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1. INTRODUCTION

               
     Two important parameters for the beam stability are the longitudinal
and the transverse impedances, ZL and ZT. The impedance concept of the
machine comes from the schematization of the interaction between a per-
turbation in the beam and the surrounding medium. Such an interaction
produces fields that can provide an increase or a damping of the perturbation
itself, having so instability or stability, respectively. Thus, the stability
depends both on the amplitude and on the phase of these fields with respect to
the perturbation amplitude. In summary, the accelerator can be assimilated
with to a feedback circuit whose reaction is represented by the impedance of
the machine.

This way we can define the longitudinal impedance in terms of the ratio
between the averaged longitudinal field and the perturbed current which pro-
duces this field:

ZL = 
∫oELds

I
        [Ω] (1)

while the transverse impedance is the ratio between the averaged transverse
electromagnetic force per unity charge and the perturbed current dipole
momentum Iδ 

ZT = 
j

βIδ ∫o (E + VxB) T ds   [Ω/m] (2)

β = v/c ,  EEE  and BBBB are the electric and the magnetic field, respectively, and, of
course, cause and effect are related to the same point.
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By means of a generalized definition of these quantities, we can use
some differential relationships between them. Such a definition requires to
keep distinct the points xo and x1, where the cause (current) and the effect
(averaged field), respectively, take place. Thus, we define the transimpedances
ZL(xo,x1) e  ZT(xo,x1) as:

ZL (xo,x1) = 
∫oEL(xo,x1)ds

I(xo)
        [Ω] (3)

ZT (xo,x1) =  
∫o [E(xo,x1)+VxB(xo,x1)]T ds

βI(xo)δ          [Ω/m]  (4)

This way the usual impedances can be obtained from (3) and (4) for xo =
x1. It is well known from the literature that the relationship between  ZL e ZT
is the following:

ZT  = 
c
ω  

δ2 ZL
δxo δx1         [Ω/m]   (5) 

                                  

2. THE IMPEDANCES ZZZZLLLL  AND ZZZZTTTT

    Let us consider as a first example a kicker of the symmetric kind, that
is a kicker for which its right side is specular of the left one. Let us define a
coordinate system x orthogonal to the plane of symmetry. It is easy to see that
a perturbed current located at the center of the kicker produces a magnetic
field whose flux does not link with the kicker circuit. Different it is the
situation if the perturbation is offset of a position xo . In this case we can
clearly see that, being lost the symmetry, there will be a flux linking with the
kicker circuit, and that an interaction between the latter and the perturbation
will occur. In conclusion, the longitudinal impedance will not be zero.

     The following electrotechnical  procedure, which is very simple as well,
gives us  some immediate results. Let us consider an offset current in xo and
let us put in the center an equal current but opposite in sign (we have seen
that this one does not contribute to the impedance); these two currents
represent a loop that couples with the kicker circuit by means of the mutual
inductance M (xo). The flux linked with the kicker will be:

φ(xo) = M(xo)  I(xo)       [Wb]  (6)
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In the kicker circuit, such flux generates an induced voltage.
Consequently, an induced current Ik  which  is given by:

Ik = 
jω M(xo)

Zk
  I(xo)     [A]     (7)

where Zk  is the kicker impedance (the one seen by the loop).

     In turn, such current generates a flux which links with the loop cre-
ating a voltage V given by:

V(xo,x1) = 
ω2 M(xo) M(x1)

Zk
  I(xo)    [V]  (8)

     Therefore, the longitudinal transimpedance is:

ZL(xo, x1) = 
ω2

Zk
  M(xo) M(x1)       [W]         (9)

while, according to (5), the transverse transimpedance is

ZT(xo, x1) = 
cω

Zk
  M'(xo) M'(x1)       [Ω/m]       (10)

where the prime denotes the derivative with respect to x.

From the above quantities we get the usual longitudinal and transverse
impedances.

     A more accurate analysis, which allows for the finite length “l“  of the
kicker, leads  to a transit time factor :

G =   





sin(θ/2)

θ/2  
2
  (11)

where θ is the signal phase change during the transit time in the kicker, and it
is defined by the following relation

θ = 
ωl
ωoR

         (12)
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where ω/ωo is equal to the harmonic number n and n-Q, for the longitudinal
and transverse mode, respectively. We note that the square appearing in (11) is
due to the twofold action of the beam on the kicker circuit and of the kicker
circuit back on the beam.

     In some cases the kicker is placed outside the vacuum chamber, which
is formed by a ceramic wall coated by a thin metallic layer of thickness s. A
crude approximation suggests that  the coupling impedance must be affected
by a screening factor F given by the following equation:

F =  exp  
-2s

σ                                 

where σ is the skin depth of the metal.

