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1. Introduction

In DAΦNE the early and primary luminosity goal of a few 1032 cm-2

sec-1 can be achieved by storing in the  main ring 30 bunches with a total
current of about 1.4 Ampere.

Coupled bunch instabilities, driven by the parasitic HOM of the RF
cavity, are one of the main concern in the design of the machine [1]. Fast
longitudinal digital feedback systems may provide at best a damping rate of
about 100 µsec [2], much faster than the natural radiation damping, not suf-
ficient, however, to damp those relative modes significantly coupled to strong
resonances. In fact much faster multibunch instabilities can be excited by
some HOM's, unless their shunt impedance is significantly reduced by
coupling the cavity to absorbers or by shifting of the HOM frequency.

  In this note we compute the rise time of the coupled mode instabilities
assuming a single HOM as driving term. Our aim is to get valuable
information on the maximum allowed shunt impedance for the most harmful
parasitic modes and at the same time investigate on the benefits deriving by
a controlled tuning of the HOM's. We refer to the Pellegrini-Wang theory [3],
suitable for short bunches, that makes use of rather simple  expressions for
the instability rise time.

Table I - Machine and sample-HOM parameters.

        Machine parameters                                      HOM Parameters

Length L 97.690 m
Energy E 510 MeV Rs/Qr 20
Momentum compaction αc 0.017
Bunch current Ib 43.76 mA ωr 1 - 25 GHz
Bunch length σl 3 cm
Synchrotron tune νs 0.0128 Rs 1.0,  0.1, 0.01   MΩ
Number of bunches kb 30
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2. Unperturbed spectrum of 30 equispaced bunches

The spectrum of the unperturbed motion shows frequencies at

ωp = (p kb + s + a νs) ωo

 p = 0, ±1, ±2,...
a = 1, 2, 3,.....

  s = 0,1,.... kb-1..

where ωo = 19.295 MHz is the revolution frequency, "a" describes the longi-
tudinal motion in the  phase space  (dipole mode  a = 1,  quadrupole mode
a = 2 etc), and "s" specifies the longitudinal mode number. As an example
we show in Fig.1 the low frequency spectrum for the dipole mode a = 1 in
the case of kb = 30.
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Fig. 1 - Dipole (a=1) stable for p=0 and unstable sidebands for p= -1, kb=30.

The dashed sidebands are intrinsically stable while the solid ones are
unstable.  We note that in the displayed range of about 600 MHz for p = 0
and p = 1, two close positive and negative sidebands are spaced by about     2
ωs (0.494 MHz); their relative modes number differ by 30, (e.g. 24+ and 6-).
On the other side two consecutive stable or unstable sidebands are spaced of
ωo (19.295 MHz). In case of kb=120 we have a similar line spectrum with 120
stable and unstable sidebands covering a frequency range of about 2.4 GHz.
This scenario repeats over the whole spectrum.
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3. Longitudinal instability rise time for the dipole mode a = 1.

When a relative mode of oscillation "s" is excited by the e.m. resonat-
ing fields, the motion is intrinsically stable or unstable depending on the
sign of the rise time:

τs,1=
4π (E/e)νs

kb I bωoαc

1

Zs,1
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      (1)

Since for a given relative mode "s" the sidebands corresponding to
different "p" are quite far away, the effective impedance due to a single HOM
can be approximated by the contribution corresponding to the two closest
stable "d" (damped)  and unstable "u" sidebands:
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Damped and undamped sidebands of the same relative mode are quite
apart, the only exception being the mode 0 and kb/2. As an example with 30
bunches, the spectrum is such that the stable and unstable sidebands
relative to the modes s = 0 and s = 15 are simultaneously excited by the same
HOM.

The  form factor  F(ωp)  for the  dipole  mode, plotted in Fig. 2, for kb
= 30, is given by:
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Fig. 2 - Form factor for the dipole mode a = 1 vs. wr (GHz).

Assuming a HOM at the resonant frequency ωr, we first compute
what is the relative mode "s" excited with the lowest rise time :

s
u

=I nt
ωr

ωo

− kbp − νs

Since the sum of two close damped and undamped relative mode
number is equal to kb, we easily find the frequencies of the stable and un-
stable sidebands corresponding to the relative mode mostly excited by the
HOM:

ωp
u

= ωo I nt
ωr

ωo

− νs + νs

For kb=30 the damped sideband is located at:

0≤ s ≤7 ωp
d

= ωp
u

− 2s+ νs ωo

8≤ s ≤22 ωp
d

= ωp
u

+ kb -2s − νs ωo

23≤ s ≤29 ωp
d

= ωp
u

+ 2kb -2s − νs ωo

4. Investigation for  kb = 30,  Rs/Qr = 20, Qr = 50000, 5000, 500,100.

We analyze here four significative cases assuming a high value of
Rs/Qr = 20 and a total current of about 1.5 A (47 mA in 30 bunches). In the
frequency range ωr = 1 - 25 GHz  the resonator bandwidth  is of the order of a
fraction of MHz for Qr = 50000 and increases to several tens of MHz for
Qr = 100.

