

KK

DAΦNE TECHNICAL NOTE

INFN - LNF, Accelerator Division

Frascati, September 30, 1994

Note: C-15

DANTE SYSTEM

SOFTWARE DESCRIPTION

M. Verola

1. Introduction

The DANTE Control System is made up of hardware equipment and software
programs needed to perform controlling and monitoring tasks on DAΦNE. The
software programs can be grouped in three different parts:

• Human Interface & High Level Software Interface
• System Software
• Peripheral Device Software

The Human Interface is the external appearance of the system and enables the
operator to interact with underlying services. It uses the Graphic User Interface
displayed on the computer screens at the first level. The High Level Software
Interface is the software platform (server) which provides a communication channel
towards the Control System services to external applications (clients).

The System Software is the heart of the Control System and defines its software
architecture.

The Peripheral Device Software consists of all those device-oriented programs
and driver routines that talk directly with the controlled elements to send specific
commands and to retrieve information relevant to the machine status.

In this note I will describe the DANTE System Software, focusing on those
programs that are inherently bound to the Control System (see also [1], [2] for un-
derstanding the DANTE logical structure).

2. Software Environment

The System Software runs on a hardware platform made up of several distributed
CPUs and comprises many applications which share and exchange data. It has to
guarantee the following services:

• fast message delivery
• error handling
• system events logging
• system failures notification and recovering
• on-line database coherence and reliability
• off-line database services.

C-15 pg. 2

The Control System programs run under Apple System 7 and are built using G
graphical programming language, provided by LabVIEW Software [3]. Some routines
for low level and time critical tasks are written in C or in Assembler language.

We have chosen LabVIEW environment because it can speed up software devel-
opment, yielding high-quality code at reduced manpower. The most important fea-
tures met by the LabVIEW Software environment are:

• built-in interactive user interface
• extensive library of functions and development tools
• debugging tools
• code reliability
• software development time reduction (respect to other general purpose pro-

gramming languages, like FORTRAN, Pascal, C, ...)
• self-documenting
• ease to modify and to maintain
• link to external code written in a conventional programming language (Code

Interface Node or CIN).

3. Memory Mapping

We use DMA (Direct Memory Access) to exchange information among all the
CPUs. The VME memory is the main medium for sending messages, for storing the
Real Time Data Base (RTDB) and for housing various data structures in the Service
Area [2]. The communication boards installed in VME crates and in the Macintosh
slots are configured to perform memory mapping between the VME memory modules
and the CPU address space.

There is a pair of LEXTEL LL2000 boards (VMEbus-VMEbus Coupling System)
linked by Coax or Fiber Optic Cables, depending on the distance, to connect two
VME crates, and a CES MAC 7212 card (Macintosh to VME 32-bit Interface) linked
by a flat cable to a CES VIC 8250 board (VMV to VME One Slot Interface) for
Macintosh-VME crate communication. There is no software communication protocol
because data are stored in shared memory locations, directly addressable by the
CPUs. Figure 1 shows a scheme of the DANTE architecture.

Memory mapping is performed by initializing and setting specific registers on the
communication boards. CES MAC 7212 provides 256 page descriptors, which are
special registers used to map 1MB of VME memory into the Macintosh's address
space, for a maximum of 256MB. LEXTEL LL2000 allows up to 4096 separate 4KB
memory pages on the local VME bus to be mapped into any 4096 separate 4KB
memory pages on the remote bus, for a maximum of 16MB.

The first level Consoles and the single second level CPU, CARON, can address all
the VME memory in the system, while the third level CPUs, the DEVILs, can only
access their own VME memory (Fig. 2). The Consoles and CARON are Apple
Macintosh Computers, while the DEVILs, which are our peripheral VME CPUs, are
standard Macintosh LC III logic boards assembled to a custom developed interface to
VME, VSB and Ethernet, equipped with 4 additional MBytes of RAM memory (the
DEVIL's VME memory). The Consoles do not own VME memory, while CARON
borrows 4MB of VME memory (the CARON's VME memory) from a DEVIL CPU in-
stalled at the second level. This DEVIL acts as the System Logger, dumping RTDB
records and logs (commands, warnings and errors) onto an external SCSI magnetic or
optical disk.

