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Introduction

    The energy loss and the energy spread of a bunch can be produced by
variations in cross-sectional shape of the DAΦNE vacuum chamber as well as
by resonant structures such as RF cavities, bellows, vacuum ports, etc. In
order to reduce the loss factor of a bunch passing through a cavity or any
beam pipe discontinuity we can use a "taper" - a gradual transition between
two cross sections of the beam pipe from a smaller radius 'a' to a larger radius
'b' (Fig. 1, Fig. 2).

Fig. 1 - Pill-box cavity.

Fig. 2 - Tapered cross-sectional variation of a vacuum chamber.
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      An infinitely long symmetric taper reduces the losses to zero. But, since
there are practical limitations, we are not allowed to have a very long taper. So
there is a task to choose a profile of the taper to reduce the loss factor as
much as possible, for given length g1 of this taper.

     In this paper we will show a possible way for analytical calculations of
a cavity loss factor, with a taper of an arbitrary form. We will also consider
applications of tapers to reduce energy loss and energy spread of a bunch due
to cross-sectional variations in the DAΦNE vacuum chamber.     

1. Tapered cross section variations in DA NE vacuum chamber

The transition between beam tubes with different radii (Fig. 2) was
considered for the DAΦNE project parameters: rms bunch length σ = 3 cm, b =
2 cm, a = 1 cm (and a = 1.5 cm), number of particles in a bunch           N =
9*1010.

  For the DAΦNE case, the length L is rather long (L >100 cm). Numerical
simulations show that the energy loss factor does not depend on L if L is
longer than 30 cm. In our simulations L = 30 cm in order to reduce the CPU
time. The length of a taper `g` was varied.

  According to the definition, the loss factor kl for a particular case of a
gaussian longitudinal distribution of the bunch density, with rms length σ   is
[1]:

                                    

k l =
dω

2π
Zl(ω,r) e

−k
2
σ

2

−∞

+∞

(1)

          

with k = ω/c, and Zl(ω,r) - the longitudinal impedance of the element of a
vacuum chamber.

   Below the cut-off frequency Zl(ω,r)=0. Above the cut-off frequency
kb>2.405 and for DAΦNE parameters in the integrand of (1)

e
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<e
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2

.

So the loss factor should be very small. It was confirmed by numerical
simulations with the code TBCI. The results are:

kl = -5*10-6V/pC for a = 1 cm and kl = -1.9*10-5V/pC for a = 1.5 cm.
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 Practically these values are close to zero. But, as we can see from the
Fig. 3, due to wake-fields, the first part of a bunch is decelerated and the other
part is accelerated. It means that the bunch energy spread increases even if the
average energy loss is equal to zero. We estimated the rms energy spread for a
monochromatic bunch as:

                                 

σE =

∆E(τ)
2
f(τ) dτ

−∞

+∞

f(τ) dτ
-∞

+∞
(2)

          

with energy loss of a particle ∆E(t) and the distribution function of particles in
the bunch f(τ) taken from results of the code TBCI. For non-tapered cavity (g =
0) σE = 0.48 keV for a = 1cm and σΕ = 0.19 keV for a = 1.5 cm.

Fig. 3 - Results of the TBCI code: Bunch current distribution
and associated longitudinal wake.

The use of a taper decreases the amount of energy which is radiated by
a single particle. So we can expect that in the case of a taper, the energy
spread of a bunch will be smaller than it would be while passing through a
nontapered cavity. Numerical results for different `g` are presented in Fig. 4.
We can see that a taper of reasonable length (for example, g = 5 cm) decreases
the energy spread by a factor 3.
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During the injection, the bunch length σ could be less than 3 cm. It
would be very important to know how the changes of σ influence the bunch
energy loss. In Fig. 5 the dependences of the loss factors vs. the bunch length,
for different taper length are shown. The important feature is that the
sensitivity of the bunch energy loss to the changes of the bunch length falls
down as the length of the taper grows.

It is worth noting that the energy spread is much more higher for
shorter bunches. For σ = 1 cm in given structures σE is 10 times more than for
σ = 3 cm. But still the energy spread is less for the tapered cavity, and the
dependence has the same form as shown in Fig. 4.

Fig. 4 - Dependence of rms energy spread on the taper length.

