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Typographical Conventions  
 Where a term is enclosed in brackets " < > ", that term is a placeholder for an alphanumeric 
string or a variable name 
e.g. <element_name> is a placeholder for the string BCMTM001 
 Where two or more terms are enclosed in braces and separated by a pipe " { a | b | c } ", those 
terms are alternative one another 
e.g. {ON|OFF} could be ON or OFF 

Introduction 
 The system described in this note acquires and processes the raw signals provided by the 
toroidal charge monitors installed along the DAΦNE transfer lines.  
 Electron or positron pulse charges are acquired at the beam rate at each pickup, according to 
the different DAΦNE timing states[1] and displayed on the control system consoles. A dedicated 
storing process allows offline analysis, to provide evaluation of the injection efficiencies useful for 
machine tuning and the charge integrals over time required to monitor radiation safety. 

1. System Setup 
 Nine integrating current transformer (ICTs), equipped with wall current bypass and 
electromagnetic shields, are installed over ceramic gaps in the vacuum chamber along the transfer 
lines which connect the Linac to the Accumulator and to the Main Rings[2], as reported in Fig. 1. 

 
 

Figure 1: Locations of the BCM monitors along the DAΦNE Transfer Lines. 
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 Each ICT is capable of integrating the fast rise-time pulse induced by the Linac bunched beam 
with a 20ns time constant and is connected through coaxial cables to an array of BCM detection 
board electronics[3] whose pseudo-DC outputs, proportional to the pulse charge, are sampled by 
VME ADCs.  
 The software code described in the following chapters controls the digital I/O channels 
providing to each BCM board the TTL levels which select the gain settings and enable/disable the 
calibration mode. 
 Figure 2 reports a schematic layout of the toroidal charge monitor system installed in the 
DAΦNE transfer lines. 
 

  
Figure 2: Schematic Layout of the Data Acquisition System. 

 According to the current timing state associated with the transport of e+/e- pulses along 
different zones of the machine: 
 

• LSP Linac to Spectrometer 
• LBT Linac to BTF 
• LTA Linac to Accumulator 
• AMR Accumulator to Main Rings 

 
the beam crosses different monitor sequences as reported in Table 1: for each monitor it is 
indicated the relative Bergoz BCM module and the ADC channel. The last two columns indicate, 
both for positron and electron modes, the relevant timing state. 
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Table 1: BCM monitors used in the DAQ System. 

 
Monitor 

Bergoz Module 
CAC + BSP [A-J] 

ADC Channel 
[0-15] 

Positron mode Electron mode 

BCM TM 001 A 08 LSP, LBT, LTA LSP, LBT, LTA 

BCM TE 002 B 07 - AMR 

BCM TB 002 C 06 LBT LBT 

BCM TT 001 D 05 LTA, AMR LTA, AMR 

BCM TR 001 E 04 LTA AMR 

BCM TL 001 F 03 AMR LTA 

BCM TT 002 G 02 AMR AMR 

BCM TP 001 H 01 AMR - 

BCM TE 001 J 00 - AMR 

3. Code description 
 In the DAΦNE Control System each hardware device is represented by a class. Different 
device typologies correspond to different classes. 
 A class consists of a data structure that contains all the physical quantities that are relevant to 
the device control processes and five standard methods for the device management (Table 2). 
 
Table 2: The five standard class methods. Each class expresses Instantiations of theses methods, 
characterized by a prefix specific for that class (e.g. for the class BCM, BCMClose is the 
instantiation of the close method). 
 
Methods Actions 

loadRTDB loads the global variables with the data taken from the configuration files 

initHW performs the hardware initialization at program start-up 

ctrl performs the continuous control of the device 

cmd  executes the commands issued to the device 

close executes the closing tasks at program stop 

 
 The DAΦNE charge DAQ system employs two classes:  
 BCM (Beam Charge Monitor) 

which is related to the i-th monitor as well as its associated signal conditioning front-end 
module. The BCM class provides methods for setting the individual gain, the 
inverted/not_inverted and calibrating/not_calibrating operating conditions. 

