
KK

DAΦNE TECHNICAL NOTE
INFN - LNF, Accelerator Division

 Frascati, 09/05/2014
 Note: C-22

New DAQ System for the DAΦNE Transfer Lines Charge Monitors

A. Stecchi, O. Coiro, L.G. Foggetta, F. Galletti, A. Ghigo, A. Michelotti,

D. Pellegrini, M. Serio, A. Stella

Typographical Conventions
 Where a term is enclosed in brackets " < > ", that term is a placeholder for an alphanumeric
string or a variable name
e.g. <element_name> is a placeholder for the string BCMTM001
 Where two or more terms are enclosed in braces and separated by a pipe " { a | b | c } ", those
terms are alternative one another
e.g. {ON|OFF} could be ON or OFF

Introduction
 The system described in this note acquires and processes the raw signals provided by the
toroidal charge monitors installed along the DAΦNE transfer lines.
 Electron or positron pulse charges are acquired at the beam rate at each pickup, according to
the different DAΦNE timing states[1] and displayed on the control system consoles. A dedicated
storing process allows offline analysis, to provide evaluation of the injection efficiencies useful for
machine tuning and the charge integrals over time required to monitor radiation safety.

1. System Setup
 Nine integrating current transformer (ICTs), equipped with wall current bypass and
electromagnetic shields, are installed over ceramic gaps in the vacuum chamber along the transfer
lines which connect the Linac to the Accumulator and to the Main Rings[2], as reported in Fig. 1.

Figure 1: Locations of the BCM monitors along the DAΦNE Transfer Lines.

C-22 pg. 2

 Each ICT is capable of integrating the fast rise-time pulse induced by the Linac bunched beam
with a 20ns time constant and is connected through coaxial cables to an array of BCM detection
board electronics[3] whose pseudo-DC outputs, proportional to the pulse charge, are sampled by
VME ADCs.
 The software code described in the following chapters controls the digital I/O channels
providing to each BCM board the TTL levels which select the gain settings and enable/disable the
calibration mode.
 Figure 2 reports a schematic layout of the toroidal charge monitor system installed in the
DAΦNE transfer lines.

Figure 2: Schematic Layout of the Data Acquisition System.

 According to the current timing state associated with the transport of e+/e- pulses along
different zones of the machine:

• LSP Linac to Spectrometer
• LBT Linac to BTF
• LTA Linac to Accumulator
• AMR Accumulator to Main Rings

the beam crosses different monitor sequences as reported in Table 1: for each monitor it is
indicated the relative Bergoz BCM module and the ADC channel. The last two columns indicate,
both for positron and electron modes, the relevant timing state.

C-22 pg. 3

Table 1: BCM monitors used in the DAQ System.

Monitor

Bergoz Module
CAC + BSP [A-J]

ADC Channel
[0-15]

Positron mode Electron mode

BCM TM 001 A 08 LSP, LBT, LTA LSP, LBT, LTA

BCM TE 002 B 07 - AMR

BCM TB 002 C 06 LBT LBT

BCM TT 001 D 05 LTA, AMR LTA, AMR

BCM TR 001 E 04 LTA AMR

BCM TL 001 F 03 AMR LTA

BCM TT 002 G 02 AMR AMR

BCM TP 001 H 01 AMR -

BCM TE 001 J 00 - AMR

3. Code description
 In the DAΦNE Control System each hardware device is represented by a class. Different
device typologies correspond to different classes.
 A class consists of a data structure that contains all the physical quantities that are relevant to
the device control processes and five standard methods for the device management (Table 2).

Table 2: The five standard class methods. Each class expresses Instantiations of theses methods,
characterized by a prefix specific for that class (e.g. for the class BCM, BCMClose is the
instantiation of the close method).

Methods Actions

loadRTDB loads the global variables with the data taken from the configuration files

initHW performs the hardware initialization at program start-up

ctrl performs the continuous control of the device

cmd executes the commands issued to the device

close executes the closing tasks at program stop

 The DAΦNE charge DAQ system employs two classes:
 BCM (Beam Charge Monitor)

which is related to the i-th monitor as well as its associated signal conditioning front-end
module. The BCM class provides methods for setting the individual gain, the
inverted/not_inverted and calibrating/not_calibrating operating conditions.