3. GENERAL CONSIDERATION

     The angle α charactering the kicker strength is given by the expression

α = eVβE  
cM

aζk                 (14)

where V is the voltage delivered by the power supply on the impedance ζK, M-1
is the reluctance  of the magnetic circuit, E is the total particle energy, and "a"
is the horizontal transverse dimension of the kicker loop. Note that:

M ≈  M'(x) a                       (15)

so that we may write

                                         α ≈ 
eV

βE  
cM'
ζk      (16)

     According to (9), (10) and (11), the longitudinal and transverse coupling
impedances are written as

ZL
n
  = 4 [cM(x)]2  

β2
l2nZk

   sin2  
nl

2R
       [Ω]       (17)

ZT = 4 [cM’(x)]2  
βR

l2(n-Q)Zk
   sin2  

(n-Q)l

2R
        [Ω/m]   (18)
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We may write that

M(x) = M'(0)(d+x) (19)

where the dimension "d" accounts for the asymmetry of the kicker, if any.
Furthermore M'(x) ≈ M'(0).

     Allowing for the above considerations and by combining (17) and (18)
with (14) and (15) we may write

 
ZL
n
  ,  ZT ∝ 

ζk2

Zkl2
   ,  (20)

where ζk is the impedance seen by the thyratron at its working frequency (say
the fundamental harmonic), while Zk is the output impedance (seen toward the
thyratron) at the perturbation frequency.

     It is easy to see that  it is necessary to slow down ζk and enhance Zk
and l, in order to optimize the characteristics as well as the stability margin of
the kicker.

4. WINDOW-FRAME AND C-TYPE KICKERS

     The mutual inductance of two monoloop electric circuits is the inverse
of the reluctance of the magnetic circuit linking each other. Allowing for a
window-frame kicker (see Fig.1) we may give a simple expression of the mutual
inductance. Let us first note that the two electric circuit are formed  by the
beam current placed in  x  and the opposite current placed in 0. The reluctance
we are looking for is one resulting from the series of the gap reluctance and the
jokes reluctance. Neglecting the latter (m»mo) we have in linear approximation

M(x) = µo 
l x

h
  =  

Zol x

hc
        [H]              (21)

where h is the eight of the gap and Zo is the free space transimpedance.
Furthermore, the following relation holds:

M'(x) = 
Zol

ch
      [H/m]   (22)

     As a conclusion, allowing for the results of the previous section and
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for (21) and (22) we get:

ZL(x)

n
  = 4  

Zo2

Zk
  






x
h
 
2  sin

2 (nl/2R)

n
   (23)

ZT(x) = 4R  
Zo2

Zk
  






1

n
 
2  sin2[(n-Q)l/2R]

n-Q
     

 
[Ω/m] (24)

where R is the machine mean radius. Note that for a window-frame kicker the
longitudinal impedance is zero for a beam placed in the center (x=0).

     In the case of a “C” type magnet, the formula for the transverse
impedance is the same. For the longitudinal impedance, we must replace the
quantity x by the quantity x-∆, where  ∆  is the distance from the center of the
so called neutral point. This is the point such that a current placed in it
creates a flux which does not limit the kicker circuit.

     In a more general case of a kicker without magnetic circuit, the
considerations done in section 2. and 3. still hold. However, we are not able to
give explicit formulas for the impedances, since the mutual inductance M(x)
and/or the reluctance are not easy to compute. An alternative method is the
experimental determination.

5. REMARKS AND ESTIMATES

     Now let us consider the period during the inhibition time of the kicker.
The inactivity condition of kicker leads that the impedance seen by the beam,
that appears in (14) and (15) results, with a good approximation, given by:

Zk = -j Zk ctg(kL  (16)

where L is the length of the cable and k is the propagation contact in it. This
dependence leads the impedance to vary periodically between very large and
very small values. So that, according to the schematic behaviour of  |ZL/n| and
|ZT| shown in Fig. 3, these small values would be very dangerous for the
stability. The distance between the maxima increases as the length of the cable
decreases.

     It is worth emphasizing that even in the case of a very short cable, the
thyratron capacitance is more and more important. This capacitance, coupled
with the kicker inductance, may indeed resonate producing a phenomenon
similar to the one of a mismatched cable.
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     As an example we give the numerical value of the longitudinal coupling
impedance at a frequency of 2.4 GHz (n=800) for a typical C-kicker placed
outside a coated ceramic wall. Assuming an aspect ratio ∆/h = 0.5, an
impedance Zk = 12.5 Ω, and  a screening factor FdB = -20 dB, we get

 
ZL
n
   = 0.12 Ω.   

Fig. 1

Fig. 2

Fig. 3