Fig. 5- Dependences of the longitudinal loss factor on the bunch length for different
taper lengths: 5a) Beam pipe radius a = 1  cm

                     5b) Beam pipe radius a = 1.5 cm
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We can conclude that:

1. The average energy loss of a bunch due to variations in cross-sectional
shape (as shown in Fig. 2) for DAΦNE parameters is close to zero.

2. A taper with a reasonable length (3÷5 cm) allows to reduce the energy
spread of a bunch approximately by a factor 3.

3. The use of the taper helps to keep the loss factor close to zero when the
bunch length is reduced (up to σ=0.7 cm).

4. The vacuum chamber with a=1.5 cm has the energy spread of a bunch by a
factor 3 smaller than the vacuum chamber with a = 1 cm.

2. The loss factor for a tapered cavity
  
   In [2] a low loss cavity for the DAΦNE main ring was proposed. The
gradual linear taper was included in the geometry. This taper allows to reduce
the energy loss drastically. It is necessary to investigate whether it is possible
to get any additional decreasing in the loss factor by choosing a profile form of
the taper. Also it is worth noting that the problem of analytical calculation of
the loss factor for an arbitrary form taper has its own meaning for acceleration
techniques.

   As the first step, let us consider the loss factor for a crosstalk between
cavities (Fig. 6). The longitudinal impedance of an element of a vacuum
chamber Zl(ω,r):

                             
Zl(ω,r) =

1
e

dz e
- ik/β

Eω,r
-∞

+∞

(r,z) (3)

          

Fig. 6 - Crosstalk between cavities.
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   It was shown using the diffractive model [1] that the impedance of a
crosstalk is:

                              Zl = Zi(a,b,g) + δΖ l (4)

where Zi(a, b, g) is the impedance of the cavity with the radius `b` and the
length g = 2g1 + g2 with the beam pipe of the radius `a`. The second term δZl
gives a correction due to the second cavity.

   For the single cavity (Fig. 1):

                 
Eω,r(ω,r) =

ie
2c

dqe
iqz

-∞

+∞

J 0(rs)[H 0
(1)

(bs)-H 0
(1)

(as)](1-e
ig(k-q)

) (5)

    We are considering the azimuthally symmetric structures with a par-
ticle travelling along its z axis with the velocity of light.  In this case it is
sufficient to consider the monopole mode. For this mode the result of inte-
gration of (3) does not depend on r. Choosing r = a for the integration:

                  
Zl(k) =

2
c

dq
k-q

-∞

+∞

J 0(as)[H 0
(1)

(as)-H 0
(1)

(bs)]sin
2
(
g
2

(k-q)) (6)

          

   Since of kl  is a real value, we are interested in ReZl (k):

                   

ReZl =
2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(bs)]sin
2
(
g
2

(k-q)) (7)

          

                        
  The real part of Zi(a,b,g) is given by (7). δZl is given by the Eq. (3) over
the waves Eω,z (z, a) generated at z = g1 and z = g2 + g1. For the case when
there is no screening of the surface z = g1 by the surface at z = g1 + g2 :

 
Eω,z(z,a) =

ie
2c

dr'
b

d
dqe

iqz

+∞

-∞
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=

ie
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+∞
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(1)
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(1)
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i(k-q)g2

) (8)
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Hence:

δZl =
i

2c
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-∞
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e
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dqe
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   The real part of δZl :

                   

ReδZl =
2
c

dq
k-q

-k

+k

J 0(as)[J 0(bs)-J 0(ds)]sin
2
(
g2
2

(k-q))=

  
               

                          

=
2
c

dq
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-k

+k

J 0(as)[J 0(as)-J 0(ds)]sin
2
(
g2
2

(k-q)) -

                                          

                          

-
2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(bs)]sin
2
(
g2
2

(k-q)) (10)

          

   If we compare Eq. (10) and Eq. (7) we will see that:

                               ReδZl(k) = ReδZl 1
(k) - ReδZl 2

(k) (11)

where ReδZl1(k) is the real part of the impedance of the cavity with the radius
`d`, length g2 and beam pipe radius `a`. ReδZl2 (k) is the real part of the
impedance of the cavity with radius `b`, length g2 and beam pipe radius `a`.

