
KK

DAΦNE TECHNICAL NOTE
INFN - LNF, Accelerator Division

 Frascati, 07/02/2014
 Note: C-21

DJANGO: A TOOL FOR THE ANALYSIS AND PRESENTATION OF THE

DAΦNE BEAM INTEGRATED CHARGE DATA

F. Agostini, P. Ciuffetti, A. Stecchi

Introduction
 The DAΦNE operation involves the transport of electrons/positrons - through the transfer
lines - from the LINAC up to the Main Rings. The knowledge of the injected charge integral into
the accumulator and the main rings over time is very important, both for a systematic evaluation of
the beam transport efficiency and for matters of safety.
 In this paper we describe an application dedicated to the post-processing, storage and
presentation of the data produced by the DAΦNE Charge Transport Monitor System (CTMS).
This application integrates different software technologies such as: MySQL database, Java,
Javascript and PHP.
 The objectives of the DJANGO (Data analysis with JAva and Nifty Graphical Output) project
are:
• to process the data coming from the CTMS log files and push them into a relational database;
• to present the acquired data through a user-friendly WEB application.

1. Data Description
 During the DAΦNE operation the e+/e- beam is driven to different machine zones depending
on the specific machine phase:
• LSP LINAC to Spectrometer;
• LBT LINAC to BTF;
• LTA LINAC to Accumulator;
• AMR Accumulator to Main Ring.

 In these phases, the beam runs different paths and crosses different sequences of the beam
charge monitors installed along the transfer lines (see Table 1).

Table 1: Charge monitors involved in the different machine phases both for e- and e+ modes.

Machine phase Electrons mode Positron mode

LINAC to Spectrometer WCMTM001 WCMTM001

LINAC to BTF
WCMTM001
WCMTB002

WCMTM001
WCMTB002

LINAC to Accumulator
WCMTM001
WCMTT001
WCMTL001

WCMTM001
WCMTT001
WCMTR001

Accumulator to Main Ring

WCMTE002
WCMTT001
WCMTR001
WCMTT002
WCMTE001

WCMTT001
WCMTL001
WCMTT002
WCMTP001

C-21 pg. 2

 The CTMS performs a real-time acquisition of the signals coming out from the charge
monitors. It continuously stores the last acquired charge values into the central live storage area
(which is used for live presentations), increments the total charge values in temporary histogram
memories and periodically dumps these histograms to log files.

Figure 1: Schematic representation of the already existing CTMS.

1) disposition of the toroidal current monitors along the DAFNE transfer lines complex;
2) the signals coming from the toroidal current monitors are integrated by a dedicated front-end

which returns a voltage level proportional to the beam charge;
3) a program - running on an embedded VME processor - acquires the signals by mean of a

triggered ADC, updates the data into the Control System live storage area and produces log
files for further analysis.

2. Project Workflow
 The CTMS retains the beam charge acquired data into the RAM of the VME processor (see
Fig. 1, frame 3). These data are consequently volatile and will be lost in case of a CPU reboot (e.g.
for modification to the software or hardware maintenance).
For such reason, the VME processor dumps the content of its histogram memories to log files
every minute and - should the processor reboot - the histograms written to the log files will restart
from zero.
 This means that the log files are not suitable for a direct read-out of the total charge integral
but must be post-processed to resolve the eventualities described above. This has led to the
DJANGO project.
 DJANGO accesses the log files (following the creation date order) and calculates the
incremental sum for each charge monitor. The resulting data (monotonically increasing) are then
stored into a SQL database to ease the correlation of the monitor sequences with the different
machine operational phases (see Tab. 1). The graphical presentation is performed by mean of a
WEB application that accesses the database through SQL queries and plots the data using an up to
date JavaScript library. The entire workflow of the DJANGO architecture is shown in Figure 2.

C-21 pg. 3

Figure 2: Workflow of the DJANGO project. A Java application processes the log files produced
by the CTMS and pushes the elaborated data into a MySQL database. A WEB application -
employing JavaScript on the client side and PHP on the server side - displays an interactive plot of
the integrated charge for the different machine states and modes.

3. Java Application
 The purpose of the Java application is to parse all the log files produced by the CTMS, which
have not been parsed yet in some previous application runs. The application finds out and resolves
all the "restart-from-zero" occurrences, calculates the integral value for every current monitor for
any mode/status and streams the processed recordset to the database with a time resolution of one
hour.

Figure 3: Example of a log file produced by the CTMS. The figure shows one of the recordset that
are appended every minute to the file (the ellipses indicate the series of values for the intermediate
monitors).

