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Introduction

The radiation range that will be used in DAΦNE synchrotron light monitors has been
suggested to be 400 ÷ 600 nm [1]. In order to minimize the chromatic aberration two achromats
will be used to image the electron and positron beams onto the photocathodes of detectors. By
using achromats other kinds of aberrations will also be much smaller. Unfortunately, every
achromat has some residual chromatic aberration that must be analysed in order to get a
diffraction limited measurement of the beam size. Given the commercially available achromats
such analysis will be done in this paper and the result shows that it is possible to set up an
optical system with achromats to keep the aberration error smaller than the errors of beam itself,
the diffraction limit error and the depth of field error[1]. Other related issues will also be
discussed in this paper.

This note includes: 1 - Chromatic aberration and its connection with the beam curvature
error and depth of field error; 2 - Geometric aberrations; 3 - Quality of mirrors; 4 - Size of the
tilted mirror and of the second lens; 5 - Discussion of a possible phenomena during the detector
position tuning.

1.  Chromatic Aberration

1.1.  The aberration of the two-achromat system
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Figure 1 - Schematic drawing of the synchrotron monitor optical system.
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A typical two-achromat system is shown in Fig. 1, where F1 and F2 represent two
achromats. The physical meanings of all the symbols in Fig. 1 are:  

H1 Transverse beam dimension in storage ring.
H2 Image of H1 without chromatic aberration.
H'2 Image of H1 at a specific wavelength with chromatic focal length shifts on both

lenses.
∆L Image longitudinal deviation due to of chromatic aberration.
t Illuminated area on the first achromat by a point source of synchrotron light.

In vertical plane, t = (p+L0)ψtyp, where ψtyp is the divergence of the synchrotron
light;  In horizontal plane, t = a, the half width of the entrance slit.

L1 The ideal focal length, or average focal length of the first achromat.
L2 The ideal focal length, or average focal length of the second achromat .
f1 = L1+δ1 The focus of F1 at a given wavelength, δ1 is the chromatic focus shift.
f2 = L2+δ2 The focus of F2 at a given wavelength, δ2 is the chromatic focus shift.
L Distance between the two lenses.
P Longitudinal distance from beam to the ideal focal position of F1.

P may be caused by longitudinal misalignment or be set deliberately in order to
change the image magnification.

β0 Transverse magnification.

Because of the separation between H2 and H'2, a point beam source will have an image spot
on the vertical plane at H2 position, with the vertical aberration parameters:  

∆2   Half width of the spot.
∆1   Spot center deviation to the ideal image point, or the average image point.

The formulas of ∆1 and ∆2 for such system are given in Appendix A. With a set of
commercially available data of F1 and F2 [2]: L1 = 2254.18 mm, L2 = 1250.70 mm,
δ1 = 1.17 mm, and δ2 = 0.61 mm for wavelength from 488 nm to 633 nm, we get the aberration
parameters in Table 1. Other parameters used for the calculation of Table 1 are: L = (25000 - P)
mm, a = 2 mm, ψtyp = 0.00468 rad, beam vertical size H1v = 0.28 mm, horizontal size H1h =
2.529 mm. In Table 1, the spot center relative shift is valid for both the vertical and horizontal
images, i.e., ∆1h/H2h = ∆1v/H2v = ∆1/H2. From reference [1], the relative errors without image
aberration are: vertical ∆Y = 0.02901, horizontal ∆X = 0.007955. The total relative errors in
Table 1 are got with: ∆Yt = [(1+∆Y)2 + Σ(∆v/Hv)2]0.5 -1 and ∆Xt = [(1+∆X)2 + Σ(∆h/Hh)2]0.5
-1.

 (i)  Comparing the last two rows in the table with the original ∆Y and ∆X, it can be seen that
the image aberration has little influence on the total image relative errors. The total errors are still
mainly determined by the parameters of the beam itself, the geometric errors and diffraction
errors

(ii)  In horizontal direction ∆1 is the dominant chromatic error and in vertical plane ∆2 is the
dominant term.

(iii)  The biggest relative error caused by chromatic aberration is the vertical relative spot
size ∆2v/H2v.

Here we suppose that the detector is put on one end of the longitudinal aberration spot. If
we tune the detector to the middle of the spot, the relative aberration error in Table 1 will be half.
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Table 1. Typical parameters for the two-lens system (unit: mm)

Parameters P = -100 mm P = -50 mm P = -20 mm P = -10 mm P = 0 mm
Longitudinal deviation ∆L 0.7932 0.8569 0.9163 0.9415 0.9702
Spot center shift ∆1/H2 0.01485 0.01223 0.01073 0.01024 0.009749
Horizontal spot size ∆2h/H2h 0.001920 0.001466 0.001239 0.001170 0.001105
Vertical spot size ∆2v/H2v 0.08756 0.06834 0.05853 0.05554 0.05268
Magnification H2/H1 (β0) 0.3894 0.4578 0.5115 0.5323 0.5548
Image position X'2(∆L=0) 1272.30 1263.40 1256.38 1253.65 1250.70

Total relative error-horizontal 0.00807 0.00803 0.00801 0.00801 0.00800

Total relative error-vertical 0.03283 0.03135 0.03073 0.03056 0.03040

p = 0 mm p = 10 mm p = 20 mm p = 50 mm p = 100 mm Parameters
0.9702 1.0030 1.0409 1.1957 1.7313 Longitudinal deviation ∆L