   So, the loss factor of a crosstalk  klct  must be equal to :

                               k l
ct

= k l
1

+ k l
2

- k l
3

(12)

where kli corresponds to i-cavity presented in Fig. 7.
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Fig. 7 - Loss factor of a crosstalk

  The loss factor can be calculated by using the formulae of the diffrac-
tional model. For the cavity presented in Fig. 1 (without taper):

                               
k l =

1.154
a

g

πσ
, if P<1 (13)

                                
k l =

2

σ π
ln[1+

b-a
a

2gσ

2gs + (b-a)
2

] , if P>1 (14)

           

                                
P =

2gσ

(b-a)
2

(15)

           

   We made numerical calculation for some examples of crosstalks using
the TBCI code. There is a good agreement between (12)-(15) and the results of
simulations. Table I gives loss factors for crosstalks calculated by TBCI (kTBCI)
and using eqs.(12)÷(15). All parameters in Table I correspond to Fig. 6, δ is the
relative error of analytical calculations in comparison with TBCI results.

TABLE I - Loss factors for crosstalks

σ, cm a, cm b, cm d, cm g1, cm g2, cm
kTBCI

V/pC
kl,

V/pC
[δ],%

 0.3   1.5   2.5   4   1   8 2.141 1.981   8

 0.3   1   2   3   1   4 2.380 2.163   9

   1   3   5   7   5  20 0.684 0.688 <1

   3   3 14.5   17   5  88 0.427 0.427   0



G-9 pg. 9

Fig. 8 - Tapered cavity (taper profile consists of two straight lines).

    Let us consider the taper that consists of two straight lines (Fig. 8). For
this tapered cavity the diffractional model gives:

    
Eω,r(z,r) =

ie
2c

dr'
a

b
dqJ 0(as)e

iqz

-∞

+∞ ∂H 0
(1)

(r's)

∂r'
(e

i(k-q)(r'-a)cotα 1-e
i(k-q)(L+2(g1+g2)-(r'-a)cotα 1)) +

         
+

ie
2c

dr'
b

d
dqJ 0(as)e

iqz

-∞

+∞ ∂H 0
(1)

(r's)

∂r'
(e

i(k-q)(g2+(r'-b)cotα 2)-e
i(k-q)(L+2g1+g2-(r'-b)cotα 2)) (16)

         

where cotα1= g2/(b-a)  and cotα2 = g1/(d-b)

   Calculating the impedance of the tapered cavity, according to (3) with
the offset r = a we obtain:

                                   Zl
T
(k) = Zi

T
(a,b,L+2g1) + δZl

T
(17)

The first term in (17) is the impedance of the cavity with radius `b`,
length L + 2g1, with two tapers of length g2 and beam pipe radius `a`.The
second term gives a correction due to the upper part (z>b) of the whole tapered
cavity. We can show that this upper part gives the contribution to the loss
factor that can be approximated by kl2T - k l3T , where kl2T is the loss factor in
the cavity with the radius 'd', the length L, with two tapers of the length g1
and the beam pipe radius 'a'. kl3T is the loss factor in the cavity, with the
radius 'b' the length L with two tapers of the length g1 and the beam pipe
radius 'a'. (see Appendix).
  

So, the loss factor klT of the tapered cavity shown in Fig. 8 is:

                                    k l
T

= k l 1

T
+ k l 2

T
- k l 3

T
(18)

where kliT corresponds to i - tapered cavity presented in Fig. 9 .
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Fig. 9 - Loss factor of a taper consisting of two straight lines

Fig. 10 - Loss factor of a linear taper

Each k liT can be calculated as the difference of loss factors of non-ta-
pered cavity, and the cavity with the length that is equal to the length of cor-
responding taper (Fig.10). For this purpose the equations (12)-(15) are used.

    Many numerical simulations were made using the TBCI code. We find a
good agreement between the results of TBCI and the equations (12)÷(15). Table
II demonstrates these results ( kTBCI corresponds to loss factor values
calculated by TBCI; k l - analytical values; all parameters are the same as pre-
sented in Fig. 8).

