = R.
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To get the wake-function for the impedance we use a property (see for
example Ref. 7):

    

dω exp{-a ω
2

+ iωy} ω =
π y y

4 a 8 a
[I-3/4 - I1/4 ±i(I-1/4 - I3/4)]e

-b

0

∞

 

(15)

for ± y > 0. Iν are the modified Bessel functions of argument b = y2/8a.

And, finally:

    

W(s) =
B c

3/2

4 σ
3/2

s

σ

3/2

I-3/4(b) - I1/4(b) - I-1/4(b) ± I3/4(b) e
-b

  

(16)

where b = s2/4 σ2.

± sign corresponds to positive and negative "s", respectively.

Fig. 3 shows the dependence -W(s)/|W|max

Using the definition (3) we get a simple formula for the longitudinal loss
factor:

           
kl =

B

π
c

σ

3/2 Γ(3/4)
2

   

(17)

where Γ(3/4)/2 = 0.6127...

Fig. 3 - Normalized wake-function corresponding to
the impedance Z(ω) = (1 - i) B √ω.
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4. The last term in (1) has the same dependence on ω as the impedance of a
cavity with attached tubes at high frequencies:

           Z(ω) =
( 1 + i) Zc

ω
 ,  ωσ/c < 1    (18)

 Taking into account that6:

          

dω

ω
exp{-a ω

2
+ iωy} =

π y

8 a
(I-1/4(b) ± i I1/4(b))e

-b

0

∞

       

(19)

with ±y > 0 and b = y2/8a and a = σ2/2 c2  we get an expression for the
wake-function:

W(s) =
Zc c

1/2

2 σ
1/2

s

σ

1/2

I-1/4(b) ± I1/4(b) e
-b

  

(20)

    ± sign stands for positive and negative "s". The function -W(s)/|W|max
is given in Fig. 4.

 Using (2) we obtain the expression for the loss factor :

           
kl =

Zc

π
c

σ

1/2 Γ(1/4)
2

   

(21)

with Γ(1/4)/2 = 1.8128...

( )1+


Fig. 4- Normalized wake-function corresponding to  the impedance Z(ω) =  
ω

.i Zc
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The parameters L, R, B, Zc, of the broad-band impedance model are ex-
tracted from TBCI or MAFIA results by fitting the numerical function
W(s) and kl(σ) to the analytical expressions (7)-(8), (11)-(12), (16)-(17),
(20)-(21).

 Below we apply this procedure for the impedance calculation of the
DAΦNE main ring vacuum chamber elements8.

RF cavity

 A low loss cavity has been proposed for DAΦNE main rings8. The main
feature of the cavity is the presence of long tapers, which provide a smooth
transition from the cell iris to the ring vacuum chamber (Fig. 5).

Fig. 5 - DAΦNE RF cavity shape .

We have estimated the longitudinal impedance of the cavity using two
broad-band impedance models: the usual broad-band resonator model and
the model given by expansion (1).
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For the resonator broad-band model a fit of the computed dependence
kl(σ) was used to extract the resonator parameters: shunt impedance R,
quality factor Q and angular resonant frequency ωr. Figure 6 shows the nu-
merical dependence kl(σ) (open squares) and its fit, which corresponds to the
broad-band resonator with |Z/n|0 = Rωr/ω0 = 0.614 Ω, ωr = 3.58*109 rad/sec
and Q= 1 (full dots). The fit does not improve substantially by varying Q in
the range from 0.5 to 1.

Fig. 6 - Dependence of the longitudinal loss factor on the bunch length for DAΦNE RF cavity;
open squares: numerical results;  full dots: broad-band resonator fit.

The model (1) with

Z(n)
n  =  -i 0.0236 +  18.76

n  + 
263 (1 + i) 

n3/2
   (22)

where n is the harmonic number: n= ω/ω0 , gives much better results.

Figure 7 shows the fit of kl(σ), where the two curves, numerical and
analytical, practically coincide. Also the fit of the wake-function is quite sat-
isfactory for this model (see Fig. 8), while the wake-function, as given by the
resonator model is rather different.

