

INFN - LNF, Accelerator Division

Frascati, Apr. 24, 1991 Note: **G-6**

A LOW LOSS CAVITY FOR THE DAPNE MAIN RING

S. Bartalucci, L. Palumbo, B. Spataro

INTRODUCTION

One of the basic requirements of DA NE is an accelerating RF cavity with the lowest possible contents of higher order modes (HOMs). This is to minimize both single bunch and multibunch instabilities, which are a serious concern for the machine performances. Of course, cures of such instabilities must be envisaged and much effort is being presently put in on various techniques (damping, HOM tuning, RF active feedback etc.), which all aim at the same goal. However, we believe that a careful design of the cavity geometry is the primary step in this process.

We first observe that due to the low machine energy and the other relevant parameters, the power requirements are not very demanding. If we assume two resonators in each ring, a maximum voltage of 250 kV per cavity are needed. Since a reasonable upper limit on the power dissipation is 35 kW per cavity [1], the minimum required shunt impedance is $V^2/2P=0.9$ M per cavity, which is quite a low value. Thus, unlike most high energy electron storage rings, in our case the maximization of the shunt impedance is indeed acceptable, provided the HOM contents are drastically reduced. In this note we present a preliminary, theoretical study of a smooth-shaped, superconducting-like cell which might be a good candidate for the DA NE cavity.

TIME DOMAIN RESULTS

In 1983 T. Weiland proposed an accelerating cavity with large beam tubes as a single mode structure with only 27% reduction in shunt impedance [2]. We have adopted this design for our cell (which has to be normal conducting) and added two long tapers on both sides down to beam pipe radius of 3 cm. This design seems rather unconventional as compared to the usual geometry of superconducting structures, which include, besides the tapers, two straight, large- radius beam tubes where RF and HOM couplers are installed. The practical feasibility of this design has to be investigated much further but certainly there are not enormous difficulties.

Our criterion has been to minimize the cavity contribution to the impedance budget. The loss factor k () gives a good account for the real part of the impedance $Z_r($). For a gaussian bunch it is given by:

$$k_{\rm T}() = \frac{1}{\int_0^{\infty} Z_{\rm r}() e^{-\frac{2}{2} d} \qquad [V/pC/cell]$$

In the time domain the relevant quantity is the 'bunch wakefield' for a charge distribution ():

$$W_{//}() = \frac{1}{2} \int_{-}^{-} W_z(-') (') d'$$

where Wz is the '-function' longitudinal wakefield, or Green's function for a pointlike charge Q. The total loss factor due to the overall effect of monopole modes on a particle travelling on the symmetry axis of the cavity is naturally defined as

$$k = \frac{1}{Q^2} \int_{-}^{+} W_{//}() \quad () d \qquad [V/pC/cell]$$

and is numerically computed by codes like TBCI.

In the following we have chosen the structure physical length to be about 1.5 m. This value is by no means definitive, since the maximum available space in the present design of DA NE is about 2.6 m and some more space might be allowed for, if really needed.

The bare cell geometry is shown in Fig. 1, with superimposed the TBCI grid. The corresponding monopolar wakefield is shown in Fig. 2, up to a distance of 1 m from the head of the bunch. This and all the following calculations refer to a bunchlength of = 0.1 ns, or s = 3 cm. The loss factor is found to be k = 0.27 V/pC. By inspection of Fig. 2 we observe that all parts of the bunch lose energy, and a big positive shoulder, corresponding to a regain of energy appears just after the bunch passage. This is due to the 'round' shape of the cell, where the accelerating gap and the cavity radius are of the same order of magnitude, so that the reflected wave has no time enough to strike back the bunch tail. Strong long-range wakefields exist at a distance of about 60 cm from the bunch centre, what is less than the wavelength of the accelerating = 79 cm. This suggests, in addition to the fundamental TM_{010} , the mode presence of a number of quite strong HOMs which have not decohered at the time of the next bunch passage. This situation certainly needs improvement from the point of view of both single-bunch and multibunch instabilities.