TABLE II - Loss factors for tapers consisting of two straight lines

σ, cm a, cm b, cm d, cm g1, cm g2, cm L, cm kTBCI

V/pC
kl,

V/pC
[δ],%

  1   3   7.96   17   3.7   12.3   88 1.242 1.200   3.2

  0.3   1   1.5   3   1   2   40 2.493 2.567   2

  0.3   1   1.5   4   1   1   40 3.656 3.631   0.6

  0.1   1   1.25   1.5   0.25   0.75   20 2.449 2.124   13

  0.5   2   3.8   6   2   3   40 1.482 1.518   2.4

  0.5   1.5   2.5   4.5   1   2   40 1.540 1.584   3.3
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 But in some cases, the errors are more than 15%. It is explained by the
fact that (12)-(15) have the accuracy worse than 15% in the transition region
from `cavity` regime to the `step` regime in a number of cases. But the
equation (18) is still valid also in these cases, if we would take kliT from the
results of TBCI. Table III gives such examples (δ is the relative error of loss
factor analytical calculation; δTBCI is the relative error of loss factor cal-
culation when loss factors for all tapers presented in Fig. 9 are taken from the
TBCI results).

TABLE III - Loss factors for tapers consisting of two straight lines

σ, cm a, cm b, cm d, cm g1, cm g2, cm L, cm
kTBCI

V/pC
δ,% δTBCI

%

  0.5   1.5   3   4.5   0.5   2.5   40 1.498   20   2.5

  0.5   2   2.5   3.5   0.5   2   40 0.581   25   12

    In general case we can approximate the taper having an arbitrary form
by some straight lines and calculate the loss factors using the simple formulae
(12)-(15).

   It is also possible to use methods of optimization to find the taper pro-
viding the minimal loss factor. It does not take much CPU time because (12)-
(15) are very simple.

   As an example, we use the method of scanning in order to find the
taper consisting of two straight lines that has the minimal loss factor (for
given bunch length,radius of a cavity, radius of a beam pipe and length of the
taper). The loss factor of tapered cavity, presented in Fig. 11, is 18% less than
one for the cavity with the straight taper having the same length. (Results were
verified by TBCI code).

Fig. 11 - Tapered cavity having 18% smaller loss factor
than for cavity with straight taper
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     Let us return to the case of a crosstalk (Fig. 6). For g1<<g2 and P>>1
(the regime a 'step'):

                         
k l

2
=

2

σ π
ln(

d
a
) (19)

          

                         
k l

3 = 2

σ π
ln(

b
a
) (20)

    So:                 

                         
k l

2
- k l

3 = 2

σ π
ln(

d
b

) (21)
         

is the loss factor for the cavity with the radius 'd' with the beam pipe radius 'b'
for P>>1. For P>>1, the loss factor of a crosstalk is the sum of the loss factors
of the cavity with radius 'b', the beam tube with radius 'a', the cavity with the
radius 'd' and the beam pipe radius 'b' (Fig.12). It means that the contribution
of interference of waves diffracted from the crosstalk surface to the loss factor
is negligible for P>>1.

Numerical simulations show that for the proposed DAΦNE main ring
cavity [2] it is valid even P>1. The loss factor of the cavity with the symmetric
taper (Fig. 13) is equal to kl = -0.1186 V/pC. The sum of the loss factors of the
separate elements - the cavity (Fig. 14) and the taper (Fig. 15) is      kl = -0.113
V/pC. The contribution of interference is approximately 4%.

    It would be reasonable to suppose that interference of wave diffracted
from the taper, which consists of two straight lines (Fig. 8), could be also
small for P>>1. And the loss factor could be equal to the sum of the loss
factors of two tapers for P>>1 (Fig. 16).

Fig. 12 - Crosstalk loss factor for the case of small interference.
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Fig. 13

RF cavity with symmetric taper.

Fig. 14

RF cavity without taper.

Fig. 15

Taper for RF cavity.
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Fig. 16 - Taper loss factor for the case of small interference.

We have considered the particular case of the taper for DAΦNE
 cavity, with d = 17 cm, a = 3 cm, g3 + 2(g1 + g2) = 148 cm, σ = 3 cm. g1, g2
and b were varied (for all cases P>>1). For each straight taper in Fig. 16,
 loss factors were calculated using Eqs. (12)÷(15). The agreement is within 15%
accuracy and very often much more better. Table IV presents some results.