0.009749 0.009268 0.008792 0.007393 0.005154 Spot center shift ∆1/H2

0.001105 0.001043 0.000985 0.000830 0.000633 Horizontal spot size ∆2h/H2h

0.05268 0.04995 0.04736 0.04041 0.03151 Vertical spot size ∆2v/H2v

0.5548 0.5793 0.6061 0.7032 0.9584 Magnification H2/H1 (β0)

1250.70 1247.49 1243.97 1231.19 1197.53 Image position X'2(∆L=0)

0.00800 0.00800 0.00799 0.00798 0.00797 Total relative error-horizontal

0.03040 0.03026 0.03014 0.02983 0.02951 Total relative error-vertical

1.2.  The connection with curvature and depth of field errors

Such connection between the chromatic errors and the geometric errors are analysed in
Appendix B. The result is:

in horizontal plane:

1∆
H2h

= a

H1h + a
L∆ 1δ = 0( )

Z'

2L 1L
1
2L − P(L − 1L )

∆ CX
H1h







(1.1)

≈ L∆ 1δ = 0( )
Z'

L 1L
1
2L − P(L − 1L )

∆ CX
H1h





 ,    when a ≈ H1h

in vertical plane:

2V∆
H2V

= L∆
Z'

∆ DFX
H1V

(1.2)

where the beam image length Z' = Zβ02 and in our system Z = 9.299 mm [1]; ∆Xc is beam
curvature error and ∆XDF is depth of field error.  
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We know form Table 1 that the biggest relative chromatic error is ∆2v/H2v, and from
eq. (1.2) we know that if chromatic longitudinal spot size ∆L<Z' this chromatic error should be
smaller than the depth of field error. The smaller the ∆L, the smaller the chromatic transverse
errors. This also enables us to make a judgment if chromatic aberration will be serious or not
just from the size of ∆L.

Table 2. Comparison between the spot longitudinal size and the image length

Parameters P = -100 mm P = -50 mm P = -20 mm P = -10 mm P = 0 mm
∆L(δ1=0) 0.6313 0.6225 0.6155 0.6129 0.6100
∆L 0.7932 0.8569 0.9163 0.9415 0.9702

Beam image length Z' 1.40975 1.94876 2.43310 2.63489 2.86263
∆L/Z' 0.5627 0.4397 0.3766 0.3573 0.3389

L∆ 1δ = 0( )L 1L
Z' 1

2L − P(L − 1L )[ ] 3.4258 2.8934 2.5750 2.4691 2.3633

P = 0 mm P = 10 mm P = 20 mm P = 50 mm P = 100 mm parameters

0.6100 0.6069 0.6035 0.5911 0.5592 ∆L(δ1=0)

0.9702 1.0030 1.0409 1.1957 1.7313 ∆L

2.86263 3.12098 3.41565 4.59867 8.54061 beam image length Z'

0.3389 0.3214 0.3047 0.2600 0.2027 ∆L/Z'

2.3633 2.2575 2.1519 1.8355 1.3100
L∆ 1δ = 0( )L 1L

Z' 1
2L − P(L − 1L )[ ]

∆L(δ=0), ∆L, ∆L/Z' and [∆L(δ1=0)/Z']{LL1/[L12-P(L-L1)]} are listed in Table 2. It can be
seen that in our system, in vertical direction, the chromatic error should be several times smaller
than the depth of field error because of the small value of ∆L/Z'; and in horizontal direction, the
chromatic error will be ~ 1.5 to 3.5 times as much as the curvature error whose contribution to
the total error however is very small [1]. That explains again that the chromatic error of such
system should be very small.

1.3.  Magnification flexible

From Table 1 we know that we may increase or decrease the image magnification by
increasing or decreasing P.

The relative aberrations decease as the magnification increases (see Table 1) because of the
decrease of ∆L/Z' and ∆L(δ=0)/Z'. However the photon flux per unit image area (or per
photocathode pix) will also decrease as |β0| increases: flux/pix ∝β-2(L+P)-1.

Once the positions of the two lenses is fixed, the magnification of the system can be
experimentally measured. The magnification can also be calculated if two of the three
parameters are precisely measured: P, L and X'20.
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Using equation (A.11) and the two other β0 expressions (A.11a, A.11b), the possible
calculation errors could respectively be:

∆ 0β
β0

= 1 + β0
2L1 + P

L2







∆L1

L1
+ 1 + β0

P

L1







∆L2

L2
− 0β

1L 2L
L − 1L − 2L( )∆P + P∆L[ ]

(1.3)
∆ 0β
β0

= L L2 − X20
'( ) + X20

' L2[ ] ∆L1

L1
− X20

' L − L1( ) ∆L2

L2
− L2 − X20

'( )∆L + L − 1L − 2L( )∆X20
'








×

1

L1L2β0
(1.4)

and
∆β0

β0
= ∆L1

L1
+ X20

'

L2 − X20
'

∆L2

L2
− ∆X20

'

L2 − X20
' − ∆P

P
(1.5)

The manufacturing tolerance of focal length could be 1% [2]. If we suppose the distance
measurement errors be: ∆L = 10 mm, ∆P = 5 mm and ∆X'20 = 1 mm, the r.m.s from all the
terms in each equation will be:

βo -0.3894 (P=-100 mm) -0.5548 (P=0 mm) -0.9584 (P=100 mm)

|∆β/βo|
0.0184
0.2645
0.5930

0.0254
0.1827
infinite

 0.0455
0.1017
0.2317

with eq.(1.3) 
eq.(1.4) 
eq.(1.5) 

It seems possible for us to calculate the magnification with a precision ~ 2-5%, depending
on P, L or X'20 measurement precision, with eq.(A.11).