 WCM (Wall Current Monitor) 
which is related to the real-time acquisition hardware along with the fast data storage system. 
The instantiations of the methods for the BCM and WCM classes, are used to implement a 

DEVIL - that is a standard third-level application - running on the VME bus controller.  
The Charge Transport Monitor system has to be deterministic for what concerns the acquisition 

and memorization of the beam charge value at a given time. This means that the acquisition of the 
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beam charge - as well as all the related processing and storage tasks - has to occur synchronously 
with the machine timing signals (see §3.1 ). 

This has been obtained by splitting the code into a RTA (Real-Time Acquisition) task and a SC 
(Slow Control) task, communicating to each other through the internal processor RAM (see §3.1 
and §3.2 ). 

3.1 Real Time Acquisition task 
 The RTA task performs the data acquisition and the fast storage of live data.  
 
3.1.1 Algorithm 
 The DAΦNE timing distribution system broadcasts at 50 Hz, over a serial bus, a TSW 
(Timing State Word) that describes the incoming machine state. Besides the TSW, the timing 
system distributes also four marker signals (φ1, φ2, φ3, φ4) delayed by 90° (5 ms): the TSW carries 
the information of the machine state and the φn signals are used to trigger the devices interested by 
the incoming timing state. 
 The TSW is dispatched with the φ1 trigger and describes the machine state that has to be 
considered as valid at the following φ4 trigger. In the Charge Transport Monitor, the φ1 trigger is 
used to strobe the ADC1 (calibration ADC) whilst the φ4 trigger is used to strobe the ADC4 
(acquisition ADC). This means that it is important to acquire the TSW at the φ1 pulse immediately 
precedent the φ4 pulse, in order to associate the proper machine state to the sampled values.  
 This is guaranteed by taking into account the STROBE_OVERRUN information available 
from the SCSR registers of the ADCs. The STROBE_OVERRUN is different from zero if more 
than a single strobe has occurred since the last ADC readout. 
 The RTA is performed by a C program that executes the deterministic acquisition of the 
ADCs sampled values and of the TSW, the TSW decodification and the fast storage of all these 
data into the processor RAM. 
 At first, the RTA creates two lookup tables (see Table 3): one for the positron mode (mode 
= 0) and one for the electron mode (mode = 1). Each lookup table has a number of lines equal to 
the number of possible machine states (0=LSP, 1=LBT, 2=LTA, 3=AMR / LSP+AMR) and a 
number of columns equal to the number of monitors plus 1. The first component of each line, 
counts the number of following meaningful components (that is how many monitors have to be 
taken into account for the machine state corresponding to that line). 
 The following components contain the ADC channel numbers which the monitor outputs 
(relevant for the given machine state) are connected to. 
 
Table 3: Lookup tables chSel_p for the positron mode (left) and chSel_e for the electron mode 
(right). 

  
 After the creation of the lookup tables, the code calls repeatedly the function WCMAcquire 
that is dedicated to the acquisition of the ADCs and of the TSW. 
 The TSW register content is used to work out the current mode and state; the mode value is 
used to choose the proper lookup table (see Table 3) whilst the state value is used to select the 
proper line from the chosen lookup table (see Fig. 3). 
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Figure 3: Extraction of the line corresponding to the LSP state from the chSel_e lookup table. The 
state value is used to select the proper line that is then loaded into a 1-D array. 
 
