

KK

DAΦNE TECHNICAL NOTE

INFN - LNF, Accelerator Division

Frascati, June 16, 1994

Note: C-14

HLS Applications Library

C. Milardi

Introduction

The first level of the Control System for the DAΦNE project runs High Level
Software (HLS) applications. They include all those programs which perform oper-
ations involving many machine elements like lattice tuning, closed orbit measurement
and correction, feedback and machine modeling. All the large amount of software
necessary to drive and get information from machine devices and diagnostics
constitutes the Specific Device Software (SDS), running in the third level of the
Control System. Examples of SDS applications are the routines which get information
from a Synchrotron Radiation Monitor, measure the beam position from a set of four
button pick-ups, and so on.

For HLS applications FORTRAN has been chosen as development language and
the Macintosh computer as a support. The FORTRAN compiler by Language System
[1] running under the MPW [2] development environment has been chosen. This
compiler includes all the standard FORTRAN intrinsic functions; nevertheless it is
necessary to provide a wide HLS Application Library (HAL) including mathematical
tools as well as machine oriented routines. Such a library is the most efficient tool to
support the efforts of those people who are involved in developing HLS applications.
It optimizes the applications performance and reduces the amount of software stored
in the control system consoles. Finally it makes the HLS maintenance and upgrade
simpler.

The HAL is useful also in developing dedicated machine drivers; moreover if the
SDS applications require the use of other languages, like C, it is possible to exploit
the possibility of calling Fortran routines from C codes and vice versa provided by
the compilers.

The HAL is the main utility that has to be provided to the Control System, since
all the software tools like graphics, printing, file and data-base management are
provided by the Control System user interface.

Concerning the organization of all input-output data dealing with the HLS
applications, it has been decided to use the Real Time DataBase as a storing device.
In this way the same lattice description, the same calibration and numeric constants
will be available both to the HLS and the SDS applications.

C-14 pg. 2

1) HLS Application Library Basic Features

The software described in this paper is a second version of the HAL; the first
one has been presented in the DAFNE Control System Status Report (Oct. 13th
1993).

There are some general criteria, which are mandatory in the interaction between
the HLS applications and the Control System. These criteria consist in:

1) avoiding the use of COMMON variables.

2) avoiding the assignment of constants through the PARAMETER instruction.

3) avoiding the assignment of variables through the DATA instruction.

4) using array and matrix adjustable dimensioning as much as possible.

5) trying to generalize each routine.

6) fixing a standard formalism for the machine lattice description.

7) providing each routine with the proper escape sequence and output error code in
case of fault.

8) providing each routine with a generous amount of comments.

Point 1 is fundamental for building routines of easy and general use. It is worth
recalling that large amounts of data can be passed as a single actual argument
exploiting the RECORD and STRUCTURE tools provided by the standard FORTRAN
language.

The same generality requirements justify points 2 and 3. It is useful to em-
phasize that all the constants used in HLS application are stored in the Real Time
DataBase of the Control System, where all the data for variables initialization are also
available.

Arrays and matrices are extensively used in the HAL: in order to preserve
generality it is better to use adjustable size objects. Where it is not permitted, like in
the STRUCTURES, a proper, at least redundant dimensioning is recommended.

Point 5 means that whenever a routine is included in the HAL, it must be
written taking into account all the possible applications it could be called from. This
is very important to avoid the presence of almost equivalent routines in the same
library.

All the accelerator physics routines need access to the machine layout and to
the variables describing each machine element. This consideration makes point 6 a
straightforward consequence of points 2, 3 and 5.

Mathematical calculations can sometimes give wrong results or end up with an
unreasonable output. The HAL routines take into account such possibility, and have
to provide the proper escape sequence together with an output error code to protect
the Control System from infinite loops and inconsistent situations.

C-14 pg. 3

2) Communication between HLS Application and Control System

 The communications between HLS and the Control System user interface are
provided by the LVLibrary [3], which allows the HLS applications to access all the
information stored in the Real Time DataBase and to send output data or commands
to the Control System. This communication mechanism works well, but it may be
time consuming if many accesses to the data base to collect information are required.

Nevertheless, if the above mentioned HAL general criteria are fulfilled, it be-
comes possible to exploit the LabView CIN utility. LabView [4] is the package used to
develop the Control System; its programming language is not based on a sequence of
instructions, but on block diagrams connecting nodes, which perform specific
operations: tools and VI. The CIN [5] mechanism enables to assign an executable
code written in a conventional language (C, FORTRAN, PASCAL) to a node .

