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Introduction

  Performances of most storage rings are limited by coherent instabilities.
Transverse instabilities are destructive for a stored beam. One of the
instabilities, the resistive wall instability, is driven by both short range and
long range wake-fields. It can be dangerous in single bunch operation as well
as in multibunch one, where coupled bunch modes must be considered too.

 In this note we compute the rise times of the transverse resistive wall in-
stability for the DAΦNE accumulator and the Main Rings. In our calculations
we refer to Sacherer-Zotter theory [1]. Parameters of the accumulator and of
the Main Rings are taken from [2] and [3].

 Possible ways to increase the instability rise time and to dump the in-
stability are discussed.

   
Resistive wall instability

An unperturbed beam motion is characterized by two mode numbers. For
kb bunches in a storage ring there are kb coupled-bunch modes with mode
number s = 0, 1,...., kb-1, specifying the phase shift ∆φ = (2πs/kb) between
bunches. Another mode number m = 0,1,2, ..,∞ is needed to describe an
individual bunch motion in the synchrotron phase space within sth coupled-
bunch mode.

   The unperturbed modes are at frequencies:

                           ωp

T
= (pkb + s + νx,y +mνs ) ω0  

 (1)
p =0, ±1, ±2, ...,±∞

where νx,y is the transverse betatron tune, νs is the synchrotron tune; ω0 is
the angular revolution frequency.
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  The perturbed frequency of the coherent oscillation mode is modified
from the unperturbed value by a complex coherent frequency shift:

 

∆ωs,m

T
= j

Ib c
2

2 ν x,yω0 (E/e) L

1
(m +1)

[ZT]eff
s,m

  
 (2)

where  Ib is the average bunch current;   E is the total energy of a particle;  L
= 4σl is the total bunch length and:
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(3)

with:

  

ωξ =
ξ

α c

ω0 νx,y

   
(4)

and:

 
ξ =

(dν/ν)x,y

dp/p   
(5)

Here hm(ω) is a bunch mode spectrum which for a gaussian bunch is
given by:

  
hm (ω) =

ω σ l

β c

2m

exp{-
ω σ l

β c

2

}
       

 (6)

An instability occurs when the imaginary part of the frequency shift of
the coherent oscillation mode is negative:

  Im ( ∆ω s,m

T
) < 0     

(7)

So the instability can be driven by the real part of the resistive wall
impedance:

  

ZT
rw

(ω) = (1 +j)
R Z0

b
3

δ0

ω0

ω    
 (8)
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where:

  
δ0 =

2 ρ R
Z0     

(9)

ρ is the resistivity of the vacuum chamber material; R is the mean storage
ring radius;

b is the radius of the ring vacuum pipe;
Z0 free space impedance (=377 Ω).

 If one of the lines in the bunch spectrum is very close to the origin in
the negative frequency region (see Fig. 1) the resistive wall instability  takes
place since this line is associated with a very large negative resistance:

Re ZT
rw

(ωp) = -
R Z0 δ0

b
3

1

|Fraq νx,y +mνs |   
 (10)

where |Fraq.νx,y| = |integer - νx,y|<1.

Neighboring lines are associated with the impedance by a factor:

|(Fraq νx,y +mνs)/(Fraq νx,y +mνs ± kb) |   (11)

Therefore, to a certain extent, we can consider that coherent motion is
driven only by the line closest to the origin and use the formula given in [4]
to estimate the coherent frequency shift:

∆ω s,m

T
= -

e I

4 π (|m|+1) m0c γ
j

R Z0 δo

b
3

1

|Fraq νx,y+mνs |
F m{(ωξ-Fraq νx,y-mνs)

τL

2
} (12)

                         
where the form factor Fm for a gaussian distribution is given by:

F m(∆φ) =
4 (|m|+1)

∆φ
2

J m
2
(φ) φ exp(-2

φ

∆φ

2

) dφ

0

∞

  

(13)

Jm is the Bessel function of order m; τL represents the full time bunch length
(τL = L/c for gaussian distribution); I=kb*Ib is the average beam current. The
form factor Fm for modes m=0 and m=1 is shown in Fig. 2.
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Fig. 1 -  Real part of the transverse resistive wall impedance
with superimposed bunch spectrum
- the case of transverse instability.

Fig. 2 - Form factor Fm for mode m=0 and m=1.
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The single line approximation works better for multibunch regime with a
number of bunches kb>>1. But we should expect that this approximation is
not reliable at ξ>0. We explain it taking the mode m=0 as an example. By in-
creasing ξ the bunch spectrum is removed in higher frequency region and
relative contribution of the line closest to the origin gets small (the form
factor F0 drops) meantime the contribution of other lines within the bunch
spectrum grows. In this case we must take into account all these lines.
 

Here-under we give the results of a single line approximation at ξ=0 and
calculate dependencies of the instability rise time on ξ for DAΦNE ac-
cumulator and the main ring using (1)-(9).
 

Resistive wall instability in accumulator
 

  For DAΦNE accumulator with kb=1 the most dangerous dipole mode
(m=0) shows frequencies at:

ωp

T
= (p + νx,y)ω0   

(14)

  The choice of a transverse tune below an integer will create the situation
when one of the lines in the unstable region is closer to the origin than the
line nearest to the origin in the stable region (see Fig. 1). In this case the
coherent motion can be unstable.
 

In the first accumulator design the β-tune was νx = 2.89, νy = 0.91. Both
transverse tunes are slightly below an integer and, so, the resistive wall in-
stability takes place. We calculated the instability rise time:

τm =
1

Im( ∆ω s,m

T
)    

(15)

 
for two most dangerous mode m=0 and m=1. Fig. 3 shows dependencies of the
rise times of these modes on the machine chromaticity considering stainless
steel as a material for the accumulator vacuum chamber. We can see that the
rise time for mode m=0 at ξ=0 is equal to 0.5 ms (single line approximation
gives 0.42 ms) that is much less than the radiation damping time which is
21.42 ms for the accumulator. So special measures should be undertaken to
dump the instability.
 

