

KKKKKKKK

DAΦNE TECHNICAL NOTE

INFN - LNF, Accelerator Division

Frascati, November 30, 1993

Note: C-8

LVLibrary: a set of FORTRAN subroutines
for accessing the DANTE HLS interface.

Alessandro Stecchi

1. Introduction

This document presents materials that will be part of an extensive user manual for the physi-
cists involved in the High Level Software development. Even though it will be likely updated in
order to satisfy new requirement it contains enough material to start testing and discussion on the
matter.

For a better understanding of what follows refer to:

- Control System RTDB architecture (Control Group);

- use of FORTRAN STRUCTURE and RECORDS (any FORTRAN user manual i.e. Lan-
guage System [1]);

- Protocol for Accelerator Applications (Control System Status Report 13/9/93).

The following pages describe a set of subroutines developed in order to access the Control
System First Level Interface which is implemented in LabVIEW [2] from an external FORTRAN
application (we will refer to such interface as HLS interface). This set constitutes the LVLibrary.
The LVLibrary contains User subroutines and Low Level subroutines even though a programmer
will likely deal only with the User subroutines within its application.

All presented subroutines as well the corrispondent HLS LabVIEW interface have been tested.

This document will not go into detail of the software methods used for the development of the
routines themselves.

D
E

S
C

R
IP

TI
V

E
R

E
C

O
R

D
S

DATA STRUCTURES

INTERFACE INTERFACE

LabVIEW 1st level environment
COMMANDS

FORTRAN
External
Application

RTDB
Communication
Manager

Fig.1 - The data and commands flow through the HLS interface.

C-8 pg. 2

2. User subroutines

In this first release the HLSError codes reported by each routine have to be defined yet.

initLV(targetPortName,HLSUserID,HLSUnit,HLSErr)

targetPortName INPUT CHARACTER*32 The LV PPC port name which we

want to communicate with.

HLSUserID INPUT INTEGER*4 User Identification number. It

used as password.

HLSUnit OUTPUT RECORD

/HLSCommRec/

Record containing all the

communication parameters neede

in the following calls. The

corresponding STRUCTURE is

defined in the include file

LVLibrary.h.

HLSError OUTPUT INTEGER*2 Error result code.

This subroutines initializes the communication with the LabVIEW HLS interface. The returned
parameter HLSUnit must be used as a sort of logical unit number in the following calls.

fetchData(HLSUnit,dataIdentificator,dataContainerPtr,dataSize,HLSError)

HLSUnit INPUT RECORD

/HLSCommRec/

As obtained from the LVInit

routine. The corresponding

STRUCTURE is defined in the

include file LVLibrary.h.

dataIdentificator INPUT CHARACTER*8 ElementName, MachinePartName,

VariableName and -in general-

identificator recognized by th

Control System.

dataContainerPtr INPUT INTEGER*4 FORTRAN pointer to a RECORD th

matches the STRUCTURE

corresponding to the wanted

dataIdentificator. The pointer

be calculated directly within

parameter list applying the

operator %LOC() to the RECORD

(see example below)

dataSize INPUT INTEGER*4 Size (in bytes) of the RECORD

matches the STRUCTURE

corresponding to the wanted

dataIdentificator. DataSize ca

calculated directly within th

pameter list applying the oper

SIZEOF() to the RECORD (see

example below)

HLSError OUTPUT INTEGER*2 Error result code.

This subroutine sends a command of type 'SEND' (send a block of this type back to me) to the
LV HLS interface. After this fetchData waits for the incoming data and then return those in the
dataContainer RECORD variable.

C-8 pg. 3

Pointer to RECORD and size of a RECORD.

The fetchData subroutine requires -among its parameters- a pointer to the record we want to
hold the fetched data and the length (in bytes) of the record itself. Making reference to a data
STRUCTURE of type "example" and to a corresponding RECORD variable "misterX" we can use
either:

c declarations

.................

RECORD/example/misterX

POINTER/example/misterXPtr

INTEGER*4 lengthOfMisterX

.................

c statements

.................

misterXPtr= %LOC(misterX)

sizeOfmisterX = SIZEOF(misterX)

CALL fetchData(sessRefNum,dataID,misterXPtr,lengthOfMisterX,err)

.................

or:

c declarations

.................

RECORD/example/misterX

.................

c statements

.................

CALL fetchData(HLSUnit,dataID,%LOC(misterX),SIZEOF(misterX),HLSError)

.................

issueCmd(HLSUnit,commandString,HLSError) {not implemented yet}

HLSUnit INPUT RECORD

/HLSCommRec/

As obtained from the LVInit

routine. The corresponding

STRUCTURE is defined in the

include file LVLibrary.h.

commandString INPUT CHARACTER*32 Any System command.

HLSError OUTPUT INTEGER*2 Error result code.