TABLE IV – Taper loss factors for the case of small interference.

a, cm b, cm d, cm g1, cm g2, cm L, cm k
TBCI

V/pC

k1
V/pC δ, %

3   8   17   8   22   88 0.1414 0.1411    0.2

  3   11   17   4   26   88 0.110 0.123   12

  3   5   17   16   14   88 0.146 0.147   1.2

  3   15   17   2   28   88 0.078 0.09   12.5

  3   5   17   8   22   88 0.237 0.225   5

  3   7   17   25   30   38 0.082 0.08   3

  So for the DAΦNE case, the loss factor of a taper consisting of two
straight lines, is a simple sum of loss factors of two linear tapers. For each
linear taper, the analytical formulae of the diffractional model are valid. We
can divide the linear taper in two ones and find the geometry when the loss
factor has a minimum. To find this solution the procedure of scanning can
 be used. Then we divide separately each of these new tapers and search for
them the best solutions. It is possible to repeat this procedure of dividing as
many times as we want.



G-9 pg. 15

   In such a way we got some examples when a taper, consisting of a
number of straight lines, had the loss factor smaller than the one for the
linear taper. Fig. 17 shows the taper profile approximated by 4 straight lines.
For such a taper the loss factor is less in a factor 1.8 than the loss factor of
the linear taper (It is not the DAΦNE case).

Fig. 17 - Optimized taper profile, approximated by 4 straight lines.

    As far as the DAΦNE cavity tapers are concerned we can get the im-
provement only 10% for the short taper (g = 30 cm). For the longer one (g = 55
cm) the procedure of profile optimization does not give any additional
reduction of the loss factor.

  In practice the dependence of the loss factor on the linear taper length
has the form presented in Fig. 18. Than we can get some reduction of the loss
factor by choosing a profile only if we work somewhere at the point A. The
optimization and numerical simulations show that if we work at the right part
of the curve (the point B), the modification of the taper profile will not give any
essential improvement of the situation. Even increasing of the taper length for
the DAΦNE cavity taper by a factor 2, decreases the loss factor no more than
20%.

Fig. 18 - Dependence of the loss factor on the linear taper length.
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Fig. 19 - Proposed DA NE main ring RF cavity.
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For the DAΦNE cavity (Fig. 19) we also tried to find the minimum loss
factor varying the height 'b' of the taper without changing the cavity form. The
loss factor was calculated separately for the taper and the cavity because the
contribution of interference is practically absent. Increasing of 'b' results in
decreasing of the cavity loss factor proportionally ln(1+19/b). But at the same
time the contribution of the taper in the loss factor grows. And inversely
decreasing of 'b' results in fast increasing of the cavity loss factor while the
contribution of the taper falls down. There exists the minimum of the loss
factor when b=16.5 cm. This optimal position gives only 5% improvement in
comparison with b = 17 cm proposed in [2].

  Another idea was to use an asymmetric taper to win in the loss factor
(Fig. 20). But still the best result gives a symmetric taper. Fig. 21 demonstrates
the dependence of kl on the left taper length (The total length of two tapers is
kept constant (110 cm)). According to the theorem that the loss factor does not
depend on the direction of charge movement, in an arbitrary shape cavity, with
equal beam pipe cross sections [3], this dependence has the symmetric form.

Fig. 20 - Asymmetric taper for the DA NE cavity.

Fig. 21 - Loss factor for the asymmetric taper.
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  The last way to get the additional decreasing of the loss factor is to
change the cavity shape. Fig. 22 shows such a shape with the taper length
g=95 cm. Such a choice would allow to reduce the loss factor from -0.12 V/pC
to -0.065 V/pC. But it is obvious that it would worthen the shunt impedance
drastically.

Fig. 22 - Changed cavity shape.

      We can conclude:

 1. An arbitrary form taper can be approximated by a number of straight lines.
The loss factor of such a taper is the sum of loss factors of simple pill-box
cavities. For each cavity the formulae of the diffractional model (12)-(15)
are valid. So the loss factor of the arbitrary form taper can be valuated
analytically. The numerical simulations with the code TBCI are in
agreement with analytical calculations.

 2. It is possible to use these analytical formulae for the optimization of a
taper profile for decreasing the loss factor. Some examples are given.