C-15 pg. 3

Consoles
1s

t
L

ev
el

coax/optical links to HELL

VME Bus

2n
d

 L
ev

el
C

E
S

 V
M

V
 B

us
: M

ac
-V

M
E

1st crate:
- Logger DEVIL
- 2 CES VMV interfaces
- up to 15 LL2000

2nd, 3rd, ... crates:
- CES VMV interface
- up to 18 LL2000

C
E

S
 8

25
0

VME Bus

coax/optical links to 3rd Level

C
E

S
 8

25
0

CARON

SC SI

LL
20

00

LL
20

00
LL

20
00

LL
20

00

LL
20

00

Lo
gg

er
 D

E
V

IL
 &

V
M

E
 m

em
or

y
LL

20
00

LL
20

00
LL

20
00

LL
20

00
LL

20
00

LL
20

00
LL

20
00

LL
20

00
LL

20
00

LL
20

00

C
E

S
 8

25
0

disk

CES VMV Bus: Mac-VME

LL
20

00

D
E

V
IL

 &
V

M
E

 m
em

or
y

I/O I/O I/O

coax/optical links
to 2nd Level

3r
d

 L
ev

el

•••

V
M

E
 c

ra
te

s

VME
 Bus

-DEVIL
-LL2000
-I/O Boards

Fig. 1 - The DANTE Control System architecture.

The Ethernet network and the links to second level remote crates are not explicitly shown.

C-15 pg. 4

CARON

V
M
E

R
A
M

D
E
V
I
L

V
M
E

R
A
M

D
E
V
I
L

D
E
V
I
L

V
M
E

R
A
M

C
A
R
O
N
' s

V
M
E

R
A
M

Console Console Console Console Console

Fig. 2 - The Consoles and CARON accessing the VME memory.

Within this system architecture we have followed the general rule that each level
is able to access all the VME memory of the lower levels, but not vice versa, realizing
a hierarchical memory mapping.

Assuming that Cadd is the base address of CARON's VME memory (4MB),
Consoles and CARON have the following table of addresses (note that each DEVIL
apportions only 3MB of its 4MB of VME memory to the Virtual Central Memory):

start end size description

Cadd Cadd + $003FFFFF 4MB CARON' s VME memory

Cadd + $00400000 Cadd + $006FFFFF 3MB 1st DEVIL' s VME memory

Cadd + $00700000 Cadd + $009FFFFF 3MB 2nd DEVIL' s VME memory

• •

Cadd + $00400000 +
(i − 1) × $00300000

Cadd + $00400000 +
(i − 1) × $00300000 +
$002FFFFF

3MB ith DEVIL' s VME memory

In this way all the VME memory in the system is addressable at contiguous ad-
dresses, even though it effectively resides on different memory boards on different
VME crates.

The existing Ethernet network linking all the CPUs is mainly devoted to service
tasks, like CPU remote bootstrapping, data uploading and downloading, severe error
notification, software maintenance and program debugging. The communication
protocol running on Ethernet is AppleTalk.

4. The System Software

It is worthwhile to divide Control System programs in relationship to the system
levels:

• First Level Software
• Second Level Software
• Third Level Software

C-15 pg. 5

4.1. The First Level Software

The first level programs, running on the Consoles, consist of a common software
kernel and many peculiar graphic interfaces. All the Consoles are equivalent respect
to the running software and the provided services. We can generalize the structure of
the software, by identifying three main blocks:

• Graphic Interface
• Common Algorithmic Kernel
• Interactive Window Navigation System

The Graphic Interface displayed on the Console screen depends on the element
or set of elements that are being controlled and on the types of data that are being
observed; hence it is tightly tailored to the peculiar features of the controlled
elements. Furthermore there are different levels of interfaces, depending on their
purpose: an Expert Interface for low level monitor, maintenance and machine op-
timization, and an Operator Interface for standard machine operations. An authen-
tication mechanism will be implemented, based on personal identification codes, to
ensure restricted access to the Control System services. Finally the graphic interface
is built up by many customized graphic panels, which constitute virtual instruments,
showing buttons, knobs, charts, graphs, plots, switches, sliders and all kinds of
graphic objects that simulate on the Console screen the real indicators and readouts
of the controlled element.