This subroutine sends a command of type 'FRWD' (forward this command string) to the LV
HLS interface.

quitLV(HLSUnit,HLSError)

HLSUnit INPUT RECORD

/HLSCommRec/

As obtained from the LVInit

routine. The corresponding

STRUCTURE is defined in the

include file LVLibrary.h.

HLSError OUTPUT INTEGER*2 Error result code.

This subroutine sends a command of type 'QUIT' (I am quitting; do not care about me longer)
to the LV HLS interface. Then ends the PPC session and closes the PPC port.

C-8 pg. 4

3. Low level subroutines

openLV(targetPortName,MyPortRefNum,err)

targetPortName INPUT STRING*32 LabVIEW HLS interface port whi

we want to communicate with (a

the moment the name 'bucket'

MUST be specified in the

application.

MyPortRefNum OUTPUT INTEGER*4 PPC port reference number open

by the subroutine.

err OUTPUT INTEGER*2 Two components array

This subroutine checks for the existence of a LabVIEW port of type 'PPCToolBox' and then
opens from scratch a PPC Port of the same type.

startSessionLV(targetPortName,MyportRefNum,MySessUserData,MySessRefNum,err)

targetPortName INPUT CHARACTER*32 The LV PPC port which we want

communicate with.

MyportRefNum INPUT INTEGER*2 As obtained from the openLV

subroutine.

MySessUserData INPUT INTEGER*4 It is copied in the correspond

parameter of the PPCInform

running on LV. It can be used a

starting information.

MySessRefNum OUTPUT INTEGER*4 To be passed to subsequent HLS

routines.

err OUTPUT INTEGER*2 Two components array

This subroutine opens a PPC session.

writeOnlyLV(MySessRefNum,MyUserData,MyBlockCreator,MyBlockType,

MyBufferPtr,MyBufferLength,err)

MySessRefNum INPUT INTEGER*4 As obtained from the

startSessionLV subroutine.

MyUserData INPUT INTEGER*4 Block header first field.

MyBlockCreator INPUT CHARACTER*4 Block header second field.

MyBlockType INPUT CHARACTER*4 Block header third field.

MyBufferPtr INPUT INTEGER*4 Pointer to the buffer that we

to transmit.

MyBufferLength INPUT INTEGER*4 Length of the buffer that we w

to transmit.

err OUTPUT INTEGER*2 Two components array

This subroutine sends to the LabVIEW target port a block of bytes.

C-8 pg. 5

readOnlyLV(MySessRefNum,MyUserData,MyBlockCreator,MyBlockType,

MyBufferPtr,MyBufferLength,err)

MySessRefNum INPUT INTEGER*4 As obtained from the

startSessionLV subroutine.

MyUserData INPUT INTEGER*4 Block header first field.

MyBlockCreator INPUT CHARACTER*4 Block header second field.

MyBlockType INPUT CHARACTER*4 Block header third field.

MyBufferPtr INPUT INTEGER*4 Pointer to the buffer that we

to transmit.

MyBufferLength INPUT INTEGER*4 Length of the buffer that we w

to transmit.

err OUTPUT INTEGER*2 Two components array

This subroutine performs a PPCRead: receives a block of bytes from LabVIEW and then ends
the session.

endSessionLV(MySessRefNum,err)

MySessRefNum INPUT INTEGER*4 As obtained from the

startSessionLV subroutine.

err OUTPUT INTEGER*2 Two components array

closeLV(MyportRefNum,err)

MyPortRefNum OUTPUT INTEGER*4 PPC port reference number open

by the subroutine openLV.

err OUTPUT INTEGER*2 Two components array

This subroutine closes a PPCPort already opened by openLV.

C-8 pg. 6

4. An example of data exchange

The following example shows how to write a FORTRAN application that gets data from the
LabVIEW HLS interface. In the example there is no error handling due to the fact that the error
codes have not been defined yet.

program HLS

implicit none

include 'LVLibrary.h'

integer*2 error

integer*4 MySessUserData

string*32 targetPortName

record/HLSCommRec/theUnit

character*8 dataID

structure/example/ ! • This structure is only an example.

 integer*4 a ! The real descriptive records will be

 real*4 b1 ! included with the file DAFNETypes.h

 real*4 b2

 real*4 b3

end structure

record/example/theExample

real*4 result

c ---

c Start of MAIN

c ---

targetPortName = 'bucket' ! • Mandatory at the moment

MyID = 0 ! • Password: any value

! allowed at the moment.

c Set up the communication with the HLS interface

 100 CALLinitLV(targetPortName,MyID,theUnit,error)

c Read a block of type example

dataID = 'NNNLLXXX' ! • Name of an element of

! type "example"

 200 CALL fetchData(theUnit,dataID,%LOC(theExample), SIZEOF(theExample),error)

c An example of calculations with the obtained values

result = theExample.b1 + theExample.b2 + theExample.b3

result = result ** theExample.a

Write(*,*) ' The result is: ',result

c Issue a command to the System

theCommand = 'SET KCKA1001 DAC1 30'

 300 CALL issueCmd(theUnit,theCommand,error)

c Terminate the session & close port

 400 CALL quitLV(theUnit,error)

Write(*,*) ' All done.'

stop

end

C-8 pg. 7

Appendix A: table of CALLs

The following table reports for each subroutine the corresponding called subroutines and the
used data structures.