In this way an HLS application uses the block diagram to get all the input data
and to send back the output. This method could look definitely better that the pre-
vious one, however it has also some drawbacks: the execution of a CIN is syn-
chronous, namely the application embedded in the CIN takes full control of the
processor on which it is running. Any other event is ignored, unless the proper en-
tries are provided inside the application. In order to create an executable application
in the form of a CIN it is necessary to compile it using proper options and to make
LabView and Fortran input-outputs compatible. It is definitely unrealistic that a
Fortran expert ignoring LabView and C can create a CIN including an HLS appli-
cation, while this can be easily done using the LVLlibrary.

3) The Fortran Library

The HAL contains two different sections: mathematical routines and machine
oriented routines.

3.1) Mathematical Section

It is well known that on main frames and workstations large and well funded
mathematical libraries are available. At LNF the most popular are the Cern library,
widely used by machine physicist, and the Nag Library, a well supported and doc-
umented high quality commercial product. A Macintosh version of the Nag library has
been purchased, while contacts have been established to do the same for the CERN
library. At the same time other products, specific for Macintosh, are being
considered. Anyway the final library will provide at least matrix algebra, statistical
functions, integration and differentiation utilities, special functions, resolution
methods for differential equations, Fourier analysis, eigenvalue and eigenvector
computation.

In the meantime a small number of basic mathematical routines has been in-
cluded in the HAL, together with some routines, which are widely used in the ex-
isting Fortran codes developed by the Accelerator Physics Group members.

C-14 pg. 4

3.2) Machine Oriented Section

In section 1 I have stressed that the first step in developing machine oriented
routines consists in setting a formalism to describe the machine lattice. Actually in
Frascati three formalisms are used:

- The MAD machine description: it has been used in the design of the
Transfer Lines and to find the optimum layout of orbit correctors and monitors,
both in the Booster and in the Main Rings.

- The LEDA input stream: this code has been extensively used to design all
the rings of the DAFNE project. Moreover, many other useful programs developed
for the lattice design are based on this machine description; this is the case of the
TRACK code [6] which optimizes the Booster injection-extraction efficiency and of
the DAFNE code [7] which performs tracking with multipoles and dynamic aperture
estimates.

- The PARAMETER LIST machine description: it has been created in order to
provide a standard classification for the machine components, and it is useful to
exchange data among different groups. It provides a very deep and complete
machine description formalism.

This last remark has been the reason for the choice of the PARAMETER LIST
formalism as the standard one for the HAL machine oriented routines [8], Otherwise
a translator would have been necessary, to make the MAD, LEDA and PARAMETER
LIST formalisms compatible.

The STRUCTURE for the PARAMETER LIST input follows:

STRUCTURE /Element/
 integer*4 i,ident,itype,status
 character name*8
 real*8 length,plength,k2,fi,teta,b
 real*8 e1,e2,ro,ax,ay

END STRUCTURE

STRUCTURE /Lattice/
 integer*4 nelem,nperiod,symflag
 character title*8
 RECORD /Element/TheElement(1000)

END STRUCTURE

RECORD /Lattice/TheLattice

The Lattice structure contains an array substructure Element; it includes all the
information on the machine optics:

TheLattice.nelem number of listed elements
TheLattice.symflag if 0 then nelem is the total element number in a

machine period.
If 1 then nelem is the total element number in a
half machine period, reflection symmetry is
assumed.

C-14 pg. 5

TheLattice.nperiod number of periods in the machine.
TheLattice.title the input file name or a comment, not longer

then 8 characters.
TheLattice.TheElement.i progressive order of the listed element.
TheLattice.TheElement.ident element specific identifier, used to declare an

element family.
TheLattice.TheElement.itype element identifier (see following table [9]).
TheLattice.TheElement.name element name.
TheLattice.TheElement.length element length (m).
TheLattice.TheElement.plength progressive total length (m).
TheLattice.TheElement.k2 quadrupole K2 (m-2), horizontal dipole field index

(m-2), sextupole K2 (m-2), kicker deflection angle
(rad).