The Common Algorithmic Kernel is implemented by a Monitoring Loop performing
two sets of tasks, related to the data flow direction. One set is for sending data
(messages) from the Consoles to the DEVILs through CARON and includes an Input
Interface, a Command Builder and a Message Sender. The other retrieves data
(Element Descriptive Record stored in the RTDB) from the DEVIL's VME memory to
visualize them on the Consoles, using a customized RTDB Reader, and looks for
incoming messages from lower levels by means of a Message Manager.

The Input Interface is the whole of the graphic window with the underlying Event
Manager routine, which checks if any kind of input has been performed, like, for
instance, pushing a graphic button with the mouse pointer. When an input event is
detected, a proper command message is built by the Command Builder and then the
message is sent to CARON by the Command Sender using the Mailbox mechanism
(Fig. 3).

The RTDB Reader is a recursive code (written in C language and linked as a CIN)
which is able to read any element descriptive record stored in the VME memory,
depending on the type descriptor (Fig. 4). Furthermore the Message Manager is
responsible for handling error and warning messages coming from lower levels,
displaying a concise description of the problem and possible actions to fix it.

The Interactive Window Navigation System allows to move within the large
number of graphic interface panels and options by selecting fields in popup menus or
by choosing among a set of icons.

C-15 pg. 6

M onitoring Loop

100 SWTC RFSA1001 RFOnOff ,OFF

Command
Builder

Command
Sender

CARON

command
message

First Level

Second Level

Fig. 3 - The Graphic Interface and the Common Algorithmic Kernel.

The procedure of command building and sending.

M onitoring Loop

CARON

First Level

Second Level

RTDB
reader

Third Level
DEVIL

VME memory

Fig. 4 - The Graphic Interface and the Common Algorithmic Kernel.

The visualization of RTDB element descriptive records.

C-15 pg. 7

4.2. The Second Level Software

The second level is formed by a single CPU, CARON. It is the heart of the control
system, because it is the central node for the data flow, routing requests coming from
the first level to the peripheral CPUs. It also relays to the Consoles the problem
notification generated by DEVILs.

4.2.1. The CARON's Program

CARON runs a program that is made of some initialization tasks and a never-
ending Main Loop.

The initialization tasks are needed to configure the hardware (communication
boards) and for setting specific registers for memory mapping. At this phase the
global memory map is filled in the boards' registers, so that CARON can address all
VME memory in DANTE.

After configuring the hardware, CARON initializes and loads the starting values of
those RTDB data structure that must be stored in its VME memory:

• Consoles' ALIVE Status Array
• DEVILs' ALIVE Status Array
• Log Areas (Command, Error, Warning Logs)
• ConsoleToCaron Mailboxes

Finally CARON begins the never-ending loop. The loop is configured as two
symmetric blocks plus the ALIVE check call. At each loop iteration a single Console
and a single DEVIL are checked in order to detect incoming messages. Two cyclic
indexes keep memory of the current console and the current DEVIL. The sequence of
instructions at each loop can be summarized as follows:

If the Console is ALIVE Then
read the Console's Mailbox
If the Mailbox was not Empty Then

decode the message
If the message is a valid command Then

forward the message to the proper DEVIL
Else

send error to the Console
Endif

Endif
Endif

If the DEVIL is ALIVE Then
read the DEVIL's Mailbox
If the Mailbox was not Empty Then

decode the message
If the message is a valid error/warning Then

forward the message to the proper Console(s)
Else

send error to every Console
Endif

Endif
Endif

If ALIVE timeout has occurred Then
call ALIVE check routine

Endif

C-15 pg. 8

Figure 5 shows a detailed flowchart of the CARON's program main loop.