 3. For the DAΦNE parameters the interference of waves diffracted in different
elements of the vacuum chamber is small. The loss factor of the cavity
proposed for the main ring [2] is the sum of the loss factors of the cavity
itself and the symmetric taper. It is also possible to approximate the loss
factor of a taper with a complicated boundary by the sum of loss factors of
linear tapers.

 4. The combination "cavity - taper" proposed for the DAΦNE main ring [2] is
optimal from the point of view of minimization of the loss factor.
Additional decreasing in loss factor may be reached by changing the form
of the cavity. But it is not reasonable because of shunt impedance
decreasing. Variation of the taper profile does not give any significant
improvement in the loss factor.
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APPENDIX

   The impedance of the tapered cavity ZlT(k) presented in Fig. 8

                                Zl
T
(k) = Zi

T
(a,b,L+2g1) + δZl

T
(A.1)

   The first term in (A.1) is the impedance of the cavity with the radius `b`,
the length L + 2g1 with two tapers of the length g2 with the beam pipe radius
`a`. The second term gives a correction due to the upper part (z >b) of the whole
tapered cavity.

   The real part of the impedance ZiT (a, b, L + 2g1) takes the form:

                 

ReZi
T

= -
Z0k

2π
dr'

a

b dq
k-q

-k

+k

J 0(as)
∂J 0(r's)

∂r'
[sin

2
(
k-q
2

(r'-a)cotα 1) −

                            
−sin

2
(
k-q
2

(L+2(g1+g2)-(r'-a)cotα 1))] (A.2)

    It was shown [3] that  ReZiT  can be approximated by:

              

ReZi
T

=
2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(bs)]sin
2
(
L+2(g1+g2)

2
(k-q))-

                     

-
2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(bs)]sin
2
(
g2
2

(k-q)) (A.3)

     

   The first term is the real part of the impedance of the nontapered cavity
with the length L+2g1+2g2,the radius `b` and the beam pipe radius `a`. The
second term is the real part of the impedance of the nontapered cavity with the
length g2,the radius `b` and the beam pipe radius `a`.

    The real part of  δZlT  has the form:

                

ReδZl

T
= -

Z0k

2π
dr'

b

d dq
k-q

+k

-k

J 0(as)
∂J 0(r's)

∂r'
[sin

2
(
k-q
2

(r'-b)cotα 2) -

                                  
−sin

2
(
k-q
2

(L+2g1-(r'-b)cotα 2))] (A.4)
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With the same accuracy as in (A.3) we can write:

                             ReδZl
T

= ReδZl 1

T
- ReδZl 2

T
(A.5)

              

ReδZl 1

T
=

2
c

dq
k-q

-k

+k

J 0(as)[J 0(bs)-J 0(ds)]sin
2
(
L+2g1

2
(k-q)) (A.6)

     
                                 

             

ReδZl 2

T
=

2
c

dq
k-q

-k

+k

J 0(as)[J 0(bs)-J 0(ds)]sin
2
(
g1
2

(k-q)) (A.7)

   Then we will use the property  that we have used in (10):

                 J 0(as)[J 0(bs) - J 0(ds)] = J 0(as)[J 0(as) - J 0(ds)] - J 0(as)[J 0(as) - J 0(bs)] (A.8)

                   

ReδZl 1

T
=

2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(ds)]sin
2
(
L+2g1

2
(k-q)) -

                            

-
2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(bs)]sin
2
(
L+2g1

2
(k-q)) (A.9)

          

                    

ReδZl 2

T
=

2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(ds)]sin
2
(
g1
2

(k-q))-

                             

-
2
c

dq
k-q

-k

+k

J 0(as)[J 0(as)-J 0(bs)]sin
2
(
g1
2

(k-q)) (A.10)

    According to (A.3) the difference between the first terms in (A.9) and
(A.10) gives the real part of the impedance of tapered cavity with the length L,
the radius `d` with the taper of the length g1 and the beam pipe radius `a`. The
difference between the second terms in (A.9) and (A.10) gives the real part of
the impedance of tapered cavity with the length L,the radius `b`,the tapers of
the length g1 and beam pipe radius `a`.

    So, the loss factor klT  of the tapered cavity shown in Fig. 8 is:

                                     k l
T

= k l 1

T
+ k l 2

T
- k l 3

T
(A.11)

       where kliT  corresponds to i - tapered cavity presented in Fig. 9.