 Dealing with no interrupt mechanism, the determinism is obtained by mean of the following 
polling sequence (see Fig. 4): 
 (A - C) READ ADC1 

• keep polling the ADC1 register that indicates if the φ1 strobe has occurred 
• acquire the ADC1 values 

(C - D) READ TSW 
• the TSW is related to some previous φ1 pulse 

(D - F) READ ADC4 
• keep polling the ADC4 register that indicates if the φ4 strobe has occurred 
• if the STROBE_OVERRUN of ADC4 is 0, then 

o just a single φ4 pulse has occurred since the previous ADC4 readout 
o the TSW is related to the immediately previous φ1 pulse 

 
Figure 4: The D-E and A-B gaps compensate the absence of synchronism between the routine 
execution and the φn pulses, as well as any latency due to the Linux OS background tasks. All the 
conversion and storage functions executes during the F-A lap. 
 
3.1.2 Data Storage 
 The acquired values are stored in two different ways: histogram memory arrays and timed 
circular buffers, both residing on RAM. 
 In the histogram memory arrays, each component corresponds to a monitor and contains the 
growing sum of its acquired charge values [nC] whilst in the circular buffers each line contains the 
last acquired charge values [nC] of all the monitors. 
 In both cases they are used fixed size storage array, with the BCM channels always in the 
same position. 



C-22  pg. 6  

 
 

 For the histogram memory arrays the storage format is:  
c0 c1 c2 c3 c4 c5 c6 c7 c8  

 There are dedicated histograms for each machine state and mode so that there is no need 
storing mode or state information besides data. The number of histograms is N*2, where N is the 
number of machine states and the factor 2 is due to the possible machine modes. 
 In histograms, only the values of the ADC channels meaningful to the current mode and state 
are incremented. 
 For the timed circular buffers, the storage format for each line is:  

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9  
The c0 component contains a value combining both the mode and the state information 

by mean of the following function: 
 value = (mode * 10 ) + state 
 In such a way, the states for the electron mode are represented by values in the interval (0-3) 
whilst the states for the positron mode are represented by values in the interval (10-13). 
 The following c1, c2, ..., c9 components contain all the ADC channel readouts converted in 
nC. Two running pointers (for e+ and e-) indicate the last acquisition: when the pointer reaches the 
bottom of the buffer, it wraps around and restarts from the beginning. 
 The circular buffer does not employ time tagging and the time base is settled by the 50 Hz 
sampling trigger. On idle machine state (state = -1) or in case of trigger lack, the buffer is not 
filled, with a consequent unknown time gap between the buffer lines. This means that the circular 
buffer grants the data pacing but gives no information about the absolute time value. 

3.2 Slow Control Task 
 The SC task is in charge of logging the histogram arrays on disk, executing the user 
commands and updating the BCM readouts into the central memory area (which is accessible by 
the consoles).  
 
3.2.1 Data Logging 
 As said above, the histogram memories reside on RAM. This means that their data are volatile 
and will be lost in case of a processor reboot. For such reason, it has been implemented a periodic 
dump of the histogram memories to log-files. 
 The SC task creates at 00h00 of each day a new log file (e.g. 20121231_histo.log) and then - 
every minute - it appends to the file a new record with all the histograms content. 
The log-file is written in plain ASCII text (see Table 4 for the line format and Table 5 for an 
example of the log-file content). 
 
Table 4: Format of the log file line. The "tab" character is used as fields separator and a "nl" as 
EOL.  

Field  Format  Example 
date yyyymmdd 20121231 
time hhmmss 062023 
mode (human readable) {e | p} e 
mode (coded) {0 | 1} 0 
state (human readable) {LSP | LBT | LAC | AMR} AMR 
state (coded) {0 | 1 | 2 | 3} 3 
monitor[0] float64 value with 6 decimal digits [nC] 77445.739746 
monitor[1] float64 value with 6 decimal digits [nC] 0.000000 
monitor[...] ... ... 
monitor[8] float64 value with 6 decimal digits [nC] 0.000000 
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Table 5: Example of the record appended every minute to the log file (the ellipses indicate the 
series of values for the intermediate monitors). 