 WCM (Wall Current Monitor)
which is related to the real-time acquisition hardware along with the fast data storage system.
The instantiations of the methods for the BCM and WCM classes, are used to implement a

DEVIL - that is a standard third-level application - running on the VME bus controller.
The Charge Transport Monitor system has to be deterministic for what concerns the acquisition

and memorization of the beam charge value at a given time. This means that the acquisition of the

C-22 pg. 4

beam charge - as well as all the related processing and storage tasks - has to occur synchronously
with the machine timing signals (see §3.1).

This has been obtained by splitting the code into a RTA (Real-Time Acquisition) task and a SC
(Slow Control) task, communicating to each other through the internal processor RAM (see §3.1
and §3.2).

3.1 Real Time Acquisition task
 The RTA task performs the data acquisition and the fast storage of live data.

3.1.1 Algorithm
 The DAΦNE timing distribution system broadcasts at 50 Hz, over a serial bus, a TSW
(Timing State Word) that describes the incoming machine state. Besides the TSW, the timing
system distributes also four marker signals (φ1, φ2, φ3, φ4) delayed by 90° (5 ms): the TSW carries
the information of the machine state and the φn signals are used to trigger the devices interested by
the incoming timing state.
 The TSW is dispatched with the φ1 trigger and describes the machine state that has to be
considered as valid at the following φ4 trigger. In the Charge Transport Monitor, the φ1 trigger is
used to strobe the ADC1 (calibration ADC) whilst the φ4 trigger is used to strobe the ADC4
(acquisition ADC). This means that it is important to acquire the TSW at the φ1 pulse immediately
precedent the φ4 pulse, in order to associate the proper machine state to the sampled values.
 This is guaranteed by taking into account the STROBE_OVERRUN information available
from the SCSR registers of the ADCs. The STROBE_OVERRUN is different from zero if more
than a single strobe has occurred since the last ADC readout.
 The RTA is performed by a C program that executes the deterministic acquisition of the
ADCs sampled values and of the TSW, the TSW decodification and the fast storage of all these
data into the processor RAM.
 At first, the RTA creates two lookup tables (see Table 3): one for the positron mode (mode
= 0) and one for the electron mode (mode = 1). Each lookup table has a number of lines equal to
the number of possible machine states (0=LSP, 1=LBT, 2=LTA, 3=AMR / LSP+AMR) and a
number of columns equal to the number of monitors plus 1. The first component of each line,
counts the number of following meaningful components (that is how many monitors have to be
taken into account for the machine state corresponding to that line).
 The following components contain the ADC channel numbers which the monitor outputs
(relevant for the given machine state) are connected to.

Table 3: Lookup tables chSel_p for the positron mode (left) and chSel_e for the electron mode
(right).

 After the creation of the lookup tables, the code calls repeatedly the function WCMAcquire
that is dedicated to the acquisition of the ADCs and of the TSW.
 The TSW register content is used to work out the current mode and state; the mode value is
used to choose the proper lookup table (see Table 3) whilst the state value is used to select the
proper line from the chosen lookup table (see Fig. 3).

!! "! #! #! #! #! #! #! #! #

"! "! $! #! #! #! #! #! #! #

#! "! %! &! #! #! #! #! #! #

$! '! %! (!)! #! #! #! #! #

%&'

%()

%)*

*+,

!! "! #! #! #! #! #! #! #! #

"! "! $! #! #! #! #! #! #! #

#! "! %! &! #! #! #! #! #! #

$! '! %! (! #!)! #! #! #! #

%&'

%()

%)*

*+,

C-22 pg. 5

Figure 3: Extraction of the line corresponding to the LSP state from the chSel_e lookup table. The
state value is used to select the proper line that is then loaded into a 1-D array.