SSSSuuuubbbbrrrroooouuuuttttiiiinnnneeee CCCCaaaalllllllleeeedddd SSSSuuuubbbbrrrroooouuuuttttiiiinnnneeeeUUUUsssseeeedddd SSSSttttrrrruuuuccccttttuuuurrrreeeessss CCCCuuuussssttttoooommmm IIIInnnncccclllluuuuddddeeee

ffff iiii llll eeee ssss

initLV openLV

startSessionLV

HLSCommRec LVlibrary.h

fetchData writeOnlyLV

readOnlyLV

HLSHeaderRec LVlibrary.h

issueCmd writeOnlyLV HLSCommRec

HLSHeaderRec

LVlibrary.h

quitLV writeOnlyLV

endSessionLV

closeLV

HLSCommRec

HLSHeaderRec

LVlibrary.h

openLV Gestalt

PPCInit

PPCOpen

IPCListPorts

PPCClose

PPCOpenPBRec

PPCPortRec

IPCListPortsPBRec

PortInfoRec

startSessionLV PPCStart PortInfoRec

PPCStartPBRec

OSErr

writeOnlyLV PPCWrite PPCWritePBRec

OSErr

readOnlyLV PPCRead PPCReadPBRec

OSErr

endSessionLV PPCEnd PPCEndPBRec

OSErr

closeLV PPCClose PPCClosePBRec

OSErr

C-8 pg. 8

Appendix B: LabVIEW HLS interface VI

The HLS interface implemented in the first level behaves as a server. An external application
using the routines of the LVLibrary behaves as a client and is in charge of starting the session with
the inilLV routine. Once the HLS interface has accepted the session, it polls for any incoming
request from the external application.

Such requests are characterized by an header made of three fields; in particular the last field
block type (of 4 bytes) specifies what the interface has to do. The following 4-byte commands are
recognized by the interface:

'SEND' Send a record back to me. The record type is specified in

remaining fields of the header.

'FRWD' Forward this command. The command string is in the blo

annexed to the header and its len

specified in the remaining field

header.

'PLOT' Plot this array. The byte stream and the array da

type as well are in the block an

to the header and its length is

specified in the remaining field

header.

'QUIT' I am quitting. Do not care any mo

about me.

No further information for this

A 4-byte command (HLS command) with its eventual parameters and data is interpreted by a
proper subVI which executes it by calling a dedicated subVI.

It follows a description of the HLSinterpreter.vi and of the dumpHLSrecord.vi which executes
HLS commands of type 'SEND'.

HLS commands of type 'QUIT' are executed directly by the interface top level VI whilst HLS
commands of type 'PLOT' have not been implemented yet.

C-8 pg. 9

HHHHLLLLSSSSiiiinnnntttteeeerrrrpppprrrreeeetttteeeerrrr....vvvviiii

sssseeeessssssssiiiioooonnnn rrrreeeeffffnnnnuuuummmm is the PPC session reference number relative to

connection with the external FORTRAN application.

ddddaaaattttaaaa iiiinnnnffffoooo is a cluster containing the following parameters in t

below. This cluster is the PPC block header.

 uuuusssseeeerrrr ddddaaaattttaaaa

 bbbblllloooocccckkkk ccccrrrreeeeaaaattttoooorrrr

 bbbblllloooocccckkkk ttttyyyyppppeeee

UUUUsssseeeerrrr ddddaaaattttaaaa and bbbblllloooocccckkkk ccccrrrreeeeaaaattttoooorrrr are interpreted as a 8 character

HHHHLLLLSSSS ccccmmmmdddd is a 4 characters string obtained from bbbblllloooocccckkkk ttttyyyyppppeeee. The

strings are recognized and returned:

'SEND'

'FRWD'

'PLOT'

'QUIT'

If bbbblllloooocccckkkk ttttyyyyppppeeee is not a valid 4-byte pattern an empty string is

dddduuuummmmppppHHHHLLLLSSSSrrrreeeeccccoooorrrrdddd....vvvviiii

ddddaaaattttaaaaIIIIDDDD is a 8 characters string which specifies the descriptive

want to fetch. It can be any element name recognized by the System

bbbbyyyytttteeee ssssttttrrrreeeeaaaammmm is a sequence of bytes which can be mapped on the re

corresponding to the wanted data structure.

eeeerrrrrrrroooorrrr is a boolean indicating whether a bus error occourred duri

gathering or not.

REFERENCE

[1] Language System FORTRAN 3.0 Reference Manual,.Language System Corporation, 441 Charlisle Drive,
Herndon, VA 22070-4802.

[2] LabVIEW® National Instrument Corporation, 6504 Bridge Point Parkway, Austin, TX 78730-5039.