 
 
 The SC task performs a straight transcription of the histogram memories to the log-file. This 
means that, should the processor reboot, the histograms written to the log file will restart from 
zero. The log files are consequently not suitable for a direct read-out of the total charge integral 
but must be post-processed. This has led to the development of the DJANGO project[4] which is 
specifically dedicated to the post-processing, storage and presentation of the data produced by this 
DAQ system (see Fig. 5).  
 

 
 
Figure 5: Workflow of the DJANGO system. A Java application processes the log files produced 
by the SC task and pushes the elaborated data into a relational database. A WEB application - 
employing JavaScript on the client side and PHP on the server side - displays an interactive plot of 
the integrated charge for the different machine states and modes. 
 
3.2.2 User Commands 
 Each of the two DAQ system classes (see par. 3) has its own set of commands. Usually these 
commands are hidden to the user, being automatically created and issued by the GUI (Graphic 
User Interface) upon specific window actions. 
 A list of the implemented commands is reported below. 
 
3.2.2.1 Commands for the Class BCM 
SETT <elementName> {G|G1|G2},<dB> 
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 This command changes the sensitivity of a BCM board [dB] and accordingly updates the 
corresponding conversion factor in RAM. This conversion factor [V/nC] is needed by the RTA 
task for a proper conversion of the ADC voltage readout [V] in charge value [nC]. 
 
elementName: 8 characters alphanumeric string that identifies the element 
{G|G1|G2}: parameter that indicates which stage has to be used to set the requested gain: 

G1 for stage 1, G2 for stage 2, G for both stages 
dB: value in dB of the gain. Legal values for <dB> are the following integers: 

G1 = 0, 6, 12, 20 
G2 = 6, 20 
G = 6, 12, 18, 20, 26, 32, 40 

 
e.g.: SETT BCMTM001 G,26 
 
SWTC <elementName> {INV|CAL},{ON|OFF} 

 
 The BCM boards can generate an internal voltage signal and use it as input for the integrating 
section, which is useful for calibration purposes. The boards also allow for the inversion of the 
input signal. 
 This command switches ON or OFF the Inversion and Calibration conditions of a BCM 
board. 
 When the command is related to the calibration mode, it also sets the sign of the 
corresponding conversion factor in RAM (positive for calibration = OFF, negative for calibration 
= ON). The RTA task uses the sign of the conversion factors to know if the BCM boards are in 
calibration mode or not. 
 
elementName: 8 characters alphanumeric string that identifies the element 
{INV|CAL}: specifies whether Inversion or Calibration has to be set: 

INV = Inversion 
CAL = Calibration 

{ON|OFF}: specifies whether the specified condition has to be turned ON or OFF: 
 
e.g.: SWTC BCMTM001 CAL,OFF 
 
INIT <elementName> 

 
This command is a macro that calls twice the SWTC executor with the following parameters 
 SWTC <elementName> INV,OFF 
 SWTC <elementName> CAL,OFF 
 
elementName: 8 characters alphanumeric string that identifies the element 
 
e.g.: INIT BCMTM001 
 
3.2.2.2 Commands for the Class WCM 
CALI <elementName> {EXEC|ON|OFF} 

 
 Contrary to what happens in the SWTC command of the BCM class (that affects the internal 
calibration of the BCM boards), the CALI command is concerned with the calibration obtained 
acquiring the toroidal monitors response to known pulses sent — on the φ1 strobe — to coils 
wrapped around the toroids. The responses of the toroids are then acquired reading the ADC1, 
converted with the proper conversion factors and stored as pure numbers (0 - 1) into a calibration 
array. A flowchart of the calibration algorithm performed by the RTA is shown in Fig. 6 . 
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elementName: 8 characters alphanumeric string that identifies the element 
{EXEC}: acquires, converts and stores the toroids response into a calibration array 
{ON|OFF}: specifies whether the ADC4 readouts have to be dynamically multiplied by the 

calibration array or not.  
e.g.: CALI WCMT*001 EXEC  
LBUF <elementName> <requestID>,<number_of_lines> 