iC=0
iD=0

Console[iC]
is Alive

TF

READ
Console_MB[iC]

Console_MB[iC]
was Empt y

TF

decode
message

Tmessage is a
valid command

F

f ind o ut t arget
DEVIL index -> jD

WRITE command
t o DEVIL_ MB[jD]

LOG
command

WRITE error t o
Console_MB[iC]

LOG error

DEVIL[iD]
is Alive

TF

READ
DEVIL_ MB[iD]

DEVIL_ MB[iD]
was Empt y

TF

decode
message

Tmessage is
a valid error or

warning

F

f ind o ut t arget
Console index -> jC

WRITE message
t o Console_MB[jC]

LOG message

WRITE error t o
every Console_MB

LOG error

iC=(iC+1)m od(NC)
iD=(iD+1)mod(ND)

TALIVE TimeOut
has occurred

F

call ALIVE check

NC=number o f Consoles
ND=number o f DEVILs
iC=current Console index
iD=curre nt DEVIL index
jC=index of destinat ion Console of t he
 error/wa rning message
jD=index of DEVIL cont ro lling t he t arget
 element of t he command

Fig. 5 - The CARON's program main loop.

The ALIVE check routine at each call determines the status of a pair of CPUs in
turn, a Console and a DEVIL, by comparing the value of the ALIVE Counter at time t
(the present call time) and t-1 (the previous call time): if they are equal it means that
the CPU is not working, because it has not increased the ALIVE Counter in the
period between two subsequent calls. The ALIVE Counters are memory locations held
in CARON's VME memory (Consoles' ALIVE Counters) or in each DEVIL's VME
memory (DEVIL's ALIVE Counter).

C-15 pg. 9

All the routines that read/write data from/to VME memory, handle the error
condition due to failure on the VME bus (BusError). In order to get rid of those errors
due to rare events, we always reserve a second try when accessing VME memory
before assuming that a BusError condition has been detected. In this case an error
message is promptly sent to the consoles. Then the CPU, which owns that VME
memory, is put in a faulty state, the BusError status. This is done to prevent CARON
from further attempts of reading/writing that VME memory, avoiding to get an error
message each time. Thus a previous check on the owner CPU status is always
executed whenever a VME memory access is needed.

When a BusError condition is detected in the VME memory of CARON itself, the
program stops executing after sending the last error message to all the Consoles
through the Ethernet network. Possible paths for getting a BusError in CARON's
VME memory are:

• accessing Consoles' Mailboxes (read/write)
• updating the ALIVE Status Arrays (write)
• reading the Consoles' ALIVE Counters (read)
• logging command/error/warning messages (write)

4.2.2. Startup of the ALIVE Mechanism

As all the CPUs boot and start running asynchronously, we had to face the
problem of guaranteeing a reliable startup mechanism of the ALIVE mechanism,
without incurring in BusError condition due to a DEVIL's VME memory not yet ini-
tialized.

We have defined four possible codes to qualify the CPU status:

Status Description
NotInit CPU has never initialized its VME memory
Dead CPU has stopped
Alive CPU is running
BusError CPU's VME memory is in BusError condition