The idea is to 'open' the beam ducts and let the resonant region of the cavity be farther away from the beam line. The most natural step is to consider a geometry like the one depicted in Fig. 3, which makes use of the concept of 'large beam tube'. Because of the low cut-off frequency values (371 for TE and 780 MHz for TM modes), most HOMs have significant fields outside the cell region and their R/Q is thereby reduced. The resultant bunch wake is shown in Fig. 4 and the loss factor is k = 0.47 V/pC. This is a very high value, and reason is to be found in the abrupt transition ('step') from the beam pipe radius of 3 cm to the beam duct of 17 cm. In this case the excitation of very high frequency fields occurs through diffraction, and these modes extract much energy from the beam. On the contrary, the effect of the cavity modes is less important, as it can be clearly seen at a long distance. To get a confirmation of this concept, we have run TBCI for the beam ducts and steps only, without the accelerating cell (Figs 5-6). The loss factor is k = 0.38 V/pC, quite high, and also the wakefield profile shows a decohered tail on the long range. The single cell (Fig. 7) contribution is computed again by TBCI and found to be k = 0.07 V/pC. The corresponding wake is shown in Fig. 8 and displays the dominance of the fundamental mode, as expected. If the contributions of the structures as in Figs. 5 and 7 are added, a slight difference with the result of Fig. 4 is found. This can be attributed both to some numerical noise, which is always present in TBCI and to some interference effects, whose information is lost, when computing the two structures separately.

Since the main contribution to the loss factor comes from outside the accelerating cell, a gradual linear transition ('taper') has to be included in the geometry. This reduces the energy loss drastically, even for small taper length. In the case of infinitely long symmetric tapers k $\rightarrow 0$, while for an infinite single taper the limiting value is just half of the single step value.

In Fig. 9 the dependence of the loss factor on the taper length is shown for our cell geometry and two different lengths of the structure. When the taper length overcomes about 40 cm, the difference between the longer (114 cm halflength) and the shorter (74 cm) cavity becomes quite small and there's no clear need for a long cavity: cell contribution dominates. If the taper length is maximum for the 74 cm geometry, namely 55 cm, the loss factor is just 20% higher than the corresponding case for the 114 cm geometry (taper length 95 cm).

It is interesting to look at the effect of the taper only, without the accelerating cell. The geometry for the 55 cm - long taper is displayed in Fig. 10. The bunch wake (Fig. 11) exhibits a non-resonant, almost purely reactive behaviour along the bunch, where the tail regains the energy lost by the head. This explains the very small value of the loss factor (k = 0.04 V/pC), which is an average parameter. The long range term has disappeared almost completely.

Some energy spread, however, is introduced and the non-linear part must be considered carefully, while the linear part is automatically compensated by the RF system. Finally, a comparison between a long-tapered cavity and a more conventional, short-tapered cavity was performed. The cavity profiles are shown in Fig. 12. The greater ability of the long taper to avoid the excitation of HOMs is shown clearly in Fig.13, where the electric field lines are 'photographed' when the bunch is about to leave the cavity. The stronger excitation of HOMs is represented by a greater number of field variations along the cavity gap and a larger line density in the short-tapered cavity. The wake potentials are compared in Fig.14. All the above remarks still apply, but it is interesting to note that even the energy spread is lower in the long-tapered cavity, as compared to the peak potential. The loss factors are found to be k = 0.21 and k = 0.12 V/pC, respectively, showing a definite preference for the long-tapered structure. This was further confirmed by computation of transverse wakefield. We report here only on the average transverse kick parameter k, which is the equivalent of the loss factor for the dipole modes and is given by

$$k = \frac{1}{Q^2} \int_{-}^{+} W$$
 () () d $[V/(pC m)/cell]$

The TBCI computed values are k = 4.76 V/(pCm) and k = 3.52 V/(pCm) for the short- and long-tapered cavity, respectively.

FREQUENCY DOMAIN RESULTS

That was all for the time domain calculations. The analysis was repeated in the frequency domain, by means of the well-known code URMEL. Owing to the huge CPU-time required by this code, especially when the highest available accuracy is used, we restricted ourselves to a comparison of the long and short-tapered cavities.