 Dealing with no interrupt mechanism, the determinism is obtained by mean of the following
polling sequence (see Fig. 4):
 (A - C) READ ADC1

• keep polling the ADC1 register that indicates if the φ1 strobe has occurred
• acquire the ADC1 values

(C - D) READ TSW
• the TSW is related to some previous φ1 pulse

(D - F) READ ADC4
• keep polling the ADC4 register that indicates if the φ4 strobe has occurred
• if the STROBE_OVERRUN of ADC4 is 0, then

o just a single φ4 pulse has occurred since the previous ADC4 readout
o the TSW is related to the immediately previous φ1 pulse

Figure 4: The D-E and A-B gaps compensate the absence of synchronism between the routine
execution and the φn pulses, as well as any latency due to the Linux OS background tasks. All the
conversion and storage functions executes during the F-A lap.

3.1.2 Data Storage
 The acquired values are stored in two different ways: histogram memory arrays and timed
circular buffers, both residing on RAM.
 In the histogram memory arrays, each component corresponds to a monitor and contains the
growing sum of its acquired charge values [nC] whilst in the circular buffers each line contains the
last acquired charge values [nC] of all the monitors.
 In both cases they are used fixed size storage array, with the BCM channels always in the
same position.

C-22 pg. 6

 For the histogram memory arrays the storage format is:
c0 c1 c2 c3 c4 c5 c6 c7 c8

 There are dedicated histograms for each machine state and mode so that there is no need
storing mode or state information besides data. The number of histograms is N*2, where N is the
number of machine states and the factor 2 is due to the possible machine modes.
 In histograms, only the values of the ADC channels meaningful to the current mode and state
are incremented.
 For the timed circular buffers, the storage format for each line is:

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
The c0 component contains a value combining both the mode and the state information

by mean of the following function:
 value = (mode * 10) + state
 In such a way, the states for the electron mode are represented by values in the interval (0-3)
whilst the states for the positron mode are represented by values in the interval (10-13).
 The following c1, c2, ..., c9 components contain all the ADC channel readouts converted in
nC. Two running pointers (for e+ and e-) indicate the last acquisition: when the pointer reaches the
bottom of the buffer, it wraps around and restarts from the beginning.
 The circular buffer does not employ time tagging and the time base is settled by the 50 Hz
sampling trigger. On idle machine state (state = -1) or in case of trigger lack, the buffer is not
filled, with a consequent unknown time gap between the buffer lines. This means that the circular
buffer grants the data pacing but gives no information about the absolute time value.

3.2 Slow Control Task
 The SC task is in charge of logging the histogram arrays on disk, executing the user
commands and updating the BCM readouts into the central memory area (which is accessible by
the consoles).

3.2.1 Data Logging
 As said above, the histogram memories reside on RAM. This means that their data are volatile
and will be lost in case of a processor reboot. For such reason, it has been implemented a periodic
dump of the histogram memories to log-files.
 The SC task creates at 00h00 of each day a new log file (e.g. 20121231_histo.log) and then -
every minute - it appends to the file a new record with all the histograms content.
The log-file is written in plain ASCII text (see Table 4 for the line format and Table 5 for an
example of the log-file content).

Table 4: Format of the log file line. The "tab" character is used as fields separator and a "nl" as
EOL.

Field Format Example
date yyyymmdd 20121231
time hhmmss 062023
mode (human readable) {e | p} e
mode (coded) {0 | 1} 0
state (human readable) {LSP | LBT | LAC | AMR} AMR
state (coded) {0 | 1 | 2 | 3} 3
monitor[0] float64 value with 6 decimal digits [nC] 77445.739746
monitor[1] float64 value with 6 decimal digits [nC] 0.000000
monitor[...]
monitor[8] float64 value with 6 decimal digits [nC] 0.000000

C-22 pg. 7

Table 5: Example of the record appended every minute to the log file (the ellipses indicate the
series of values for the intermediate monitors).

 The SC task performs a straight transcription of the histogram memories to the log-file. This
means that, should the processor reboot, the histograms written to the log file will restart from
zero. The log files are consequently not suitable for a direct read-out of the total charge integral
but must be post-processed. This has led to the development of the DJANGO project[4] which is
specifically dedicated to the post-processing, storage and presentation of the data produced by this
DAQ system (see Fig. 5).