We could expect the impedance to behave like (22) since long tapers give
mainly inductive contribution to the impedance and the cell with the large
iris should behave like a pill-box cavity with attached tubes at high fre-
quencies.
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Fig. 7 -  Fit of dependence ke(σ) with the broad-band model given by  eq.(1).
Analytical and numerical curves coincide.

Fig. 8 -  Fit of the normalized wake-function for DAΦNE RF cavity
with the broad-band impedance model given by eq.(1)

Injection kicker

  Impedance estimate of the DAΦNE accumulator ring show that the
main contribution to the longitudinal broad-band impedance comes from
injection-extraction kickers, particularly from their tanks9. So, much at-
tention is being paid now in the design of the injection kicker for the main
rings.

It has been proposed to avoid any special tanks for the kickers and to
put kicker's rods just inside the regular vacuum chamber with elliptic cross-
section. The absence of the special tank is preferable also for multi-bunch
operation, allowing to reduce the number of dangerous higher order modes
and their impedance.
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A 3D model of the kicker as used in simulations with MAFIA codes is
shown in Fig. 9. In general, frequency behavior of the impedance depends on
the loading conditions outside vacuum chamber (coaxial line, resistors,
capacitances and so on). It is difficult to take into account these conditions
with MAFIA. But we believe that the broad-band impedance does not depend
very much on the load. According to the high frequency diffraction model [10]
if a bunch does not "see" the surface, then this screened surface does not
contribute to the broad-band impedance. So, if the load is somewhere
outside and it is screened by other surfaces of the kicker it should not influ-
ence the broad-band impedance of the kicker, at least, at high frequencies.

Fig. 9 - Injection kicker .

It has been found that the first three terms of the expansion (1) describe
well the broad-band impedance of the kicker:

         

Z
n

= -i 0.083 +
2.59

n
+

0.3722 (1 - i)
n    

 (23)

Fits of the longitudinal loss factor (Fig. 10) and of wake-function     
(Fig. 11) confirm that.



G-17  pg. 11

Fig. 10 -  Fit of the longitudinal loss factor for the injection kicker;
numerical and analytic curves coincide.

Fig. 11 -  Fit of the normalized wake-function for the injection kicker;
full dots: MAFIA code results; open squares :wake-function

corresponding to the impedance model (1).

Longitudinal feedback kicker

 A longitudinal feedback system is necessary to damp the longitudinal
multibunch instability11. The work on the system is now in progress. But
just to understand how much a longitudinal feedback kicker could con-
tribute to the broad-band impedance and whether the impedance model (1) is
suitable for the kicker we take as an example the kicker proposed for ALS12.

The 3D kicker model for MAFIA simulations is shown in Fig. 12. The
wake-function for the kicker is presented in Fig. 13 and, as we can see, it
corresponds to the third term in the impedance model (1). (For comparison
see  the  wake-function in  Fig. 3).  The longitudinal loss factor scales as σ-
3/2 (Fig. 14) confirming this fact.
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Fig. 12 - Longitudinal feedback kicker (half a structure).

Fig. 13 - Normalized wake-function for the longitudinal feedback kicker (w).
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Fig. 14 -  Dependence of the longitudinal loss factor on the bunch length
for the longitudinal feedback kicker.

So, using the expression (17) we get for the kicker:

                

Z
n

=
1.51 ( 1 - i )

n
1/2

Ω
   

(24)

 We should mention here that the value of the loss factor is comparable
with that of RF cavity. It suggests that the kicker cavity itself can be a
source of Higher Order Modes (HOM) which are dangerous for multibunch
operation.

Intersection of two rings

 The intersection of two rings is another important impedance generating
element. At this point two regular vacuum chamber merge in one common
vacuum chamber of wider cross-section (Fig. 15).

Contribution to the impedance comes only from the part of the inter-
section where a bunch enters the wide vacuum chamber leaving the regular
vacuum chamber. A simple 3D model for MAFIA simulations is shown in Fig.
16. The part with the wide cross-section is rather long in order to simulate
correctly the interaction between the bunch and the synchronous harmonic
of the electric field.