2.  Geometric Aberrations

Geometric aberrations have been classified with different names and their vertical aberration
sizes have different relations with optic ray parameters: spherical aberration, ∝r3; coma, ∝r2h;
astigmatism and field curvature, ∝rh2; and distortion, ∝h3, where r is the aperture size and h is
the image vertical size, the off axis distance[3]. Normally, the optical manufacturing companies
design the achromats in such a way to let the Abbe sine conditions be almost satisfied.
Therefore both the spherical aberration and coma are very small when the wavelength is close to
the design one (page A24 of [2]; page 5-2 of [4]; page B-76 of [5]).

The Modulation Transfer Function (MTF) is normally used experimentally to describe the
image quality of an optical system [4]. MTF curves describe the ability of a lens or system, as a
function of spatial frequency, to transfer object contrast to the image. For a spatially modulated
source with intensities Tmax and Tmin, if the image has the intensities Imax and Imin, at a given
spatial frequency, the MTF will be:

MTF = MAXI − MINI( ) MAXI + MINI( )
MAXT − MINT( ) MAXT + MINT( )



CD-9  pg. 6

The MTF can describe the total effects of all kinds of aberrations. In our system, if we want
all other aberrations smaller than the chromatic errors, for example in the vertical direction, ∆2v
≈ h1vβ(∆2v/h2v) ≈ 0.28*0.5*0.05 ≈ 0.007 mm, we need a satisfied MTF for spatial frequency
up to 140 cycle/mm. The MTF data also depends on the lens focal ratio. For the second lens of
our system, the vertical illuminated area will be d = 2(T+t') ≈ 45 mm, the effective focal ratio will
be f/d = 1250/45 ≈ 28.

On page 5-4 of reference[4], a typical on-axis MTF curve of an achromat with f/d = 3.77,
which is ~ 1/7 of the vertical effective focal ratio of our system, has been given.  That figure
shows that at the spatial frequency of 140 the MTF will be 0.27. Considering the spherical
aberration being proportional to r3, or d3, we can believe that the on-axis spherical aberration of
our system with such kind of achromats will be very small and negligible.

However, for the off-axis image, which may be caused by the size of the source or
misalignment, the astigmatism aberration will be introduced. In the figure of page 5-6 of
reference [4] it has been shown that with a field angle of 2.5°, when spatial frequency is
14 cycle/mm, the MTF will decrease to 0.2 (The Rayleigh range of a perfect system
corresponding to MTF = 0.22). Because the astigmatism is proportional to rh2, the spatial
resolution of the second lens in our system might be ~ 7 times better than 14 cycle/mm, that is
only 100 cycle/mm at the 2.5° field angle. On the other hand, because the astigmatism is
proportional to the square of field angle, we can get a better spatial resolution by keeping a
smaller field angle. So, roughly, less than 2° is basically required for our system.

In conclusion, if the achromats have similar quality to those described in reference [4], the
spherical aberration and coma could be very small and negligible and the astigmatism could also
be small enough when we keep the field angle, roughly saying, smaller than 2°. The field angle
caused by beam transverse size is very small and negligible; We just need to pay attention to
alignment in order to keep a small field angle.

3.  The Quality of Mirrors

The following is only a rough discussion about this issue.

 

Control Room

Synchrotron Chamber
M1

M2
M3
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Detector
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Figure 2 - Position of the five mirrors

Five mirrors will possibly be used in the optical system: two before the first lens and three
others between the two lenses, as shown in Fig. 2.  Some company describes the mirror surface
error with "spherical error" and "irregular error", which represent the spherical deviation and
irregular deviation from an ideal surface respectively [5].
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For simplicity, we treat defect mirror surface as an average spherical shallow (or convex)
one, as shown in Fig. 3(b), and we assume that such spherical surface influence on image will
not be so perfect that can be compensated just by finely tuning the position of detector, therefore
it will be an effect of image distortion.

β
h d/2 d/2

r

(b)

β/2

θ1 θ2

α α β
α−θ1

γ γ

w1

(a)

w2

d

A B C D

E

F
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I
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Figure 3 - Image distortion by a defected mirror

Figure 3(a) shows a bunch of light coming from a point source and having a radiation angle
of θ1. the source distance to the mirror is x. The two rays, separated by a distance w1, reflected
at two different points, which form an angle β on the distorted mirror change the radiation angle
into θ2. In Fig. 3(a), ∠IEB=γ, ∠GAD=α, ∠EBD=β, ∠IDB=α−θ1;
∠IEB= ∠EBD+ ∠IDB=β+α−θ1, i.e. γ=β+α−θ1. On the other hand, ∠OCD=α−θ2 and
∠OCD= ∠EBD+ ∠BEC=β+γ, therefore, θ2=α−β−γ=θ1−2β.