When CARON program starts, all the DEVILs are put in NotInit status, while
Consoles are considered in Dead status. This permits to solve gracefully synchro-
nization problem at booting time among CARON and the first and third level CPUs. In
fact CARON can check from the beginning the Consoles' ALIVE Counters without
having BusError condition due to VME memory not yet initialized, because it is
reading its own VME memory, that was previously configured. On the other hand,
CARON needs to read external VME memory (DEVILs' ALIVE Counters), but does not
know if the owner CPU has already performed memory initialization tasks; so our
solution is to go on reading the DEVILs' ALIVE Counters located in DEVIL VME
memory, even though it gets a BusError condition. When CARON reads the ALIVE
Counter value successfully for the first time, the DEVIL is put in Dead status. Then,
when CARON detects that the ALIVE Counter begins to be increased, the CPU jumps
into the Alive status and CARON sends a warning message (CPUstart) to all the
Consoles. If a BusError condition occurs while CPU is Dead or Alive, the CPU is put
in BusError (that is out of order!) and no longer examined. In fact it is very likely that
a serious problem has occurred in its VME memory or in the crate VME bus or in the
communication cables, and human intervention is required to solve the accident.
Figure 6 shows a scheme of all the possible transitions between the different states.

C-15 pg. 10

not Ini t Dead

Al i veBer r

c(t) = c(t- 1)/
(CPU start)

star t

BusError=False

BusErro r= True

c(t) c(t -1)=

c(t) c(t -1)=

c(t) = c(t- 1)/

(CPU stop)

(CPU running)

(CPU stopped)

BusErro r=True

BusErro r= True

DEVIL

Dead

Ali veBer r

c(t) = c(t- 1)/
(CPU start)

star t
c(t) c(t -1)=

c(t) c(t -1)=
(CPU stop)

(CPU stopped)

BusError=True

BusError=True

c(t) = c(t- 1)/

Console

(CPU running)

Fig. 6 - The CPU state transition scheme.

4.2.3. Command Relaying

CARON is responsible for delivering the command messages coming from the
Consoles to the proper DEVIL. It uses a table to detect which is the DEVIL control-
ling the element that is the target of the command. If the element is not found in
CARON global element list an error message is generated and sent to the console
issuing the command. CARON does not perform any check for command validation
because this task is under responsibility of the DEVIL (see section 5 for message
format and naming convention).

CARON writes the command message in the DEVIL's Mailbox. It is worth noticing
that the mailbox mechanism implemented to exchange messages between different
levels is not affected by deadlock problems due to simultaneous shared memory
access. In fact the process of writing a message in a Mailbox by the sender never
interferes with the process of reading a message by the receiver. Both of them work
in the same memory area but on different addresses [4].

C-15 pg. 11

4.3. The Third Level Software

The Third Level programs are formed by a common kernel, the DEVIL's Main
Loop, and a pair of customized routines for each class of controlled elements, the
Command and the Control Routines.

4.3.1. The DEVIL's Main Loop

Before describing in detail the sequence of tasks of the DEVIL's program, it is
necessary to mention the logical organization of the elements into classes. A con-
trolled element is a physical device installed on DAΦNE that has to be monitored and
driven in a remote way by the Control System. There could be some exceptions to
this definition, because there are some elements in the Control System that do not
correspond to any physical apparatus, but they identify logical groups of physical
devices. However this case does not influence the following explanation.

Each controlled element is qualified by a class, a physical location and a numeric
identifier. A class is represented by a class name, which is a three characters code:
for instance, kickers belong to KCK class, while RF cavities to RFS class. The
physical location is encoded into a pair of chars: TL stands for Transfer Line, SR for
Storage Rings, and so on. Finally the element numeric identifier is a three digits
decimal number (starting from 000), that distinguishes similar elements within their
class.

The DEVIL's program starts initializing the hardware (VME memory, interface
boards in the crate) and then runs the Main Loop. The Main Loop is a never-ending
repetitive task, which performs three main actions at each iteration: reading the
mailbox, executing a command (if any), and controlling an element, plus the ALIVE
Counter updating (a simple writing of the loop counter value in a well-defined VME
memory location). The following pseudo-code highlights the sequence of operations:

read the Mailbox
If the Mailbox was not Empty Then

decode the message
If the message is a valid command Then

append the command to the Progress/Wait Queue
Else

send an error to the Console issuing the command
(via CARON)

