

KKKKKKKK

DAΦNE TECHNICAL NOTE

INFN - LNF, Accelerator Division

Frascati, Feb. 3, 1992

Note: C-5

GRAPHIC USER INTERFACE

Alessandro Stecchi

1. What is a GUI or better a true GUI?

When you have a computer in front of you the problem is how to get
the incoming information and how to communicate with it. The User Interface
is the method for solving this problem. When some kind of graphical
representation is involved in this method we have a GUI that is a Graphic User
Interface. Actually a real GUI requires the graphic to be interactive. A user must
be able to handle windows and not only to watch them, icons, controls and in
general any sort of representation shown on his screen.

Many new ideas have contributed to the present way of building a GUI
and it is possible to extract some common principles:

Icons & graphics instead of text

We live in a world full of icons that everybody can easily recognize.
Men/Women pictures on doors, crossed cigarettes for no smoking, people
running away from flames for escape exits and so on. It is an evidence that
icons have completely won on text-explanations in a wide context. Icons can
be immediate, attractive, concise and cross-cultural. So why shouldn't we use
icons for mapping real objects on the computer screen?

Metaphors from the real world

The use of metaphors based on real-world counterparts is widely
diffused in modern GUIs. Dealing with metaphors the users have a set of ex-
pectations to apply to the computer environment and they operate in an
artificial reality.

Direct manipulation

Users want to feel that they are in charge of the computer's activities.
They expect their physical actions to have physical results, and they want their
tools to provide feedback.

C-5 pg. 2

See-and-point (instead of remember-and-type)

Users select actions from alternatives presented on the screen. They rely
on recognition, not recall; they shouldn't have to remember anything the
computer already knows. Most programmers have no trouble working with a
command-line interface that requires memorization, but the average user is not
a programmer.

Anyhow all those principles tend to the main target of a true GUI that
is: to hide as much as possible the complexity of an operation. The general
form of user actions must be something like "Hey, you . . . do this".

2. Why do we think it is useful to implement a GUI in the DANTE Control
System?

The DANTE (DAΦNE New Tools Environment) Control System architecture
can be roughly described by a three level scheme:

PARADISE: the first level where people interact through consoles with
the System;

PURGATORY: the second level where a central CPU works as com-
munication manager and a continuously updated central memory contains all
of the machine's variables;

HELL: the third level where a distributed hardware, resident on several
VME crates, performs low level tasks such as A/D D/A conversions, digital
I/O, linking toward other standards (GPIB, RS232, etc.) and so on. At this
level several CPUs run various applications to control all the machine's
elements.

The three levels communicate through high speed channels (parallel
busses and optical fibres) via mailboxes where they put and get commands,
messages and values. This obviously means that PARADISE must obey a fixed-
format syntax in sending a command and it receives plenty of rather cryptic
system messages incoming from the lower levels.

Now think of the end user: he probably will be anyone but a pro-
grammer and he doesn't want to worry about the computer procedure because
he has to worry about the machine one.

For such a person it would be useful to move a knob on his screen with
the mouse instead of typing something like:

SET <TheElementName>_<TheFinalValue>_<TheStep>

or turn off a switch by a "click" instead of:

ONLINE <TheElementName>_<[ON][OFF]>

C-5 pg. 3

In the same way a front end window containing analog meters, LEDs,
alert icons, plots and so on (besides numbers) will be much more intuitive and
simple to watch and to be interpreted than a text-based read-out.

A Control System is one of those situations that require an extensive
Man-machine interaction and the implementation of a GUI looks very ap-
propriate.

3. What is the effort estimate (in terms of time and code) for the develop-
ment of a GUI?

What does it mean to write a number into a window? It obviously de-
pends on which number we are speaking about and how we get the window. A
Control System involves mainly real-time processes and this means that one
has to deal with many short and fast calculations for getting readout or set-
ting values. In other words the quantity of code to write in order to get the
temperature of an element is small enough.

And what about a window? Here one has the opposite problem. He
must produce a long and slow chunk of code to allocate memory, make all the
calls to the low-level graphics procedures and so on.

The ratio between the two jobs is strongly unbalanced and it will raise
much more if we think of putting buttons, scrolling text areas, and handling
graphics in our window. Considering a complex presentation which involves
many windows and menus we can say that a GUI is a good thing but hard to
get.

4. Which tools are more appropriate for the development of a GUI (in rela-
tion to the scheduled time)?

The general philosophy adopted by the control group is to use com-
mercial tools as much as possible for the good reason that a widely diffused
software package contains fewer bugs than a new one. There are many tools on
the market that automatically generate code in any language (i.e. Prototyper™)
and they help you to produce the framework of your application. If you intend
to draw and manage windows, buttons, and so on, using such tools you can
save your time and drop the number of bugs in the resulting code.

This is a good method for building a GUI but there are some drawbacks:

You have to write by hand all the subroutines for the display of plots,
analog meters, knobs etc. you intend to use;

C-5 pg. 4

Whenever you need to add a control or even slightly move an existing
one on an old window, you need to recompile a lot of code.

Whether this can be done or not depends on how much manpower you
have available. A solution for those problems is to adopt a full environment
instead of using a development tool. In this way you can develop and run your
application within the same context avoiding the edit-compile-link procedure.

An example is the creation of a window with a button that does
nothing on it, using Prototyper™3.0 or a full environment (LabVIEW® 2):

In the first case you get more than 30 files for a total of more than
2400 lines of code to compile and link;

In the second one you have only to do a couple of mouse actions (one
for "make a new window" and one for "make a new button") and you are ready
to run.

The Control System front-end should be easy to update to match the
new users requests and to fit controls for the new devices. This comes abso-
lutely natural using LabVIEW® where you have the whole data structure
graphically represented in a diagram. You can get a new indicator for a certain
value simply by connecting an icon to the related wire in the diagram.

In fact all the functionality of the instruments created with LabVIEW®

is due to an icon-based programming language called G. This allows you not
only to create a GUI but also to implement a flexible high level software for a
first realtime processing of your data.

5. An example of control.

A first attempt to implement a control using LabVIEW® is shown. The
commission was to build a comfortable way for moving at the same time a
cluster of machine elements taking into account a set of corresponding
weights. The list of element weights must be editable or resumable from a file.
In this control it is possible to create interactively a personalized list of
elements by pop-up menus or by browsing the element families. A different
window acts as weight editor and automatically fits those in the main panel.
(A screen capture of the control is shown in fig. 1).

C-5 pg. 5

After setting the step

width one sends, via

two buttons, a bunch

of commands with the

calculated values to

the lower levels. The

composition of the

commands and the

calculation of each

value as well is

completely trasparent

to the user. The

planning and building

of this control has

taken about 3 days for

1 person and this is a

very good number

taking into account

the complexity of the

presentation involved.

Fig. 1 - Multicomm: an example of GUI obtained
with a programming environment.

The control shown in Fig. 1, although very simple has been developed in
order to stress the guidelines that we intend to follow in the development of
our GUI:

To use full graphics instead of command-lines. This choice will lead to
a strong reduction of errors in typing.

To allows the user to customize his own instruments at different
levels: the first one (like in multicomm) consists in configuring an existing
instrument. The second one consists in building a new control starting from a
predefined set of commands and elements.

To implement multiple windows both for command and for read out.
One of the most appreciable aspect of LabVIEW® is the possibility of managing
more windows at the same time. This means that not only the user can switch
from one "panel" to another one but also that the underlaying programs run
concurrently. Thanks to this multitasking it is possible a parallel processing
and display of the information incoming from the lower levels.