TheLattice.TheElement.fi rotation angle (rad), used for skew quadrupoles.
TheLattice.TheElement.teta deflection angle (rad).
TheLattice.TheElement.B magnetic field (T).
TheLattice.TheElement.e1 first pole face angle (rad), used for dipoles.
TheLattice.TheElement.e2 second pole face angle (rad), used fore dipoles.
TheLattice.TheElement.ro bending radius (m).
TheLattice.TheElement.Ax horizontal aperture (mm).
TheLattice.TheElement.Ay vertical aperture (mm).
TheLattice.TheElement.status element status: this information comes from the

Control System.

element TheLattice.TheElement.itype

DRIFT 1
QUADRUPOLE 2
SEXTUPOLE 3
HORIZONTAL DIPOLE 4
VERTICAL DIPOLE 44
VERTICAL CORRECTOR 5
HORIZONTAL CORRECTOR 6
HORIZONTAL&VERTICAL CORRECTOR 56
SEPTUM 7
WIGGLER 8
RIGHT HALF-I.R. MATRIX 10
LEFT HALF-I.R. MATRIX 11
UNIFORM SOLENOID 14
OCTUPOLE 15
COORDINATE TRANSFORMATION 16
HORIZONTAL DISPERSION AND SLOPE 17
SYSTEMATIC MULTIPOLE 40
RANDOM MULTIPOLE 41
HORIZONTAL BPM 50
VERTICAL BPM 51
INJECTION&EXTRACTION KICKER 70
DIAGNOSTICS (OTHER THEN BPM) 99
RF CAVITY 100

C-14 pg. 6

3.3) Routines Description

In the following the developed HAL routines are listed. Few of them have been
taken from widely used programs or have been slightly modified; it is the case of the
routines for matrix algebra and transport through accelerator elements. Others, like
the "Nolisy" routine, have been rewritten in order to put them in general form.
Finally, many of them have been written by myself from scratch in the course of the
Accumulator design.

3.3.1) Mathematical Routines

Subroutine MEq (a,r,n,m)
Creates a matrix equal to an existing one.
Input:
a(n,m) existing matrix.
n number of rows.
m number of columns
Output:
r(n,m) output matrix.

Subroutine MProd (a,b,r,n,m,l)
Calculates the matrix product r of the a and b matrices.
Input:
a(n,m) input matrix.
n number of rows of the first matrix.
m number of columns of the first matrix.
b(m,l) input matrix.
m number of rows of the second matrix.
l number of columns of the second matrix.
Output:
r(n,l) output matrix.

Subroutine Idn (s,k)
Returns the identity matrix s.
Input:
k dimensions of the s matrix
Output:
s(k,k) output matrix

Subroutine Integral (vector,dx,nstep,result)
Performs a step integration of the vector function.
Input:
nstep number of integration steps.
vector(nstep) values of the function to be integrated at each step.
dx length of each step.
Output:
result integral value.

C-14 pg. 7

Subroutine Trasp (sm,n,l,smt)
Computes the transpose of the sm matrix.
Input:
sm(n,l) input matrix.§
n number of rows.
l number of columns.
Output:
smt(l,n) transpose matrix.

Subroutine Nolisy (TheLattice,TheCstNol,xx,cond,fct,fctj,ncall,TheFail)
Finds the numerical solution of the neq equations specified in the fct subroutine by
using an improved Newton-Raphson method [10].
Input:
TheLattice record with the Lattice structure.
TheCstNol record with the CstNol structure.
STRUCTURE /TheNolCst/

 integer*4 neq,maxcall
 real*8 delta,eps,frac,fracmin,fracmax,p(10)

END STRUCTURE

RECORD /TheNolCst/NolCst

TheCstNol.neq number of equations.
TheCstNol.maxcall maximum number of calls allowed to the fct subroutine.
TheCstNol.eps accuracy of the solutions.
TheCstNol.delta numerical parameter.
TheCstNol.frac numerical parameter.
TheCstNol.fracmin numerical parameter.
TheCstNol.fracmax numerical parameter.
TheCstNol.p(10) numerical parameter.
xx (neq) initial values for the variables.
cond(10) searched solutions.
fct subroutine, declared as an external, which specifies the

equations.
fctj subroutine declared as an external, which specifies the jaco-

bian matrix of the equations to be solved.
Output:
xx(neq) solutions
ncall number of executed calls to the fct subroutine
TheFail record with the Fail structure,
TheFail.ifail 0 if satisfactory solutions found, otherwise an error code.
TheFail.comment explains extensively the occurred error.

Subroutine Inver (s,x,n,iflag)
Computes the inverse x of the nxn square matrix s.
Input
s(nxn) input square matrix.
n dimension of square matrix
Output
x inverted matrix
iflag ≠ 0 if some error occurs in the inversion.