Figure 5: Workflow of the DJANGO system. A Java application processes the log files produced
by the SC task and pushes the elaborated data into a relational database. A WEB application -
employing JavaScript on the client side and PHP on the server side - displays an interactive plot of
the integrated charge for the different machine states and modes.

3.2.2 User Commands
 Each of the two DAQ system classes (see par. 3) has its own set of commands. Usually these
commands are hidden to the user, being automatically created and issued by the GUI (Graphic
User Interface) upon specific window actions.
 A list of the implemented commands is reported below.

3.2.2.1 Commands for the Class BCM
SETT <elementName> {G|G1|G2},<dB>

C-22 pg. 8

 This command changes the sensitivity of a BCM board [dB] and accordingly updates the
corresponding conversion factor in RAM. This conversion factor [V/nC] is needed by the RTA
task for a proper conversion of the ADC voltage readout [V] in charge value [nC].

elementName: 8 characters alphanumeric string that identifies the element
{G|G1|G2}: parameter that indicates which stage has to be used to set the requested gain:

G1 for stage 1, G2 for stage 2, G for both stages
dB: value in dB of the gain. Legal values for <dB> are the following integers:

G1 = 0, 6, 12, 20
G2 = 6, 20
G = 6, 12, 18, 20, 26, 32, 40

e.g.: SETT BCMTM001 G,26

SWTC <elementName> {INV|CAL},{ON|OFF}

 The BCM boards can generate an internal voltage signal and use it as input for the integrating
section, which is useful for calibration purposes. The boards also allow for the inversion of the
input signal.
 This command switches ON or OFF the Inversion and Calibration conditions of a BCM
board.
 When the command is related to the calibration mode, it also sets the sign of the
corresponding conversion factor in RAM (positive for calibration = OFF, negative for calibration
= ON). The RTA task uses the sign of the conversion factors to know if the BCM boards are in
calibration mode or not.

elementName: 8 characters alphanumeric string that identifies the element
{INV|CAL}: specifies whether Inversion or Calibration has to be set:

INV = Inversion
CAL = Calibration

{ON|OFF}: specifies whether the specified condition has to be turned ON or OFF:

e.g.: SWTC BCMTM001 CAL,OFF

INIT <elementName>

This command is a macro that calls twice the SWTC executor with the following parameters
 SWTC <elementName> INV,OFF
 SWTC <elementName> CAL,OFF

elementName: 8 characters alphanumeric string that identifies the element

e.g.: INIT BCMTM001

3.2.2.2 Commands for the Class WCM
CALI <elementName> {EXEC|ON|OFF}

 Contrary to what happens in the SWTC command of the BCM class (that affects the internal
calibration of the BCM boards), the CALI command is concerned with the calibration obtained
acquiring the toroidal monitors response to known pulses sent — on the φ1 strobe — to coils
wrapped around the toroids. The responses of the toroids are then acquired reading the ADC1,
converted with the proper conversion factors and stored as pure numbers (0 - 1) into a calibration
array. A flowchart of the calibration algorithm performed by the RTA is shown in Fig. 6 .

C-22 pg. 9

elementName: 8 characters alphanumeric string that identifies the element
{EXEC}: acquires, converts and stores the toroids response into a calibration array
{ON|OFF}: specifies whether the ADC4 readouts have to be dynamically multiplied by the

calibration array or not.
e.g.: CALI WCMT*001 EXEC
LBUF <elementName> <requestID>,<number_of_lines>