We have run URMEL for the short-tapered cavity up to about the cutoff frequency of the beam pipe, 3.82 GHz. This corresponds to 100 monopole modes, which are collected in Table I-a), with boundary conditions EM and in Table I-b), with boundary conditions MM. The loss factor for a bunchlength of 3 cm was computed according to the formula

$$\mathbf{k}_{\mathrm{T}}(\mathbf{0}) = \frac{\mathbf{n}}{\mathbf{n}} \left(\frac{\mathbf{R}_{\mathrm{s}}}{\mathbf{Q}}\right) \mathbf{e}^{-\frac{2}{\mathbf{n}}} \mathbf{e}^{-\frac{2}{\mathbf{n}}}$$

and a value k = 0.16 V/pC was found, showing a significant discrepancy with the TBCI result k = 0.21 V/pC. This may be ascribed to a worse accuracy (and high contamination) of the very high frequency modes computed by URMEL, but it is also likely to come from the presence of the above cut-off propagating modes, which are taken into account by TBCI.

Table I-a)

SUMMARY OF ALL MODES FOUND (FULL CELL RESULTS)

(VOLTAGE INTEGRATED AT RO- 0.000 HETER OFF AXIS)

NODE TYPE	FREQUENCY / MHZ	(R/Q)/OHN AT RO	ACCURACY	CONTAMINATION
THO-EN- 1	380.957	38.987	9.48-03	0.063615
THO-EM- 2	717,908	0.284	1.86-03	0.065703
THO-EN- 3	794.570	3.571	1.16-03	0.066333
THO-EN- 4	941.790	1.933	7.95-04	0.028776
THO-EN- 5	1122.67	0.122	5.38-04	0.042764
THO-EN- 6	1186.17	0.323	6.18-04	0.059932
THO-EN- 7	1278.01	0.914	3.38-04	0.024350
THO-EN- 8	1414.46	5.206	2.68-04	0.022188
THO-EN- 9	1492.34	0.009	2.58-04	0.027242
THO-EM-10	1558.33	1.254	2.28-04	0.035994
THO-EH-11	1604.15	1.397	2.16-04	0.037076
THO-EM-12	1683.55	0.022	1.8E-04	0.036008
THO-EN-13	1724.57	0.486	3.36-04	0.071121
TH0-EH-14	1802.56	1.294	1.78-04	0.025597
THO-EH-15	1861.39	0.205	1.48-04	0.030553
THO-EH-16	1903.46	0.464	1.48-04	0.033524
1HO EH 17	2023.67	0.967	1.96.04	0.180312
THO-EN-18	2033.91	0.500	1.86-04	0.183635
THO-EN-19	2141.44	0.160	9.66-05	0.017434
THO-EH-20	2199.00	3.231	1.05-04	0.115023
THO-EH-21	2208.58	0.314	8.66.05	0.103259
TH0-EN-22	2324.07	0.950	7.26.05	0.030930
тио-ен-23	2350.28	1.213	9.48-05	0.042569
THO-EN-24	2396.36	1.963	9.8E-05	0.025881
THO-EN-25	2460.20	0.041	8.8E-05	0.027056
THO-EH-26	2499.44	0.099	8.68-05	0.034316
THO-EH-27	2530.53	0.380	6.0E-05	0.029210
1H0-EH-28	2556.33	1.334	5.96-05	0.127151
1M0-EH-29	2562.21	3.392	5.48-05	0.119624
THO-EH-30	2636.34	0.000	6.5E-05	0.027353
THO-EH-31	2667.22	0.582.	6.56.05	0.026407
THO-EN-32	2730.98	3.387	1.0E-04	0.032205
THO-EN-33	2773.25	0.376	7.56-05	0.047395
1M0-EM-34	2795.01	0.411	7.06-05	0.045803
THO-EN-35	2876.38	1.605	6.66.05	0.026154
THO-EN-36	2912.14	1.168	4.66.05	0.036219
THO-EH-37	2930.62	0.855	4.18-04	0.328042
THO-EX-38	2957.77	2.493	6.66.05	0.036587
1NO-ER-39	3017.76	0.209	1.56-04	0.039573
THO-EN-40	3075.10	0.202	8.26.04	0.516420
THO-EH-41	3099.36	2.801	6.38-03	4.020225
THO-EH-42	3135.81	4.331	2.66-03	1.145914
TH0-EH-43	3188.67	0.155	4.36.02	10.000000
THO-EN-44	3249.45	1.969	1.56-02	6.807391
THO-EN-45	3284.55	3.433	1.16-02	5.058935
TH0-EN-46	3335.03	0.657	1.48-02	4.522308
THO-EN-47	3397.47	0.585	4.36-02	10.000000
TH0-EH-48	3466.33	0.069	3.86.02	7.617338
TH0-EH-49	3576.38	0.030	3.86.02	7.742344
TH0-EN-50	3710.29	2.776	2.96.02	3.952038