C-14 pg. 8

3.3.2) Machine oriented routines

SUBROUTINE ReadLattice (name,TheWLattice,js,jf,isym,np,alength,TheFail)
Reads the data stored in the TheWLattice record from the file called name. The file
name is an EXCEL file providing free format data divided by a TAB character. If only
a part of the data available is requested js jf give the progressive order of the
elements at the beginning and at the end of the required range; in this case isym
and np set the TheWLattice.isym and TheWLattice.np properties for the range se-
lected; TheWLattice.nelem is updated by the routine.
Input:
name file name.
js progressive order of the first element, if a range is called, oth-

erwise 0.
jf progressive order of the last element, if a range is requested,

otherwise it is 0.
isym defines the TheWLattice.isym variable. It must be specified

only if a range is selected.
np defines the TheWLattice.np variable. It must be specified only if

a range is selected.
Output:
TheWLattice record with the Lattice structure.
alength total length of the magnetic structure described by the

TheWLattice record.
TheFail record with the Fail structure.
TheFail.ifail = 0 if reading performed without problems; otherwise 1. An error

occurs when: 1) a range is requested, but the starting file
contains a only a partial description of the magnetic structure; 2)
alength, obtained by summing up the single element lengths, is
different from the machine progressive length referred to the
last element stored in the TheWLattice record; 3) the total
number of the input magnetic elements is different from the
value stored in the TheWLattice.nelem field.

TheFail.comment specifies extensively the occurred error.

SUBROUTINE ExpLattice_SelChu (TheLattice,js,jf, isym, np,TheWLattice, alength,
TheFail)
Reads the magnetic structure stored in the TheLattice record and if this is not given
in an extended way (TheLattice.isym or TheLattice.np not 0) the routine expands
the magnetic structure and stores the total configuration in the TheWLattice record.
When only a part of the total machine is required js and jf give the progressive order
of the elements limiting the required range; in this case isym and np set the
TheWLattice.isym and TheWLattice.np properties for the selected range;
TheWLattice.nelem is updated by the routine.
Input:
TheLattice record with the Lattice structure.
js progressive order of the range first element, if a range is re-

quested, otherwise it is 0.
jf progressive order of the range last element, if a range is re-

quested, otherwise it is 0.
isym value to assign to the TheWLattice.isym variable. It has to be

specified only if a range is selected.
np value to assign to the TheWLattice.np variable. It has to be

specified only if a range is selected.

C-14 pg. 9

Output:
TheWLattice record having the Lattice structure.
alength total length of the magnetic structure described by the

TheWLattice record.
TheFail record having the Fail structure.
TheFail.ifail 0 if reading performed without problems; otherwise 1. An error

occurs when the number of elements stored in the TheWLattice
record is different from the TheWLattice.nelem value.

TheFail.comment specifies extensively the occurred error.

SUBROUTINE ZeroLKick (TheWLattice,alength,TheFail)
Fetches the magnetic structure stored in the TheLattice record and changes each
injection/extraction kicker and sextupole into a localized kick in the center of the
original one . The new magnetic configuration is stored in the TheWLattice record,
the element lengths and the machine progressive lengths are updated accordingly.
Input:
TheLattice record with the Lattice structure.
Output:
TheWLattice record with the Lattice structure.
alength total length of the magnetic structure described by the

TheWLattice record.
TheFail record with the Fail structure.
TheFail.ifail 0 if reading performed without problems; otherwise 1. An error

occurs when alength, obtained by summing up the single
element lengths, is different from the machine progressive
length referred to the last element stored in the TheLattice
record.

TheFail.comment specifies extensively the occurred error.

SUBROUTINE JoinLatChu (mp,ThePointStruc,isym,np,TheTLattice,alength,
TheFail)
Joins mp machine chunks, each stored in a record with the Lattice structure.
ThePointStruc array record provides the pointers to the mp records. The routine
updates the TheTLattice.nelem value.
Input:
mp = number of machine chunks ≤30.
ThePointStruc (30) array record with the PointStruc structure
STRUCTURE /PointStruc/

 pointer /Lattice/ p
END STRUCTURE
RECORD /PointStruc/ThePointStruc (30)
isym value to assign to the TheTLattice.isym variable.
np value to assign to the TheWLattice.np variable.
Output:
alength total length of the magnetic structure described by the

TheTLattice record.
TheTLattice record with the Lattice structure
TheFail record with the Fail structure.
TheFail.ifail 0 if reading performed without problems; otherwise 1. An error

occurs when: 1) the total machine length, obtained by summing
up the single element lengths for each chunk, is different from
the machine progressive length referred to the last element
stored in the TheTLattice record; 2) the total number of the
magnetic elements, obtained as a sum of the single chunk
elements, is different from the total number of elements listed in
the TheTLattice record.