Fits of the wake-function (Fig. 17) and the longitudinal loss factor   
(Fig. 18) give for the structure:

              

Z
n

=
5.71 ( 1 + i )

n
3/2

+
0.096 (1 - i)

n
1/2

    

(25)
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Fig. 15 - Intersection of two DAΦNE main rings.



G-17  pg. 15

Fig. 16 - 3D model of the intersection of two rings .

Fig. 17-  Fit of the normalized wake-function for the intersection of two rings;
open squares: MAFIA code results; full dots: wake-function

corresponding to the analytical impedance model (1).
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Fig. 18 -  Dependence of the longitudinal loss factor on the bunch length.
Numerical results (open squares) and analytic fit (full dots).

Slots

 A special antechamber is used in the main rings for pumping purposes
and to install synchrotron radiation absorbers. The regular vacuum chamber
and the antechamber are connected through slots. Figure 19 shows MAFIA
code input which is used to simulate such kind of a structure.

Fig. 19 - Slot between antechamber and regular vacuum chamber .
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There are 8 slots 2 cm wide and 120 cm long to accept synchrotron
radiation in bending magnets and 4 slots 1 cm wide and 225 cm long in the
vacuum chamber of wiggler magnets.

Numerical simulation show that in spite of the fact that the slots are
relatively wide, the longitudinal loss factor is negligibly small and the wake-
function is purely inductive for a bunch length of 3 cm. It is worth noting
that the inductance of the slots practically does not depend on the slot
length as soon as the length gets twice or three times longer than the width
of the slots.

The formula (8) gives:

     

Z
n

= - i 8*10
- 5 Ω per slot

     
(26)

for the slots in the bending magnets.

The vacuum chamber in the wiggler magnets has a vertical size (2 cm)
much smaller than the horizontal one (13 cm). Because of such an asymme-
try, effective image currents are concentrated on the upper and lower sur-
faces of the vacuum chamber in the vicinity of a bunch. The coupling be-
tween the bunch and the slots, situated far aside from that region, is very
weak, giving negligible contribution to the impedance.

There are also four pumping ports in the interaction region (approxi-
mately 60 cm far from the interaction point) shielded with a perforated
screen with 27 slots in each screen. One third of the screening surface is
shown in Fig. 20 .

A single slot has an inductive impedance13:

            

Z(ω) = - i Z0
ω
c

( α e + α m )

4 π
2

b
2

 

(27)

where αe and αm are magnetic and electric polarizability, which can be cal-
culated or measured.

For a rectangular slot of width w and length l, measurements in the
range 0.2 < l/w < 1 show the dependence14:

             

α e + α m

w
2

l
= (0.033 + 0.27

w
l

)

  

(28)
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Fig. 20 - Slots in the shield of the pumping ports.

 Assuming the validity of the eq.(28) for our value of w/l = 0.056 we have

             α e + α m = 0.048 w
2

l     (29)

This gives for 4 pumping ports :

             

Z
n

= - i 5.48 * 10
-3 Ω

   
(30)

 The estimate done for the elliptical slots with the same length and the
effective width weff = 4w/π gives a value which is approximately one order of
magnitude smaller than that of (30).

It is worth noting also that the coupling impedance falls down with wall
thickness. For example, the coupling impedance of a circular hole reaches a
value for an infinite thickness which is 56% of its value for zero thickness
[15]. We should expect the same behavior also for slots.

Thus we have to consider the result (30) as an upper limit of the cou-
pling impedance for the shielded vacuum ports.
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Bellows

 Two different kinds of bellows will be used in DAΦNE main rings. The
first one is similar to that used in PETRA and CESR. The convolutions of
the bellows are shielded by sliding expansion joints (see Fig. 21). Bellows of
that kind will be installed in straight sections.

Fig. 21 - Bellows in the straight sections.