Because x ≈ w1/θ1, x' ≈ w2/θ2, ∠EAF= ∠BAF+β/2=α+β/2, 

w1 = AE sin ∠EAF = dsin(α+β/2). (3.1)

Similarly,

w2 = dsin(α−β/2) ≈ w1-βdcosα (3.2)

because of β<<α, the longitudinal position distortion caused by the mirror will be:

∆x = x' −x = 2w
2θ

− 1w
1θ

= 1w 1θ − 2θ( ) − 1θ βd cosα

1θ 2θ
= 2 1w β − 1θ βd cosα

1θ 2θ
(3.3)

for ∆x<<x' and x, then θ2−θ1<<θ1,θ2,

∆x =
22 x 1w β − 1w xβd cosα

1
2w

≈ 2β
2x

d

1

sinα
− d cosα

2x sinα




 (3.4)
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On the other hand, from Fig. 3(b), there is the relationship,

h = d

2

1

sinβ 2
− 1

tgβ 2









 = d

2

1 − cosβ 2

sinβ 2
= d

2

β 2( )2

2 1 −
β 2( )2

12
+...











β 2( ) 1 −
β 2( )2

6
+...











≈ d

8
β (3.5)

From (3.4) and (3.5):

h = 1

16

2d

x




 ∆x

−11

sin α
− d cos α

2 x sin α




 ≈ sinα

16

2d

x




 ∆x (3.6)

For M2, for example, if we suppose d/x = 50/1623 mm and sinα = sin45°, ∆x = 1.17 mm,
the value of the chromatic focus shift of F1, than we get h = 0.0000491 mm = λ/12, where
λ = 6000 Å; If we choose ∆x = 4.65 mm, half source length, we will get h = 0.000195 mm ≈
λ/3.

If we treat the defected mirror with the paraxial Gauss Optics formulas for a simple
estimation, the focus of the mirror is:

f = − r

2
≈ −

2d
16h

then,

∆x = x' − x = fx

f + x
− x = −

2x
f + x

≈ −
2x

f
= 16 2x

2d
h ,   if f >> x ,

and,

h = 1

16

2d

x




 ∆x (3.7)

Eq. (3.7) is the same as (3.6) when α = 90°.

Similarly, we discussed the quality requirement for the mirrors between the two lenses in
Appendix C, which give us the suggested λ flatness.

Regarding for the irregular error of a mirror, the distortion on the image could be more
serious. For example, if an irregular defect happens with a dimension of d/3, the limit of
irregular depth "h" should be about one order smaller than the regular one because of h ∝d2.
The image of the beam may be more seriously influenced from the irregular surface error
considering the following parameters: the size of the horizontal spot on the mirrors from a point
source will only be several millimeters, the size of the slit, and the total vertical dimension of the
spot on mirrors from the whole beam will be ~ 30÷40 millimeters. Unfortunately, we can not
give an explicit limit for the irregular defect. However from the discussion above we know that
the mirror flatness should at least better than the order of λ because of regular "spherical error".
Perhaps better than λ/10 might be a basic requirement for the general flatness.
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4.  Mirror Size and the Second Lens Size

1.  Size of the tilted mirror

We only discuss the size of M3, because the incident angle on this mirror is large and
therefore the size of mirror is large.

(a)

H1

L1+P
S

t

T
H

t'

HT

L

α
α

α

(b)

Figure 4 - The size of M3 mirror.

Horizontally, in Fig. 4(a), t = a, the slit size, H1 = 2δx. The width of the mirror will be
W = 2(T+t'), referring to eq.(A.14) about t', there will be:

W = 2H = 2
S

1L + P
H1 + a 1

2L − P S − 1L( )
1L 1L + P( )









 = 42.6mm (4.1)

Vertically, we take t = 1.5ψtyp(L1+P), for in Fig. 2 of Ref.[6] the synchrotron light will
apparently exist till ψ=1.5ψtyp when ε/εc=λc/λ=0.01.(In DAΦNE, λc=62Å, and the light used
in the monitor λ = 500 Å). H1 = 2δy.

TH = 2H = 2
S

1L + P
(2 Yδ ) + t 1

2L − P S − 1L( )
1L 1L + P( )











(4.2)

L = TH sinα = 2
S

1L + P
(2 Yδ ) + 1.5 typψ 1L + P( ) 1

2L − P S − 1L( )
1L 1L + P( )









 sinα = 235mm
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Other data used in the calculation are: L1=2250 mm, P=0, S=8127 mm, a=3 mm,
δx=2.53 mm, δy=0.28 mm, ψtyp=0.467E-2 rad, α=17.43°/2=8.715°. The result shows that the
mirror could not be smaller than 42.6*235 mm. The minimum size of the mirror will be changed
by the change of the beam parameters. We list the required mirror dimension against the beam
parameters as following:

Mirror size vs beam coupling (P = 0, beam position: center)
k 0.01 0.05 0.1 0.2 0.4
∆W (mm) 0 -0.7 -1.5 3 5.5
∆L (mm) 0 31.7 54.0 82.5 116.3

Mirror size vs beam horizontal shift (P=0)
∆X (mm) 1.0 2.0 5.0 10.0 20.0

∆W (mm) 7.3 14.5 36.2 72.3 144.5

Mirror size vs beam vertical shift (P=0)
∆Z (mm) 0.1 0.5 1.0 5.0 10.0

∆L (mm) 4.7 23.8 47.6 238.3 476.7

Mirror size vs beam longitudinal position (horizontal position: center)
P (mm) 100.0 20.0 0.0 20.0 100.0

∆W (mm) 2.6 0.6 0.0 -0.6 -2.6

∆L (mm) 25.3 5.0 0.0 -5.0 25.3

The longitudinal position has little influence on the mirror size; We can increase M3 mirror
size for possible larger beam coupling; We can remote control the longitudinal position of M2
to compensate beam vertical shift in order to limit the size of M3; By properly rotate M2 mirror,
we can compensate beam horizontal shift. However, the rotation control should be a very precise
one, for 0.1 degree rotation of M2 will be equal to 5.66 mm beam horizontal shift given the M2
being 1662.7 mm away from beam.