Table I-b)

	+00 1.00E-01		3.006-01	4.006-01	5.006.01	6.00E-01	7.000
CVOLTAGE INT	EGRATED AT RO- 0.	DOD METER OFF AXIS)					
HODE TYPE	FREQUENCY / NHZ	(R/Q)/OHM AT RO	ACCURACY	CONTAMINATION			
THO-NH- 1	705.488	0.281	2.56-03	0.117978			
1H0-HH- 2	783.361	1.926	9.48-04	0.052872			
THO-HH- 3	921.053	8.560	6.78-04	0.024704			
THO-HH- 4	1063.24	3.078	6.92-04	0.027979			
THO-MH- 5	1215.67	0.513	3.78-04	0.016038			
THO-HH- 6	1375.08	0.445	3.68-04	0.030514			
THO-NH- 7	1451.63	0.727	3.08-04	0.029405			
THO-MI- 8	1570.31	0.339	2.48-04	0.061786			
THO-NH- 9	1599.52	0.077	1.98-04	0.054026			
THO-NH-10	1680.18	1.808	2.36-04	0.026586			
THO-HH-11	1750.96	1.070	1.66-04	0.030721			
THO-HH-12	1796.64	0.083	1.66-04	0.031592			
THO-HH-13	1881.27	3.549	1.86-04	0.024519			
THO-NH-14	1947.58	0.353	1.95-04	0.027838			
THO-HH-15	2019.06	1.437	1.58-04	0.022226			
180-88-16	2105.35	2.244	1.34-04	0.035883			
10-00-10	2143.60	0.006	1.18-04	0.061860			
THO-HH-18	2163.22	0.246	1.38-04	0.072481			
THO-HH-19	2285.41	1.262	1.06-04	0.040708			
	2313.36		8.34-05	0.035543			
THO-HH-20	2424.78	1.005	7.46-05	0.110565			
THO-HH-21				0.153040			
THO-IN-22	2432.63	0.893	9.82-05				
THO-NH-23	2474.47	1.106	6.58-05	0.039626			
TH0-HH-24	2494.51	1.261	7.16-05	0.044698			
THO-HR-25	2545.73	0.037	1.06-04	0.025945			
THO-HH-26	2604.76	0.353	9.34-05	0.025256			
THO-HH-27	2652.36	2.223	6.18-05	0.034988			
THO-HH-28	2675.28	2.261	7.18-05	0.042070			
1HO-HH-29	2737.28	0.197	7.96.05	0.017634			
1H0-HH-30	2810.60	0.752	3.78-05	0,031288			
1H0-HH-31	2826.85	0.115	5.08-05	0.044066			
1HO-HH-32	2847.65	4.989	4.8E-05	0.033122			
THO-HH-33	2887.47	0.217	6.36-05	0.023297			
THO-HH-34	2985.51	0.381	5.98-05	0.027452			
THO-MH-35	3016.83	7.143	4.66-05	0.031218			
THO-HH-36	3038.71	0.314	4.86-05	0.034035			
1H0-HH-37	3111.95	0.027	5.68-05	0.017049			
THO-HH-38	3162.33	2.243	3.06-03	2.498147			
THO-HH-39	3180.87	4.365	1.78-03	1.850084			
TH0-HH-40	3195.02	0.637	1.66-03	1.813263			
THO-HH-41	3263.73	1.010	8.78-04	0.285083			
THO-NH-42	3312.91	1.045	5.0E-03	3.327937			
THO-HH-43	3337.76	0.435	8.28-03	5.612471			
THO-HH-44	3408.52	4.550	1.56-02	9.659439			
THO-MM-45	3434.67	1.570	1.96-02	10.000000			
1H0-HH-46	3494.73	0.003	2.78-02	8.455445			
THO-HH-47	3549.77	0.022	3.66-02	10.000000			
THO-NH-48	3612.69	1.147	5.56-02	10.000000			
THO-HH-49	3689.94	1.580	2.68-02	6.413069			
				5.131812			