 The application performs also a consistency check, storing into the database only if all the
data for a given day is present. Consequently the log file created the same day in which the
application is running is ignored, because it is still being filled.
 The Java application has been developed following an MVC (Model, View, Controller)
architectural pattern, so to separate internal representations of information from the way the
information is presented to or accepted from the user (in our case the View part of the pattern is
done by the JavaScript).

C-21 pg. 4

 A brief description of the Java classes follows (see Fig. 4):
• FileParser: this class is used to parse every log file, excluding those already processed and

pushed into the database. The log file created the same day the software is ran on is also
ignored to avoid partial parsing;

• ListFiles: this class is used to obtain a list of all the log files present in the log directory,
excluding those that are not WCM log files;

• SyncDb: this class contains the main method for the Java application. It is used to parse all the
log files and make them ready for the database;

• MySQLConnection: this class is in charge of connecting, reading and writing from/to the
database;

• SamplingData: this is the Entity class that represents a log file row. It is used during the
parsing to identify row-by-row data;

• LastWcmData: this is the Entity class that represents the last data stored into the database.

Figure 4: Class diagram.

C-21 pg. 5

4. Database Structure
The structure of the MySQL database consist of 5 tables (see Fig. 5):
• WCM: This table contains all the WCMs with their position in the machine and their state

(online, offline);
• MODE: This table contains all the possible mode in which the machine can run (electrons,

positrons);
• STATE: This table contains all the possible states in which the machine can be while running:

 LSP LINAC to Spectrometer;
 LBT LINAC to BTF;
 LTA LINAC to Accumulator;
 AMR Accumulator to Main Ring.

• ACQUISITION: This table contains all the raw acquisitions from all the beam charge
monitors;

• ACQ_OFFSET: This table contains the last raw values acquired from the last parsed file,
witch are used from the parser to properly calculate the integral across parsing actions.

Figure 5: Database ER Diagram.

The MODE table:

ID 0 1
VALUE e p

("e" and "p" represent the electron and positron modes)

The STATE table:

ID 0 1
VALUE LSP LBT
DESCRIPTION LINAC to Spectrometer LINAC to BTF

ID 2 3
VALUE LTA AMR
DESCRIPTION LINAC to Accumulator Accumulator to Main Ring

C-21 pg. 6

The WCM table:

ID 0 1 2 3 4
VALUE WCMTE001 WCMTP001 WCMTT002 WCMTL001 WCMTR001
POSITION … … … … …
ONLINE 1 1 1 1 1

ID 5 6 7 8
VALUE WCMTT001 WCMTB002 WCMTE002 WCMTM001
POSITION … … … …
ONLINE 1 1 1 1

5. Graphical Presentation
 In order to visualize the data coming from the MySQL database we have adopted Highstock1.
Highstock is a pure JavaScript charting library - working in any WEB browser - that allows you to
create general timeline charts. It includes sophisticated tools such as selectors for date and time
and controls for zooming and panning. Among the many Highstock available charts, we have
chosen the Compare multiple series plot, which is very suitable for plotting the integral charge for
many monitors at a whole. Finally, with the exporting module enabled, it is also possible to save
the charts as graphic files in PNG, JPG, PDF or SVG formats and print them directly from within
the WEB page (see Fig. 6). The data transfer between MySQL and the Highstock application is
obtained by mean of a PHP script that generates JSON (JavaScript Object Notation) data for any
given request coming from the Highstock application. The PHP script accesses the MySQL
database in read-only mode, to ensure data security and avoid SQL injection.

Figure 6: Highstock data visualization through a WEB browser.
The four press buttons and the two radio in the top bar of the windows allow to select the wanted
machine phase and the electrons or positrons mode. After any action on these controls, the chart
dynamically updates showing the integrated charge for all (and only) the monitors involved in the
selected phase and mode (the vertical scale is in Arbitrary Units).
The markers at the bottom allow zooming in/out the time span and the scroll bar to pan over time.

C-21 pg. 7

6. Performances
 In our test the Java parser has run on a server Sun Fire v20z with an AMD Opteron @1.8GHz,
2GB RAM, with Linux CentOS 5.5 x86_64 and Java SE Runtime Environment 1.7.0_51.
On this setup it takes 0.75 s to the Java parser to process a single daily log file. This time is
obviously required only once because since data are put in the database, the log files are no longer
used.
 The drawing time depends on the length of the period and the number of monitors that have to
be shown for the requested status and mode.
 The drawing time for 1 year of data is 3.2 s/Nm, where Nm is the number of monitors.

References
[1] Highsoft AS: http://highsoft.com