An alternative way to compensate the beam horizontal shift is to move the horizontal
position of F1 lens and the horizontal slit simultaneously, as shown in Fig. 5. In this way the
tangential point of the beam to the principal optical ray can keep unchanged. The increased field
angle in this case could also be small. Move F1 vertically can also compensate beam vertical
shift.

 M3

F1
F2

Beam

Figure 5 - Compensation of beam horizontal shift
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Position control of M2 and F1 (or only F1) will be needed not only to limit the size of M3,
but also to make sure that the image will not be cut by the second lens (see "the size of the
second lens").

2.  Size of the second lens

The distance between the lenses is S = L = 25000 mm; the horizontal and vertical size
requirement will be: W = 118 mm and HT = 44 mm, when P = 0 and t = 3 mm. The diameter of
the second lens should ~ 118 mm.

If we choose the L2 = 1250/Φ = 150 mm lens, then maximum beam width that can be mea-
sured will be 2.51δx for P = 0 mm and t = 3 mm.

Without position control of F1 or M2, with ~ 6.5 mm beam transverse position shift, the
beam image will be cut by the second lens up to beam center. The large transverse beam shift
must be compensated properly in our optical system.

5.  Discussion

In order to set the detector precisely on the image surface, we will probably have to tune the
detector longitudinally till the image of the beam is very clear or the size of the beam reaches its
minimum value. But it probably happens that the horizontal size and the vertical size of the beam
will not reach their minimum values at the same position when the detector slides along the
optical axis because the image position is not the horizontal minimum size position.

In Fig. 6, if the detector is located at X2'' instead of the right position of X'20, and if b1<b2,
then the image size will be smaller than H2. On the other hand, if the image has a minimum size
at image position, it needs the condition:

ψ'>ψ2. (5.1)

t'
T

b1 b2

ψ '
ψ2

X2''

X'20

H2

F2

t' ψ'

Figure 6 - The image with a longitudinal deviation
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From Appendix B we know that,

ψ ' = t'

20
'X

= t

β0 1L + P( )

2ψ = T − 2H
20
'X

≈
T − Q'H

20
'X

= T
1

2L
− 1

L







≈ T

2L
= L

2L 1L + P( ) 1H

then condition (5.1) means:

t > β0
L

2L
1H (5.2)

or:

ψ = β0 ψ ' > β0
L

2L 1L + P( ) 1H (5.3)

t and ψ are respectively the slit half width and the source divergence angle to the slit, H1 is
the beam transverse size. The typical data for our system could be: L = 25000 mm,
L2 = 1250 mm, L1 = 2250 mm, and we may choose P = 0 and β0 = 0.5556 for simplicity.  In
horizontal plane, H1 = 2.529 mm, eqs. (5.2) and (5.3) require: t > 28.1 mm and ψ > 0.02248 rad
= 1.3°. In vertical plane, H1 = 0.2792 mm, they require: t > 3.1 mm and ψ > 0.00248 rad.
Because in our system, in horizontal direction, the slit will be ~ 1 mm but in the vertical direction
ψ will be the divergence of the synchrotron light itself which is ~ 0.004677 rad [1], we can
expect a vertical minimum size image at the perfect image position but can not expect the
minimum horizontal one there.

In Fig. 6, we can approximately take X2'' as the minimum size position of the horizontal
image, then there is,

2
''X − 20

'X ≈ 2H

2ψ
≈ 2H 1L + P( ) 2L

L 1H
= β0

1L + P( ) 2L
L

(5.4)

and the minimum spot size:

''H = 'ψ 2
''X − 20

'X( ) ≈ 2L
L

t

For P = 0, X2'' - X2' = 40 mm. That means that the minimum size positions for horizontal
and vertical images can be separated by ~ 40 mm.
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Appendix A

The Image and its Aberration

In following calculation, the distance of an image, or source, will be positive if it is located
on the right side of a lens, and will be negative if on the left side. X' is the image position of a
source locating at X.

A.1.  Image positions

For the first lens in Fig. 1,

1X = −( 1L +P) (A.1)

X1
' = 1f 1X

1f + 1X
(A.2)

and for the second lens,

2X = 1
'X − L (A.3)

2
'X = 2f 2X

2f + 2X
= 2f ( 1L + P)(L − 1f ) − 1f L[ ]

( 1L + P)(L − 1f − 2f ) − 1f (L − 2f )
(A.4)

With f1 = L1+δ1, f2 = L2+δ2, we get:

2
'X = 2L 1

2L − P L − 1L( )[ ] + 2L L + 1L + P( ) 1δ + 1
2L − P L − 1L( )[ ] 2δ

1
2L − P L − 1L − 2L( ) + L + 1L − 2L + P( ) 1δ + P 2δ

with the assumption:

(L + 1L − 2L + P) 1δ << 1
2L − P L − 1L − 2L( ) (A.5)