Table II-a)

SUMMARY OF ALL MODES FOUND (FULL CELL RESULTS)

CVOLTAGE INTEGRATED AT RO. 0.000 HETER OFF AXISS

HODE TYPE	FREQUENCY / MHZ	(R/Q)/OHM AT RO	ACCURACY	CONTAMINATION
THO-EN- 1	380.644	42.144	5.38-03	0.045052
TH0-EH- 2	752.623	1.985	1.06-03	0.019970
THO-EM- 3	907.535	0.024	1.18-03	0.037751
THO-EN- 4	1099.24	0.185	1.4E-03	0.078034
THO-EN- 5	1186.16	0.427	5.78-04	0.040865
THO-EN- 6	1278.22	1.336	4.38-04	0.032237
1HO-EH- 7	1416.78	2.796	4.18-04	0.035523
1H0-EN- 8	1494.83	0.031	8.7E-04	0.085764
THO-EN- 9	1579.05	0.798	3.58-04	0.033429
THO-EN-10	1670.53	0.436	3.96-04	0.039926
TH0-EN-11	1749.97	0.252	3.96-04	0.045568
1H0-EH-12	1824.19	1.170	3.46-04	0.055440
THO-EN-13	1879.18	0.019	1.8E-04	0.031607
THO-EN-14	1963.36	0.819	1.68-04	0.020374
THO-EH-15	2040.81	0.516	2.18-04	0.028370
THO-EN-16	2118.69	0.011	1.98-04	0.038043
THO-EN-17	2171.70	0.995	5.38-04	0.133446
THO-EN-18	2214.01	0.768	3.48-04	0.091277
THO-EN-19	2326.57	0.524	9.96-03	2.447230
TH0-EN-20	2372.35	1.560	1.36-02	3.305396

Table II-b)

SUMMARY OF ALL MODES FOUND (FULL CELL RESULTS)

(VOLTAGE INTEGRATED AT RO- 0.000 METER OFF AXIS)

HODE TYPE	FREQUENCY / NHZ	(R/O)/OHN AT RO	ACCURACY	CONTAMINATION
THO-HH- 1	731.289	4.726	2.18-03	0.053947
THO-HH- 2	688.379	6.059	1.5E-03	0.048342
тно-нн- 3	1044.56	1.204	2.18-03	0.077001
TH0-NH- 4	1206.17	0.019	1.18-03	0.045439
THO-HH- 5	1380.35	0.575	7.58-04	0.065654
THO-NH- 6	1453.76	0.061	1.16-03	0.116095
тио-ин- 7	1573.89	0.770	8.38-04	0.057123
1H0-HH- 8	1695.88	0.242	1.76-03	0.243730
THO-HH- 9	1751.52	1.299	2.8E-03	0.461396
TH0-HH-10	1840.17	0.000	2.34-03	0.313222
TH0-HH-11	1906.52	2.751	3.91-03	0.570091
THO-HH-12	1996.92	0.124	3.16-03	0.391552
THO-HH-13	2074.28	2.079	2.36-03	0.424801
THO-HH-14	2130.02	0.049	1.26-03	0.344261
THO-HH-15	2166.54	0.064	2.96-03	0.886162
THO-NH-16	2258.87	0.776	4.18-03	0.819193
THO-HH-17	2314.64	0.375	1.46-03	0.296866
THO-NH-18	2434.65	1.712	1.16-02	10.000000
THO-NH-19	2445.08	0.023	1.28-02	10.000000
TH0-NH-20	2555.71	1.366	3.28-02	3.625765

As long as one believes in the computations of these codes, this comparison looks much more favourable for the long-tapered cavity. In this case, we ran URMEL only for 40 monopole modes, which are collected in Table II a), b). For such a number of modes, indeed, we have got k = 0.11 V/pC, which is clearly very close to the time-domain value k = 0.12 V/pC, thus we have decided to save on CPU-time. This result might be inaccurate, but certainly the absence of abrupt discontinuities in the beam tube prevents the excitation of the above cut-off HOMs more effectively.