Endif
Endif

If the ProgressQueue is not Empty Then
get next command from the ProgressQueue execute the command
If the command execution has been completed Then

remove the command from the ProgressQueue
If any command from the WaitQueue is available Then

move the command from the WaitQueue to the
 ProgressQueue

Endif
Endif

Endif

control the next element

update the ALIVE Counter

C-15 pg. 12

Figure 7 shows a detailed flowchart of the DEVIL's Main Loop.

iE=0
iL=0

READ
DEVIL_MB

DEVIL_MB

was Empty

TF

decode
message

Tmessage is a

valid co mmand

F

extr act tar get
element

Ta previous
 command on the tar get e lement

is st ill in progress

F

append th e command
to th e waitQueue

append the command
to the progQueue

WRITE error t o
DEVIL_MB

TF progQueue
is Empty

get n ext co mmand
fr om progQueue

execute co mmand

command
execut ion has been

complet ed

F T

delet e command
from progQueue

F Ta command on
the same tar get e lement

is in waitQueue

extr act co mmand
from waitQueue

append command
to progQueue

contr ol
element[iE]

WRITE (iL) t o
ALIVECount erAddress

iE=(iE+1)mod(NE)
iL=iL+1

NE=number of con tr olled elements
iE=current element index

iL=loop index

Fig. 7 - The DEVIL's Main Loop.

C-15 pg. 13

4.3.2. The Command Queues

Commands come to the DEVIL in the form of messages. They are translated from
string format to a set of scalar values and indexes (identifying the console issuing the
command, the class and the identifier of the element involved, the type of command)
followed by a variable length string field used for specific parameters. All these fields
are packed into a record. This is done because commands are not immediately
executed, but they are inserted as packed records in one of two command queues,
the ProgressQueue or the WaitQueue. The ProgressQueue holds those commands
that are ready to be executed or are being executed, while the WaitQueue contains
the rest of delivered commands (Fig. 8). The ProgressQueue and the WaitQueue
adhere to the following rules:

• in the Progress Queue there cannot be two commands with the same target el-
ement

• when a command has been completely executed, it has to be removed from the
Progress Queue

• every time a command is removed from the Progress Queue, another command on
the same target element (if any) can be transferred from the Wait Queue to the
Progress Queue.

The two command queues have a finite maximum dimension, which can be
configured as a static parameter. They are implemented as double linked list to speed
up the process of appending and extracting items dynamically.

1 0 0 SETT CHVTL00 1 8

1 0 0 SETT KCKA10 01 5

progress Queue w ait Queue

10 0 SETT KCKA10 0 1 10

10 0 SETT KCKA1 00 2 10

1 00 SETT CHVTL00 1 5

c omma nd e nq ueue i ng

c omma nd de le t i ng

1 00 SETT CHVTL00 1 8

1 0 0 SETT KCKA1 0 01 5

progress Queue w ait Queue

10 0 SETT KCKA10 0 1 1 0

10 0 SETT KCKA10 0 2 10

1 00 SETT CHVTL00 1 5

command
rout ine

1 00 SETT CHVTL00 1 8

execution complet ed!
de let e=T rue

command read fro m mailbox

Fig. 8 - The ProgressQueue and the WaitQueue.

The procedure of inserting a new command and the procedure
of deleting a command completely executed.

C-15 pg. 14

4.3.3. Element Reservation

To prevent competition problems in the use of an element between different
Consoles, we have conceived the element reservation mechanism. When a command
coming from a Console is being executed on an element, this element is automatically
reserved to that Console. It means that only the reserving Console can go on issuing
commands on the element, while the others are inhibited (they will get an error
message from the DEVIL controlling the element, if they try to send commands). To
make the element available again, a specific command, RELEASE, has to be issued
from the reserving Console. The RELEASE command is however automatically sent
when the operator stops working on that element by quitting the graphic interface
window on the screen of the Console. The DEVIL carries out element reservation by
setting the Console name in the dynamic data of the element descriptive record
stored in the RTDB.