P 2δ << 1
2L − P L − 1L − 2L( ) (A.6)

and keeping the first-order of δ1, δ2 during the expansion, we can get:

     2
'X = 2L 1

2L − P L − 1L( )[ ]
1
2L − P L − 1L − 2L( ) +

2

2L 1L + P( )
1
2L − P L− 1L − 2L( )













1δ +

2

1
2L − P L− 1L( )

1
2L − P L− 1L − 2L( )













2δ (A.7)
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Thus, the ideal image position without chromaticity is:

2

'

20
'X = X 1δ , 2δ = 0( ) = 2L 1

2L − P L − 1L( )[ ]
1
2L − P L − 1L − 2L( )

(A.8)

and the longitudinal spot size caused by the residual chromatic aberration of the two  
achromats:

L∆ =

2

2L 1L + P( )
1
2L − P L− 1L − 2L( )













1δ +

2

1
2L − P L− 1L( )

1
2L − P L− 1L − 2L( )













2δ (A.9)

A.2.  Magnification

The transverse magnification of the system, under the assumptions of eq.(A.5) and (A.6),
will be:

β = 2
'X 1

'X
2X 1X

= 1f 2f
( 1L + P)(L − 1f − 2f ) + 1f ( 2f − L)

= − 1L 2L + 2L 1δ + 21L δ
1
2L − P L − 1L − 2L( ) + P 2δ + L − 2L + 1L + P( ) 1δ

(A.10)

≈ − 1L 2L
1
2L − P L − 1L − 2L( ) + 1L L − 2L( ) 1L + P( )

2

1
2L − P L− 1L − 2L( )[ ] 1δ − 1L 1

2L − P L − 1L( )[ ]
2

1
2L − P L− 1L − 2L( )[ ] 2δ

and,

0β = β( 1δ , 2δ = 0) = − 1L 2L
1
2L − P L − 1L − 2L( )

(A.11)

From eq.(A.8) we can get:

P =
L1

2 L2 − X20
'( )

L2(L − L1) − X20
' (L − L1 − L2 )
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and

L − L1 − L2 =
L1

2 L2 − X20
'( ) − L2

2 P

P L2 − X20
'( ) ,

inserting these into eq.(A.11) gives:

β0 = − 2L L − L1( ) − X20
' (L − L1 − L2 )

L1L2

(A.11a)

and

β0 = −
L1 L2 − X20

'( )
L2P

(A.11b)

Theoretically, with any two of the three parameters: P, L and X20, the magnification can be
calculated.

A.3.  Transverse aberration size

The aberration spot center transverse shift shown in Fig. 1 will be:

1∆ = 2H − 2
'H + 20

'X − 2
'X( ) T − 2

'H

2
'X

where H2 = β0H1, 2
'H  = βH1 and T = LH1/(L1+P). With the further approximations: ∆L<<X'2

and 2H − 2
'H << 2H , and keeping the first order of δ1 and δ2, it can be obtained:

1∆ = − β − β0( )H1 − ∆L

L

P + L1
− β

X20
' + ∆L

H1 ≈ − β − β0( )H1 − ∆L

L

P + L1
− β0

X20
'

= −
L 1

2L − P L − 1L( )[ ]
2L P + 1L( ) 1

2L − P L − 1L − 2L( )[ ] 1H 2δ

or,

∆1

2H
=

L 1
2L − P L − 1L( )[ ]

P + 1L( ) 1L 2
2L

2δ (A.12)

or even,

1∆ = −
T L∆ 1δ = 0, 2δ ≠ 0( )

20
'X

(A.13)
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The physical meaning of ∆1 described by (A.13) is more clear, as shown in Fig(A.1): ∆1 is
just the two rays vertical separation because of the second lens chromatic longitudinal image
shift. When P=0, ∆L(δ1=0)=δ2, just the focus shift of the second lens.

∆1

∆L(δ1=0)

F2

Figure A.1 - The equivalent meaning of ∆1

On the other hand, with the assumptions δ1<<L1, L 1δ << 1
2L − P L − 1L − 2L( ) and

∆L<<X'2,

α = t

1
'X

= t
1

1f
+ 1

1X







≈ t

P

1L ( 1L + P)
− 1δ

1
2L











(A.14)

't = t − αL = 1
2L − P L − 1L( )

1L 1L + P( ) t +
L 1δ

1
2L

The aberration spot size will be:

2∆ = L∆
2
'X

't ≈ L∆
20
'X

't ( 1δ = 0)

(A.15)

= 2L ( 1L + P)

1L 1
2L − P L − 1L − 2L( )( ) 1δ +

2

1
2L − P L− 1L( )[ ]

21L L ( 1L + P) 1
2L − P L − 1L − 2L( )[ ] 2δ
















t

Because ∆1 is proportional to the beam transverse dimension (H1) and ∆2 is proportional to
the illuminated size (t) on the first lens, the ∆1 error will be larger than D2 in the horizontal
plane and D2 will be larger than D1 in the vertical plane.
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In vertical plane, because t = Ψ (L1 = P), ∆2 can also be written as:

(A.16)

In horizontal direction, t=a, the half width of the entrance slit, it is also:

(A.17)

A.4.  Assumptions

In our system, the parameters have the inequality relationship: L>>L1,L2>>P. All the
assumptions we have used above will then be equivalent to:

(A.18)

In Fig. 1, we use a principal line going through the center of F1 to represent the central line
of the light bunch and use this line to calculate the spot center deviation D1. This is exactly true
for the horizontal case where t is determined by a slit whose center is also the lens center.
However, for the vertical case, without any slit, the center line of a point source radiation bunch
will be parallel to the optical axis before reaching F1, and that will change ∆1v a little bit by
changing T = LH1/(L1+P) to T = LH1/(L1+P)-H1. Because L>>L1, thus T>>H1, we can expect
that the final change on ∆1v will be very small and all the results above can be used for the
vertical image analysis without a large error.