 
 Dumps the required number of lines from the circular buffer, going backward from the most 
recent one.  
elementName: 8 characters alphanumeric string that identifies the element 
requestID: a numerical identifier 
number_of_lines: the number of lines that have to be recovered from the circular buffer  
 The LBUF command dumps number_of_lines lines of the circular buffer into a local variable. 
Then the user has to perform a TCP_DCS query with the opcode 3 (FETCH_U8_BUFFER), that 
brings the content of the local variable to the console level. A match of the first I32 number of the 
retuned data with the previously issued requestID, ensures that the data are related to the last 
issued LBUF command.  
e.g.: LBUF WCMT*001 123,512  
CMDS <elementName> <hexadecimalMask> 
CMDC <elementName> <hexadecimalMask> 

 
these two cammands allows to issue commands to the RTA: 
- CMDS sets the handshakeMaster register bits (as indicated in hexadecimalMask) to "1"; 
- CMDC sets the handshakeMaster register bits (as indicated in hexadecimalMask) to "0". 
 
elementName: 8 characters alphanumeric string that identifies the element 
hexadecimalMask: 32 bit mask expressed in hexadecimal  
 Both CMDS and CMDC commands affect only the bits indicated by the hexadecimalMask, 
leaving the other ones unmodified. Possible values for the hexadecimalMask are:  
0x0100 perform calibration (the bit is immediately reset to "0" by the RTA) 
0x0200 apply calibration (the bit remains set to "1" and must be reset with a CMDC command)  
e.g.: CMDS WCMT*001 400 
 
3.2.3 Central Memory Update 
 Histogram memories and timed circular buffers reside in the level 3 processor RAM. 
Histogram memories are dumped by the SC task to log files whilst the circular buffers are 
dedicated to user's applications. As said above, the access to the circular buffers from the console 
requires two actions: the LBUF command and the FETCH_U8_BUFFER query. This means that - 
even though the system bandwidth is adequate to sustain a continuous dump of the buffers - they 
are not confortable data sources for a live display. 
 For this purpose, the level 3 processor continuously stores the last acquired charge values also 
into the central Object Caching1 of the Control System which allows the user's application to get 
the most recent data at ease. 

                                                

 
 

1 The DAΦNE Control System is designed around a central storage area. The distributed processors - hosting the 
control programs - update the device data into this central cache. These data are then available to be fetched by the 
consoles running the user applications. In its first version, the Control System was using a common VME address 
space for the central cache. At the moment this method is being replaced by a Key-Value DB on RAM 
(Memcached). The main advantage of using the Memcached software instead of the VME address space is that it 
guarantees a complete independence from the hardware. 

 

___________________ 
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Figure 6: Flowchart of the calibration algorithm performed by the RTA. 
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4. User Interface 
 At console level, the user program keeps fetching the live data from the central cache. 
 

  
Figure 7: The user interface. At the top of the window, two indicators display the machine mode 
and status. The two bar-graphs below, show the charge across the monitors for the LAC and AMR 
states. 
 
 Currently, it has been developed a simple but effective user interface (Fig. 7) which displays 
the machine mode, status and the live graphs indicating the intensity of the beam charge along the 
transfer lines paths. Further versions will be released on the base of the users' needs. 

5. Disclaimer 
 
 One of the possible uses of this DAQ system is to monitor over time - for radiation safety purposes - 
the integral of the beam charge injected into the DAΦNE damping ring and main rings. 
 With regards to this specific application, it has to be stressed that - even though all the hardware 
employed in the system (power supplies, electronic boards, processors, network, storage systems, and so 
on…) is high-end - the software has been designed to be compatible with the DAΦNE Control System 
framework rather than to run on redundant systems. 
 This means that, even though the information returned by this DAQ system can be considered reliable, 
it must not be used under any circumstance on matters of health security or general safety.  
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