The situation can be improved by increasing the chromaticity. We can do
it up to the point until the mode m=1 gets dominating (at ξ=0.65). At this
point τ0=τ1=2.5 ms.
 

Since the resistive wall impedance is proportional to ρ1/2  we can gain a
factor of 6 using Aluminum instead of stainless steel for the vacuum
chamber.
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Fig. 3 -  Rise times of the resistive wall instability for modes m=0 and m=1
in the DA NE accumulator for stainless steel vacuum chamber

 ( x = 2.89, y= 0.91) versus chromaticity.

To eliminate the resistive wall instability completely it is necessary to
change the transverse tune making it slightly above an integer. In this case
mode m=0 is stable and the rise time for the mode m=1 is much higher than
the radiation damping time.

In the accumulator where only a single bunch rotates the most danger-
ous mode m=0 can be dumped changing the β-tune. In the multi-bunch
regime by changing the tune we can not find a condition when all dipole
coupled-bunch modes s (m=0) are stable. Always a half of the dipole coupled-
bunch modes are stable and a half of them are unstable.

Resistive wall instability in the Main Rings

Let us now consider 30 bunches in the DAΦNE main ring.  Both β-tunes
are below the integer νx = 4.85  and νy = 4.87. Among the dipole modes the
mode s=25 is most unstable because the spectrum line with p=-1, s=25 is the
closest to the origin in the unstable region ω−1(p=-1, s=25, m=0, νψ = 4.87) =
0.13ω0. Fig. 4 shows the rise time of the modes m=0 and m=1 with the
coupled-bunch mode number s=25 for different values of the chromaticity.  At
ξ=0 the rise time of the mode m=0 is rather small: τ0 = 140 µs for stainless
steel and τ0 = 840 µs for Al, much shorter than the radiation dumping time in
the main ring τ = 36 ms. The same results gives the single line
approximation.
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Fig. 4a) -  Rise times for modes m=0 and m=1 with the coupled=bunch mode number
s=25 in the DA NE main ring

(for stainless steel vacuum chambr) versus chromaticity.

Fig. 4b) -  Rise times for modes m=0 and m=1 with the coupled=bunch mode number
s=25 in the DA NE main ring versus chromaticity

- the case of aluminium vacuum chamber.
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The results of instability rise time calculations  with BBI code [5] pre-
sented by B. Zotter for DAΦNE main ring are in Fig. 5. The results correspond
to these shown in Fig. 4 except the region with ξ~1. It is explained by the fact
that in BBI calculations the transverse broad-band resonator impedance with
resonant frequency fr = 1.85 GHz, quality factor Q=1 and shunt impedance
R=44 Ohm/m was taken into account and there are additional contribution
of lines situated far from the origin, but close to fr where the resistive part of
the impedance has a maximum.  
 

 As far as the resistive wall impedance is proportional to ω1/2  we can in-
crease the rise time of the instability choosing the transverse tune above an
integer. It means that we move dangerous line in the bunch spectrum far
from the origin. For example, if we choose νy = 5.09 instead of 4.87 in the
horizontal plane the rise time will be increased approximately by a factor 2.7.
So a fast feedback system can be effectively used to dump this instability.
Another way to increase the rise time is to increase the machine chromaticity
ξ. We can see in Fig. 4 that the rise time at ξ = 1 is by a factor 3 higher than
that at ξ = 0.
 

 One of the possible cure for the instability is an octupole field, providing
amplitude dependence of frequency. A sufficient spread in the bunch
frequencies prevents the instability. A criteria of a stable motion is that the
rms spread in betatron frequencies should exceed the growth rate (Landau
damping).

  

Fig. 5-  Results of instability rise time calculation with BBI code for modes  m=0 and
m=1 for the DA NE main ring (for Al). Straight lines correspond to Landau damping

time due to  octupole - introduced tune spread .
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The straight lines in Fig. 5 correspond to Landau damping time because
of octupole-introduced tune spread ∆ν/ν (BBI code results).

  
For example, if we introduce the tune spread ∆ν/ν = 4*10-5, than the

motion will be stable at ξ>0.6.

Momentum spread at non-zero chromaticity also introduces the betatron
tune spread but it does not contribute to Landau damping because of the
averaging of particle momenta by synchrotron motion.

Conclusions

1) The resistive wall instability in the accumulator ring can be completely
eliminated by choosing the transverse tune just above an integer.

2)  In the main ring the instability rise time is 140 µs for stainless steel and
840 µs for Al at ξ=0 considering 30 bunches in the ring.

 
- The instability rise time  will increase approximately by a factor 3 by

changing the transverse tunes (4.85,4.87) and making them slightly
above an integer.

 
- Increasing of the machine chromaticity has a positive effect: the in-

stability rise time increases (up to 2 ms for Al at ξ=+1). But this gives
rise to the problem of a dynamic aperture.

 
- The instability can be damped introducing octupoles in the lattice.

 
- A feedback system seems to be the most reliable cure of the instabil-

ity.

Final Remarks

1) A new working point above the integer in both plans (νx = 3.12,          νy
= 1.14) has been chosen for the DAΦNE accumulator to avoid the
resistive wall instability [6].

2) For the Main Rings a lattice with νx = 5.12 and νy = 5.16 is under con-
sideration [7] at the present moment. Such a choice allows to increase
the rise time of the resistive wall instability up to 380 µs for stainless
steel and 2.275 ms for Al at ξ = 0 having 30 bunches in the ring. The rise
time scales inversely with the number of bunches.
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