A direct calculation of ∆1v without such approximation leads to a similar result for P = 0
case:

∆1V

H2V

= L − L1

L2
2 δ2 − 1

L1
δ1

 (A.19)
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Appendix B

Connection Between Chromatic Errors and Geometric Errors

B.1.  ∆2 and the depth of field error

It is known that in the vertical direction ∆2 is the dominant term of the image aberration. In
the following we will prove that ∆2 is equivalent to the depth of field error of a beam with image
length ∆L.

In Fig. B.1, ∆XDF= ψZ/2 is the depth of field error of the source, and ∆X'DF = ψ'Z'/2 is the
depth of field error of the image. For such image system, there are the relations:

Z' = Z 0
2β (B.1)

H2 = H1 0β (B.2)

ψ ' = t'

20
'X

= 1
2L − P L − 1L( )

1L 1L + P( ) t
2L 1

2L − P L − 1L( )[ ]
1
2L − P L − 1L − 2L( ) = 1

2L − P L − 1L − 2L( )
1L 2L 1L + P( ) t

(B.3)

= t

0β 1L + P( )
= ψ

0β

t

t'
ψ

ψ'

Z

Z'

H1

∆XDF

∆X'DF

H2

L

Figure  B.1 - The image of the depth field error
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Where β0 , t, t' and X'20 have the same meanings as in Appendix A. From eqs.(B.1-B.3), it
can be found that:

DF∆X ' = ψ ' Z' /2 = 0β ψZ / 2 = 0β DF∆X (B.4)

or:

DF∆X '
H2

= DF∆X
H1

(B.5)

This means: (1) the image will have the same relative field error as the source; (2) When Z'
equals the chromatic aberration longitudinal size ∆L, the relative field error ∆YDF/H should
equal the aberration value ∆2 once we put the detector at the center of ∆L, i.e.:

2V∆
H2V

= L∆
Z'

∆ DFX
H1V

B2.  ∆1 and the curvature error

L1+P

Z

H1

∆X
∆Xc

θ
θ

a

F1

S

X'20

∆X'

Z'

H2

T

F2

S'

L

∆X'
c

HS'

a'

Q

Q'

T'

A

Figure B.2 - The image of the curvature error

∆1 is the dominant chromatic error in horizontal plane. In the following we will find the
connection between ∆1 and beam curvature error.
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(i)  First, we can see that ∆X' in Fig. B.2 is compatible to the ∆1 of the chromatic error. As
shown in Fig. B.2,

∆X' = T + a' −HS'

20X ' + Z'
Z' ≈ T

20X '
Z' (B.6)

because T=LHQ/(L1+P)>>HS' and a', and X'20>>Z'. Comparing with eq.(A.13), if Z' equals the
chromatic shift ∆L(δ1=0, δ2≠0), ∆X' will be just the chromatic spot center vertical shift ∆1:

1∆ = 1∆ 1δ = 0( )
Z'

∆X' (B.7)

(ii) The connection between ∆X' and the curvature error ∆Xc.
On the left side of Fig. B2, when θ is small, ∆X=Zθ=Rθ2, where R is the beam trajectory

curvature radius. Meanwhile, R=(∆Xc+R)cosθ≈(∆Xc+R)(1-θ2/2)≈∆Xc+R-0.5Rθ2, Then
∆X=2∆Xc. At the same time, there is also the relation:

∆X =
HQ + a( )Z

1L + P
, HQ is the height of Q (B.7)

With (B.6), (B.7) and T=LHQ/(L1+P), we get:

∆X'
H2

∆X
H1

≈
LZ' HQH1

X20
' Z HQ + a( )H2

= β0
HQ

HQ + a

L

20X '
=

HQ

HQ + a

L 1L
1
2L − P(L − 1L )

,

or:

 1∆
H2

= L∆ 1δ = 0( )
Z'

HQ

HQ + a

2L 1L
1
2L − P(L − 1L )

∆ CX
H1





 ,

or:

1∆
H2

≈ L∆ 1δ = 0( )
Z'

L 1L
1
2L − P(L − 1L )

∆ CX
H1





     when a ≈ HQ (B.8)
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In our system, when P=0, equation (B.8) means:

1∆ H2 ≈ 2.36 ∆XC H1( ) (B.9)

This is the relationship between ∆1 and the relative curvature error.

Because the curvature error is very small, only ~ 0.024 times the total measurement error
[1], we can expect that ∆1 aberration error will be ~ 5 per cent of the total measurement error.

(iii) Although from (B.8) there will be (∆X'/H2)/(∆X/H1) ≈ 10 for P=0, the image relative
curvature error is the same as the source one. This can be explained as follows: the optical rays
of SA, AT' are from point S; they should go to S'. Meanwhile SA, AT' can be treated as coming
from Q and they should reach Q' too. So, T', Q' and S' are located at one line; ∆X'C should be
the curvature error caused by the ray to S'. Because S' and Q' are also the images of S and Q,
∆X'C=|β0|∆XC.