 A shallow cavity, formed between the sliding joints gives purely induc-
tive contribution to the impedance. TBCI gives for such a cavity:

      

Z
n

= -i 2.35*10
-3 Ω

 
(31)
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 Bellows shielded by strips will be installed in the main ring arcs, allow-
ing additional bending and rotation (see, for example, Ref. 16). Numerical
data for the bellows are not available yet. But we believe that their coupling
impedance is small and mainly inductive due to slots between shielding
strips.

Tapers

 In order to reduce the coupling impedance it is necessary to produce a
vacuum chamber as smooth as possible. Very long tapers, connecting
vacuum chamber components, are used in DAΦNE main rings to avoid sharp
jumps in the vacuum chamber cross-section.

There are 8 such tapers, which are more than 1 m long, between a
regular vacuum chamber in wiggler magnets (2 cm by 13 cm) and the regular
vacuum chamber (4 cm by 9 cm). MAFIA code has some mesh size problems
to simulate such a long and flat structure. To get an idea about the
impedance we simulated the structure with TBCI replacing the rectangular
cross-sections by circular ones17. As expected the wake-function is inductive,
giving for the taper-in and the taper-out:

               

Z
n

= - i 5.5 * 10
-3 Ω

    
(32)

 Two tapers are placed between the RF cavity beam pipes of 6 cm radius
and the regular vacuum chamber. Their length is approximately 40 cm for
both taper-in and taper-out and the contribution to the impedance is:

              

Z
n

= - i 1.46 * 10
-2

+
0.075

n
Ω

   
(33)

Calculations have been done also with TBCI code for the structure con-
sisting of the taper-in, the taper-out and a long straight circular pipe be-
tween these tapers.

There are tapers in the interaction region (See Fig. 22). The cavity near
the interaction points is shielded by a thin beryllium layer, having the same
radius as attached beam tubes. In this case only two tapers on both sides of
the interaction point will contribute to the impedance. Analysis of the wake-
function given for the azimuthally symmetric structure by TBCI gives the
impedance:

               

Z
n

= - i 0.011 +
0.11

n
Ω

      
(34)
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Fig. 22 - Tapers in the Interaction Region.
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Resistive wall impedance

 Most part of the main ring vacuum chamber has almost rectangular
cross-section with rounded corners. For a rectangular beam pipe the resistive
wall impedance per unit length is given by18:

             
Z(ω)

L
 = Z0 ω

2 π c
 
( 1 - i ) δ

2 b
 F0 

b
a    

 
(35)

where 2a and 2b are the horizontal and vertical sizes of the beam pipe. The
coefficient F0 is equal to:

       

F 0 (λ) = π
∞
∑

n = 1 (odd)

1

cosh
2

(n π / 2 λ)
+ λ

∞
∑

n = 1 (odd)

1

cosh
2

(n π λ / 2 )
    

(36)

DAΦNE vacuum chamber has sizes 2a = 9 cm and 2b = 4 cm. F0 at
these values of a and b is very close to 1. So for the vacuum chamber made
of aluminum eq. (35) gives for the ring total resistive wall impedance:

            Z(ω) = 10- 4 ( 1 - i ) ω  (37)

and the normalized value:

Z
n = 

0.44 ( 1 - i )
n

     
(38)

Conclusions

 The broad-band longitudinal impedance of DAΦNE main ring vacuum
chamber components we have considered is described reasonable well by four
terms of the expansion (1).

Total impedance over these elements is:

     

Z
n

= - i 0.26 +
24.8

n
+

( 1 - i ) 2.89

n
1/2

+
( 1 + i ) 274.42

n
3/2

Ω

  
(39)

 Figure 23 shows the imaginary and the real part of the normalized
impedance as a function of the harmonic number n with superimposed
bunch spectrum.
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Fig. 23 - Imaginary and real part of DA NE main ring impedance with
superimposed bunch spectrum (solid line).

We realize that not all impedance generating elements are included in
(39). Other tapers, flanges, slots etc. can be included during further de-
velopment of the vacuum chamber design. We believe that the impedance of
the elements is mainly inductive and the careful design will help to keep the
effective broad-band impedance within 1 Ω which is the design limit.
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