4.3.4. Control and Command Routines

There are a Control Routine and a Command Routine for each class. As the first
three chars of the element name represent its class code, the DEVIL's program is
able to run the proper Command/Control routine for that element. It is difficult to
draw a general scheme for a common algorithm, because they are very specialized
and strictly depending on the peculiar features of the controlled element. In every
case the Command routine is roughly formed by a set of cases corresponding to the
set of command types, the services, that it can support, while the Control routine is a
global reading of the registers of the hardware interfacing the element to retrieve, at
each call, the values of the dynamic data describing the element.

5. Message Format

All messages in the system are divided into three categories:

• commands
• warnings
• errors

Commands are defined as the codification into a proper string of actions which
must be executed by a controlled device, like moving the current value of a magnet.

Warnings match those kinds of events that are noticeable, but do not require any
human immediate decision or intervention. They are informative messages, like the
start of a CPU.

Errors are notification of problems involving human decision and intervention.

Command messages can only flow from the first level to the third level through
CARON, while errors and warnings go in the opposite direction, from the third level
and second level to Consoles. Commands are generated at the first level by working
with interactive control panels or by requests coming from the High Level Software
Applications.

The following table shows the exact format and syntax of the three kinds of
messages, together with their paths. The length of the fields are enclosed within
parenthesis (an asterisk (*) means variable length), while optional fields are sur-
rounded by brackets.

C-15 pg. 15

Type Path Format

Command Console->CARON

CARON->DEVIL

<fromCPU(3)> <service(4)> <element(8)>[<parms(*)>]

Error DEVIL->CARON 'ERRO' <fromCPU(3)> <toCPU(3)> <errCd(16)> <errLc(16)>[<parms(*)>]

Error CARON->Console <ts(17)> • 'ERRO' <fromCPU(3)> <errCd(16)> <errLc(16)>[<parms(*)>]

Warning DEVIL->CARON 'WARN' <fromCPU(3)> <toCPU(3)> <errCd(16)> <errLc(16)>[<parms(*)>]

Warning CARON->Console <ts(17)> • 'WARN' <fromCPU(3)> <errCd(16)> <errLc(16)>[<parms(*)>]

We have chosen to arrange messages in a fixed format (with an exception for the
last optional parameters field) to simplify string parsing and to use smart techniques
for searching specific fields. Figure 9 shows two examples: a command and an error
message.

100 SETT KCKA1001 10

issuing
Console

service

element

optionalpar
ameter

constant
string

source
CPU

destination
CPU

error code error location optional parameters

(b)

(a)

ERRO 300 100 serviceNotFound DEVILdecodeCmd {100 SWTC KCKA1001 ON}

Fig. 9 - Example of messages.

A command message (a) and an error message (b) with the indication of their fields.

A command may require the specification of one or more additional parameters to
be fully characterized. To leave maximum flexibility in implementing command
routines for heterogeneous devices, we have provided an optional variable length
field, the command parameters, at the end of every command message.

CARON is the time reference in the System, in the sense that all those events
that need to be recorded in a chronological table for logging or debugging purposes,
are time-stamped by CARON (like messages delivered to Consoles and the sequence
of system logs in the Service Area).

5.1. Naming Convention

We have adopted the convention of giving a name to every object in the System,
like CPU and controlled elements.

C-15 pg. 16

Every CPU in the System is identified by a three digits name:

• Consoles 100, 101, 102,...
• CARON, Logger DEVIL 200, 201
• DEVILs 300, 301, 302,...

The name of the Console issuing the command is inserted in the command string
for two reasons:

1) when the DEVIL reserves the target element before executing the command, it
has to know which Console issued the command;

2) in case of an error condition, the DEVIL has to send back an error message to
the Console that issued the command.

Each element has a unique name (8 chars) and belongs to a class (Fig. 10).
Element names are stored internally and in the RTDB as double float (size of DBL = 8
bytes) to reduce time spent in searching and during data exchange between routines
(scalars can be managed faster than strings in LabVIEW). Each class (encoded by 3
chars) has a set of services (4 chars) associated to itself, which are the types of
commands that the class can support (Fig. 11).