The numerical results for the 2 geometries are summarized in Table III. Both resonate at the same frequency and have the same Q-factor values, while the characteristic impedance is a bit higher for the long-tapered structure. Accordingly, the loss factor of the fundamental mode $k_{\rm O}$ is higher, but the contents of HOMs are definitely lower by more than a factor two, as given by the parasitic mode (pm) loss factor k_{pm} = $k_{\rm O}$. In fact, we have k_{pm} = 0.07 V/pC for the long-tapered cavity and k_{pm} = 0.16 V/pC for the short-tapered one.

Table III

	Short-tapered		Long-tapered
f	(MHz)	381	381
R/Q	[]	39	42
Q	48000	48000	
Ko	(V/pC)	0.044	0.048
$\mathbf{k}_{\mathbf{T}}$	(V/pC)	0.21	0.12
k _{pm}	(V/pC)	0.16	0.07

Comparison of the short- and long-tapered cavities

CONCLUSIONS

The long-tapered cavity constitutes a valuable starting point for the optimization study of the DA NE accelerating cavity. Even if the final design were very different from what we have presented in this note, we believe that the basic idea of the long taper has to be kept in mind, since it has all the advantages of the 'large beam tube' concept, whereas in DA NE we can neglect its main drawback, namely, the poor shunt impedance.

Furthermore, the contributions to the Broadband Impedance and to the Transverse Impedance are definitely lower, and this is a very important requirement for the machine.

The main problems to be faced are the RF power coupler, whose location has to be optimized, and the HOM damping technique. Several possibilities are presently under study, like the use of absorbing materials (ferrites, dielectrics with resistive coating, etc.). which provide global damping of all HOMs. An optimum position for these absorbers may be found, without affecting the fundamental mode significantly. In fact, if we compare the electric field profile of the fundamental mode (Fig.15) with the one of first monopole mode (Fig.16), we see that the latter has quite a lot of field lines in the taper region, where absorbers might be inserted. This approach is indeed presently pursued at Cornell [3], where ferrite materials were successfully tested on a prototype cavity for the B-Factory Project.

Another interesting possibility, which may be combined with the global damping technique, is the active HOM feedback. Its principle has already been successfully applied to strongly reducing the shunt impedance of the fundamental mode in a s.c. cavity, which is installed on the SPS for electron acceleration, and must be made 'invisible' to the beam during proton operation [4]. This approach look very promising, provided it can be applied to a limited number of HOMs. This seems to be our case, since in our design there are at least two dipole modes which do extend significantly outside the cell region and, in addition, there are the so-called 'trapped' monopole modes, which might be difficult to get rid of. A vigorous R&D program, mainly on electronics and controls, has to be carried on, anyway.

A further possibility is to combine the global damping technique with the HOM tuning. Preliminary tests on a pill-box have given very encouraging results [5], although much work is still to be done on this novel idea. Again, we can envisage to shift some low frequency dangerous modes, provided they are not damped too much by the absorbers, so that the HOM tuning is still effective.

As a general remark, we think that all possibilities must be investigated carefully, not only with laboratory tests but also with more sophisticated computer simulations, which are nowadays quite able to work with a very realistic design of a resonating structure.

REFERENCES

- [1] R. Boni and A. Gallo, "The radiofrequency system for DA NE", DA NE Techn. Note, RF -1 (1990).
- [2] T. Weiland, "Single Mode Cavities", DESY Report 83/073 (1983).
- [3] H. Padamsee et al., "Superconducting RF Accelerating and Crab Cavities for the Cornell B-Factory, CESR-B", Cornell Un. Report, CLNS 90-1039 (1990).
- [4] D. Boussard, H.P. Kindermann and V.Rossi, "RF Feedback applied to a Multicell Super-conducting Cavity", Proc. of European Part. Acc. Conference, Rome 7-11 June 1988, p. 985.
- [5] S. Bartalucci et al.,"A Perturbation Method for HOM Tuning in a RF Cavity", DA NE Int. Note (in preparation) and subm. to Particle Accelerators.

FIG.1

KT = 0.266 V/pC

FIG. 2

FIG.3

KT= 0.467 V/pC

FIG.5

KT = 0.375 V/

FIG.8

FIG. 9

FIG 10

Kr = 0.04 7/pC

FIG 11

FIG 12

FIG 13

FIG 14

FIG 15

FIG 16