In Fig. 3 we show the rise time due to a HOM with a resonant
frequency varying in the region where the maximum of the form factor
occurs, i.e.  around ωr = 7.070 GHz. The effect of the interaction  with the
first 6 relative modes s = 0,1,2,3,4 and 5, consecutively excited is shown.
The compensation effect occurring around s = 0 (an identical compensation
happens for s = 15) is clearly  indicated by the higher maxima at the
beginning  of the plot.  When the resonator frequency is between the stable
and unstable sidebands 0+ and 0- one observe a Robinson like compensation
effect. The risetime of the relative mode s = 0 becomes even negative
(damping), thus, at a certain frequency, the lowest rise time is determined
by the nearest unstable sidebands s = 1 or s = kb-1. The minima growth
times are at those frequencies where the sidebands are fully coupled. We
note that with about 1.5 A stored in the machine, the rise time instability
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may be as short as fraction of microseconds for Qr = 50000 (Rs = 1 MΩ) and
around few milliseconds for Qr = 100 (Rs = 2 kΩ). For  Qr<500 (Rs<10 kΩ) it
stays above 100 µs.

Fig. 3 - Log10 [τ(sec)] vs. ωr (GHz), (Qr = 50000, 5000, 500, 100), kbIb ≈ 1.5 A.

It is worth noting that reducing the shunt impedance (or decreasing
the quality factor Qr) minima and maxima become closer. This is due to the
fact that the minimum value, being caused by a sideband fully coupled,
depends only on the shunt impedance Rs, while the maximum, caused by a
sideband excited by the tail of the impedance spectrum, depend on both the
shunt impedance Rs  and the quality factor Qr. For Qr = 100 the rise time is
practically constant and of the order of few microseconds, with a strong
compensation around s = 0 and s = kb/2.

5.  Minima and maxima  rise times.

The minimum rise time is observed when the HOM is fully coupled to
a relative mode sideband. Neglecting the stabilizing effect of the stable
sideband we get  the following approximate expression for ωr = ωp:

τs,2
min

(ω r ) =
4π (E/e)νs

kb I b αc

e

ω r σ
ω oR

2

ω r R s

which does not depend on the quality factor Qr.

 In Fig. 4 we plot vs. the frequency what is the shunt impedance
exciting the instability with a rise time τ = 100 µs, for a stored current    
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kbIb = 0.1, 0.5, 1.0 and 1.5 Ampere.  On the same plot are reported the
parasitic shunt impedances of the "low loss" cavity proposed for the "day one"
machine operation [5].

 

 Fig.4. a=1 Log10[Rs(Ω)]  vs. ωr (GHz) for τ =100µs; Io = 0.1, 0.5, 1.0 , 1.5 A.

 We see that in spite of the "average" low losses, there are individual
modes with a shunt impedance exceeding the allowed limit. Even in the case
of 100 mA, there are two modes with a shunt impedance such that a full
coupled instability would grow much faster than 100 µs! These two modes
can be  coupled with a loop antenna or  shifted in frequency. It is worth
noting that  an induced  frequency shift of the other modes  can be tolerated
since their shunt impedance stays anyhow below the threshold. The scenario
becomes much worse when we examine the case of  500 mA, where about ten
modes more are potentially dangerous.  To reach 1.0 and 1.5 Amps it is
necessary to damp further 10 modes distributed at higher frequencies.

In the case one is able to develop a reliable system for controlling the
HOM frequency, it becomes interesting to know what is the highest rise time,
attainable when the HOM frequency is just on the middle of two consecutive
unstable sidebands; we get :

τs,1
max

(ωr ) = 1+
ωo

2 ∆ω r

2

τs,1
min

(ωr )

As expected it is strongly dependent on the revolution frequency  and
on the resonance bandwidth 2∆ωr ~ ωr/Qr. The envelope curves of the
maxima rise time values with Rs/Qr = 20 are plotted in Fig. 5.
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Fig. 5. Envelope of  Log10 [τ max(sec)]  vs.ωr (GHz) for Qr = 50000, 5000, 500..