What is the reason for (∆X'/H2)/(∆X/H1) ≈ 10 but (∆X'c/H2)/(∆Xc/H1)=1? This is because
there are different magnifications at point Q and S and the image of the beam trajectory is no
longer a circle at all.

Actually, with optical formulas we can prove that the image points S', Q' are located at the
same line coming from T' although there is a big difference between ∆X and ∆X'. (Any one
interested may read the verification).

On one hand,

T' −HQ'

X20
' =

T + a' − β0 HQ

X' 20

Substitute a instead of a' with eq.(A.14),

T' −HQ'

X20
' =

T + L1
2 − P(L − L1)

1L 1L + P( ) a − β0
T( 1L + P)

L

2L 1
2L − P(L − 1L )[ ]

1
2L − P(L − 1L − 2L )

= T
1

2L
− 1

L









 + 1

β0 L1 + P( ) a (B.10)
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On the other hand, the vertical magnification at point S' will be:

Zβ = − 1L 2L
1
2L − (P − Z)(L − 1L − 2L )

≈ − 1L 2L
1
2L − P(L − 1L − 2L )

+ Z 1L 2L (L − 1L − 2L )
2

1
2L − P( L− 1L − 2L )[ ]

or:

∆β = Zβ − β0 = Z 1L 2L (L − 1L − 2L )
2

1
2L − P( L− 1L − 2L )[ ]

= β0
Z(L − 1L − 2L )

1
2L − P(L − 1L − 2L )

(B.11)

Then,

Q'H − S'H
Z'

=
β0 HQ − Zβ HQ − ∆X( )

Z'
=

∆X β0 + HQ∆β
Z'

≈
β0 Z

(HQ + a)

1L + P
+ β0 Z

L − 1L − 2L
1
2L − P(L − 1L − 2L )

HQ

Z'

=
HQ

β0

1

1L + P
+ L − 1L − 2L

1
2L − P(L − 1L − 2L )







+ a

1L + P( ) β0

=
HQ(L − 2L )

2L ( 1L + P)
+ a

1L + P( ) β0

= T
1

2L
− 1

L







+ a

1L + P( ) β0

then:

Q'H − S'H
Z'

=
T' −HQ'

X20
' (B.12)

This means T', Q' and S' are on the same line.
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Appendix C

Flatness of the Mirror Between the Lenses.

The schematic drawing of the mirror distortion between the two lenses is shown in Fig. C.1.
Because of the distortion by the mirror, the down-stream optical equipment feels the rays
coming from point source Q as if coming from Q'.

First, let us look at the longitudinal image shift by the spherical curved mirror.  From
Appendix A, we know that the distance from the image of Q to the mirror will be:

P+L1

S

∆S

θ

∆θ

θ+∆θ
H

∆H

∆P

F1

Q

Q'

d

Figure C.1 -  Distortion of the F1 image

x = 1
'X − S = 1f 1X

1f + 1X
− S (C.1)

where X1=-(P+L1). Because of the mirror distortion, the error on x will be (see eq.(3.6))

∆x = 16
2x

d




 hsin−1 α (C.2)
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When this error equals the source longitudinal shift ∆P,

∆x = f1( 1X + ∆P)

f1 + 1X + ∆P
− S









 − 1f 1X

1f + 1X
− S













=

2

1f

1f + 1X







∆P (C.3)

we can get,

h = sinα
16

2d

x






2

1f

1f + 1X







∆P ≈ sinα

16

2
d

1L







∆P   , when x>>S (C.4)

Secondly, for the vertical case, from Fig. C.1, there are the relations,

θ = d

S

θ + ∆θ = d

S − ∆S
≈ d

S
+ d

2S
∆S ⇒ ∆θ = d

2S
∆S

H = ( 1L + P)θ
∆H = ( 1L + P)∆θ

⇒ ∆H

H
= ∆θ

θ
= ∆S

S

From eq.(3.6), we know that,

h = sinα
16

2d

S




 ∆S

(C.5)

⇒ h = sinα1

16

2d
S

∆H

H

For instance, for M3 mirror, if the size is 200*400 mm, S = 8127 mm, α = 8.715°,
∆Η/H = 0.026, the half vertical chromatic aberration, ∆P = 3 mm, one third of the beam length
(remember the beam chromatic spot length is one third of the beam image length). Along the
vertical direction: d = 400 mm, α = 8.715°, we get h = 0.0048 mm ≈ 8λ with (C.5) and
h = 0.0009 mm = 1.5λ with (C.4); along the horizontal direction, d = 200 mm, α = 90°, ∆Η/H =
0.005, the half horizontal chromatic aberration, we get h = 0.0015 mm ≈ 2.5λ with both (C.5)
and (C.6). Here λ = 6000 Å.

For M5, we suppose the size will be 150*150 mm, S = 25000 mm, ∆P = 3 mm, α = 45° and
∆Η/H = 0.026 in the vertical direction while α = 90° and ∆Η/H = 0.005 in the horizontal
direction. We can get h ≈ 1.5λ with (C.5) and h ≈ λ with (C.4) in vertical direction and h ≈ 0.5λ
by (C.5) in the horizontal direction.

This suggests the "spherical" flatness of such mirrors should be better than λ.