KCK A1 001{
cl

as
s

{
nu

m
be

r

{
lo

ca
tio

n

Fig. 10 - Element name format.

class services
RFS RELE SETT SWTC
KCK RELE SETT MODE DELY POWR TRIG RMTE ONLN BYPS

Fig. 11 - Element Classes and Services.

5.2. Error Codes and Error Locations

To make the understanding of system problems and failures easy, a consistent
error handling mechanism has been carefully studied and implemented.

Error types are encoded in a 16 chars string, internally cast to complex double
number (size of CDB = 16 bytes) to speed up system performance. Error codes are
part of the error message, in conjunction with the Error Location. Error Locations
have the same format of error codes and represent the identification of the piece of
program or the specific action that was being executed when error occurred. They
have been introduced to give a more precise hint to make problem resolution faster.
In fact there are several routines which are called in many parts of the System
Software. An error generated during their execution is a poor help if there is no way
to know where that routine was called. At the first level a complete table of all the
system error and location codes will be accessed by a utility program to show an
extensive description of the problem with an indication of some possible action to
solve it. Excerpts from the Error Code Table and the Error Location Table are shown
below.

C-15 pg. 17

Table of Error Codes

Error Code Error Description Parameters Source File
ALIVEUpdateBerr Bus error when writing the alive

status array to VME RAM.
VME write address aliveUpdate.vi

serviceNotFound The service is not implemented
for the specified element.

{Command string} commandDecode3.vi

CPUstop Console/DEVIL CPU has stopped
running.

CPU name Born&Dead.vi

badElementName Command coming from console
contains an unknown element
name.

{Command string} sendCommand2>3.vi

MBFull The mailbox has not enough
space for storing the message.

Mailbox address,
{message string}

writeMB.c

......................

Table of Error Locations

Error Location Location Description Source File
CARONreadDEVILMB CARON is reading a message from DEVIL mailbox. CARON.vi
CARONBorn&Dead CARON is checking CPU alive status. Born&Dead.vi
DEVILdecodeCmd DEVIL is decoding a command string. commandDecode3.vi
.................

6. Conclusions

The DANTE System Software has been completely reviewed and standardized in
all those parts that do not depend directly on specific features of controlled devices.

The First Level Software architecture has been decided and implemented in its
basic blocks. Because of the peculiarity of each graphic interface related to a specific
controlled element, only a set of general criteria and statements of common software
writing style has been established.

CARON's programs can be considered in their definitive version, apart from new
features that will be required in the future.

The DEVILs' software has been frozen for those aspects that concern the
common basic algorithm driving the sequence of tasks performed and for the in-
terface towards the specialized low level routines (flexible mechanism to embody new
pieces of code, standard format for input/output parameters).

A strong emphasis has been dedicated in clearly defining message categories and
in establishing simple but exhaustive format and syntax for all of them.

A common error naming convention and definition has been adopted to facilitate
debugging and system failure recovering tasks.

REFERENCES

[1] G. Di Pirro, C. Milardi, A. Stecchi, L. Trasatti, The DANTE Control System, DAΦNE TECHNICAL
NOTE, C-6, INFN-LNF, Accelerator Division, Frascati, June 10, 1992.

[2] M. Verola, DANTE CONTROL SYSTEM DATA FLOW, DAΦNE TECHNICAL NOTE, C-9, INFN-LNF,
Accelerator Division, Frascati, February 14, 1994.

[3] LABView® National Instrument Corporation, 6504 Bridge Point Parkway, Austin, TX 78730-5039.

[4] G. Di Pirro, M.Masciarelli, M. Verola, The DANTE Mailbox system, DAΦNE TECHNICAL NOTE, C-12,
INFN-LNF, Accelerator Division, Frascati, March 31, 1994.