The  shift method becomes ineffective when  2∆ωr ~ ωo. In DAΦNE, in
the frequency range of interest, this happens for Qr ~ 500. Below this value
the impedance bandwidth is so large that two sidebands at least are
simultaneously excited.

 It seems hard today to think of controlling the frequencies of so many
modes, whereas damping techniques based on the absorbtion of the e.m. energy
by means of antennas or waveguide couplers look more promising.

Finally we compute the shunt impedance exciting the quadrupole
mode instability with a rise time τ = 100 µs, assuming a full coupling. A
single HOM excites instabilities with a rise time given by:

τs,a = (a-1)! 2

k r σ

2(a-1)

τs,1

Fig. 6 - a = 2: Log10 [Rs(Ω)]  vs. ωr (GHz) for τ = 100µs; Io = 0.1, 0.5, 1.0, 1.5 A.
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 At the moment no feedback system has been envisaged to cure such
instabilities, therefore only the Landau damping, estimated of the order of  1
ms, should be taken into account.

7. Transverse Coupled Bunch Instabilities: for the mode "0".

The coherent transverse motion of kb bunches excites a spectrum
analogous to the longitudinal one at frequencies:

ωp,a,s =  (kbp + s + Qx,y + aνs) ωo

For the lowest mode a = 0 we compute the rise time due to a
transverse HOM, with shunt impedance Rt (Ω) fully coupled to a sideband:

τs,0
min

(ω r ) =
4π (E/e)Qx,y

kb I b ω r

e

ω r σ
ω oR

2

R t

.01

.1

1 MΩ

Fig. 7 - Log10 [τmin(sec)] vs. ωr (GHz), (Rt = 1,  0.1, 0.01 MΩ), kbIb ≈ 1.5 A

As one can see the transverse coupled bunch motion is less critical. In
fact, by assuming a shunt impedance of  1 MΩ,  we have a rise time of 100 µs
in the most unfavourable frequency region; this is hundred times better that
the rise time obtained for the longitudinal case with the same impedance. In
Fig. 8 we show the plot of the shunt impedance calculated for the transverse
HOM's of the tapered cavity. There is actually only one point  corresponding
to  1 MΩ.  Few  modes  have  a  shunt  impedance  of 100 kΩ, while all the
others are below 10 kΩ. It should be not difficult to damp the transverse
instabilities with a feedback system.
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Fig. 8 - Log10 [Rt (Ω)] of the tranverse HOM's of the tapered cavity.

8. Conclusions

We present the analysis of the coupled bunch instabilities excited in
DAΦNE by equispaced bunches, assuming a single parasitic HOM. We show
that the use of a fast feedback system characterized by a damping time of 100
µs can take under control the longitudinal dipole instabilities excited by
about 1.5 A,  provided the  HOM have a resistive impedance lower than 10
kΩ. Less critical appear to be the transverse instabilities, where only few
modes seem to be relatively harmful.

For the longitudinal dipole mode, taking as reference a parasitic mode
with Rs/Qr = 20, we  find that the HOM damping  technique ought to reduce
the quality factor below 500. On the other side it is also shown that in case a
controlled shift of the HOM frequency can be reliably performed under
machine operation, the rise time of the fastest instability drops dramatically
to unharmful values for a rather small frequency shifts only for the HOM
characterized by a high Q.

 Analysis of the HOM of the "low loss" cavity proposed for the machine
starting operation, shows that despite the small contribution to the overall
parasitic loss, many individual modes are characterized by a shunt
impedance too high for storing 1.5 Amps. With the present constraints, we do
not expect that further optimization's of the cavity shape can significantly
reduce the shunt impedances. Furthermore, it seems hard today to think of
controlling the frequencies of so many modes, whereas damping techniques
based on the absorption of the e.m. energy by means of antennas or
waveguides coupler look more promising.
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It must be said that the above considerations are derived by a rather
pessimistic analysis. In the reality the instability grow rate can be smaller for
three main reasons:

- It might be possible to uncouple the bunch and cavity spectra, or at least
reduce the coupling, acting on the thermal equilibrium or on the tuner
position.

- The instability is initially caused by few bunches only, so that a fast
feedback has to work against a  weaker instability.

- Experience shows that the actual HOM shunt impedances are smaller
than the computed ones. A further improvement can be obtained, for the
HOM at high frequencies, by manufacturing the cavity tapers with high
resistivity metals. As an example, by using stainless steel one can gain,
depending on the intensity of the magnetic fields at the surface, a factor
up to 7. Thus, compared to the computed values, a significative reduction
of the shunt impedances seems achievable without any damping
equipment.

 Measurements of HOM on a prototype, and transient coupled bunch
instabilities simulations are now necessary in order to verify these
expectations.
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