 Dumps the required number of lines from the circular buffer, going backward from the most
recent one.
elementName: 8 characters alphanumeric string that identifies the element
requestID: a numerical identifier
number_of_lines: the number of lines that have to be recovered from the circular buffer
 The LBUF command dumps number_of_lines lines of the circular buffer into a local variable.
Then the user has to perform a TCP_DCS query with the opcode 3 (FETCH_U8_BUFFER), that
brings the content of the local variable to the console level. A match of the first I32 number of the
retuned data with the previously issued requestID, ensures that the data are related to the last
issued LBUF command.
e.g.: LBUF WCMT*001 123,512
CMDS <elementName> <hexadecimalMask>
CMDC <elementName> <hexadecimalMask>

these two cammands allows to issue commands to the RTA:
- CMDS sets the handshakeMaster register bits (as indicated in hexadecimalMask) to "1";
- CMDC sets the handshakeMaster register bits (as indicated in hexadecimalMask) to "0".

elementName: 8 characters alphanumeric string that identifies the element
hexadecimalMask: 32 bit mask expressed in hexadecimal
 Both CMDS and CMDC commands affect only the bits indicated by the hexadecimalMask,
leaving the other ones unmodified. Possible values for the hexadecimalMask are:
0x0100 perform calibration (the bit is immediately reset to "0" by the RTA)
0x0200 apply calibration (the bit remains set to "1" and must be reset with a CMDC command)
e.g.: CMDS WCMT*001 400

3.2.3 Central Memory Update
 Histogram memories and timed circular buffers reside in the level 3 processor RAM.
Histogram memories are dumped by the SC task to log files whilst the circular buffers are
dedicated to user's applications. As said above, the access to the circular buffers from the console
requires two actions: the LBUF command and the FETCH_U8_BUFFER query. This means that -
even though the system bandwidth is adequate to sustain a continuous dump of the buffers - they
are not confortable data sources for a live display.
 For this purpose, the level 3 processor continuously stores the last acquired charge values also
into the central Object Caching1 of the Control System which allows the user's application to get
the most recent data at ease.

1 The DAΦNE Control System is designed around a central storage area. The distributed processors - hosting the
control programs - update the device data into this central cache. These data are then available to be fetched by the
consoles running the user applications. In its first version, the Control System was using a common VME address
space for the central cache. At the moment this method is being replaced by a Key-Value DB on RAM
(Memcached). The main advantage of using the Memcached software instead of the VME address space is that it
guarantees a complete independence from the hardware.

C-22 pg. 10

Figure 6: Flowchart of the calibration algorithm performed by the RTA.

C-22 pg. 11

4. User Interface
 At console level, the user program keeps fetching the live data from the central cache.

Figure 7: The user interface. At the top of the window, two indicators display the machine mode
and status. The two bar-graphs below, show the charge across the monitors for the LAC and AMR
states.

 Currently, it has been developed a simple but effective user interface (Fig. 7) which displays
the machine mode, status and the live graphs indicating the intensity of the beam charge along the
transfer lines paths. Further versions will be released on the base of the users' needs.

5. Disclaimer

 One of the possible uses of this DAQ system is to monitor over time - for radiation safety purposes -
the integral of the beam charge injected into the DAΦNE damping ring and main rings.
 With regards to this specific application, it has to be stressed that - even though all the hardware
employed in the system (power supplies, electronic boards, processors, network, storage systems, and so
on…) is high-end - the software has been designed to be compatible with the DAΦNE Control System
framework rather than to run on redundant systems.
 This means that, even though the information returned by this DAQ system can be considered reliable,
it must not be used under any circumstance on matters of health security or general safety.

References
[1] G.Di Pirro et al: "DAΦNE Timing States Update", DAFNE Technical Note CD-8, February 1997

http://www.lnf.infn.it/acceleratori/dafne/NOTEDAFNE/CD/CD-8.pdf
[2] A. Ghigo, et al: "DAΦNE Beam Instrumentation", Proc. Of Beam Instrumentation Workshop (1998)

USA, AIP Conference Proceedings 451, p.183.
[3] Bergoz Instrumentation: BCM Charge Monitor User’s Manual, Bergoz Instr 01630 Saint Genis Pouilly

(France).
[4] F. Agostini, P. Ciuffetti, A. Stecchi, "DJANGO: A Tool for the Analysis and Presentation of the

DAΦNE Beam Integrated Charge Data", DAΦNE Technical Note C-21, February 2014.