C-14 pg. 10

TheFail.comment specifies extensively the occurred error.
NOTE
The address of each chunk record can be assigned to the pointer in each component
of the ThePointStruc array record by using the following instructions:
ThePointStruc(1).p = %loc(The1Lattice).
ThePointStruc(2).p = %loc(The2Lattice).
ThePointStruc(3).p = %loc(The3Lattice).

Subroutine MatD (elle,s)
Gives the transport matrix S for a straight section.
Input:
elle straight section length (m).
Output:
s (5,5) transport matrix.

Subroutine MatB (elle,b,rag,de,s)
Gives the transport matrix S for a bending magnet, energy dependent effects are
taken into account if de ≠ 0.
Input:
elle magnet length (m).
b magnet field index.
rag magnet bending radius (m).
de relative energy deviation.
Output:
s (5,5) transport matrix.

Subroutine MatQ (elle,qk,de,s)
Gives the transport matrix S for a quadrupole, energy dependent effects are taken
into account if de ≠ 0.
Input:
elle quadrupole length (m).
qk quadrupole K2 (m-2).
de relative energy deviation.
Output:
s (5,5) transport matrix.

Subroutine SexKick (sextp,xx)
Describes the effect of a sextupole in the localized angular perturbation approxima-
tion.
Input:
sextp (1/Bro) (∂2B/dx2) (m-2).
xx (5) particle coordinate array before the sextupole kick; xx(1) =

horizontal position (m), xx(2) = horizontal coordinate derivative
with respect to the longitudinal one (rad), xx(3) = energy
deviation, xx(4) = vertical position (m), xx(5) = vertical position
coordinate derivative with respect to the longitudinal one (rad)

Output:
xx (5) particle coordinate array after the sextupole kick.

C-14 pg. 11

Subroutine Stability (x,xmx,TheFail)
Checks both radial and vertical coordinate absolute value verifying they don't exceed
xmx.
Input:
x (5) coordinates.
xmx maximum displacement.
Output:
TheFail record with the Fail structure.
TheFail.ifail 0 if the condition is respected otherwise 1.
TheFail.comment explains extensively the occurred error.

Subroutine IEKicker (xkick,xx,r,v)
Describes the effect of a kicker in the localized angular perturbation approximation.
If r and v are not 0 xkick is calculated in the model of four infinite current wires,
parallel to each other and to the straight section axis. In this case r and v are the
horizontal and vertical distances between the wires.
Input:
xkick localized angular deflection (rad).
xx (5) particle coordinate array before the kick.
r horizontal distance among wires in the four currents kicker

model (m).
v vertical distance among wires in the four currents kicker model

(m).
Output:
xx (5) particle coordinate array after the sextupolar kick.

Subroutine TTE (TheElement,s)
Gives the transport matrix s through a magnetic element.
Input:
TheElement record with the Element structure, which describes the specific

machine element.
Output:
s (5,5) transport matrix.

Subroutine TTM (TheLattice,s,TheFail)
Gives the total transport matrix s over the machine period.
Input:
TheLattice record with the Lattice structure describing the machine.
Output:
s (5,5) total transport matrix over the machine period.
TheFail record with the Fail structure.
STRUCTURE /Fail/

 integer*4 ifail
 character*80 comment

END STRUCTURE
0 if s (1,1) + s (2,2) + s (3,3) + s (4,4) ≤ 2

TheFail.ifail =
1 if s (1,1) + s (2,2) + s (3,3) + s (4,4) > 2, unstable machine

TheFail.comment explains extensively the occurred error.

C-14 pg. 12

Subroutine TPM (tra,tss)
Gives the transport matrix tss for the Twiss parameters using the element transport
matrix tra.
Input:
tra (5,5) element transport matrix.
Output:
tss (6,6) Twiss parameter transport matrix.

Subroutine TwissP (tra,tp)
Gives the Twiss parameters tp at the starting element of the lattice deck using the
machine total transport matrix tra
Input:
tra (5,5) machine total transport matrix.
Output:
tp (6) Twiss parameters: tp(1) = bx(m); tp(2) = ax; tp(3) = gx(m-1);

tp(4) = by (m); tp(5) = ay; tp(6) = gy(m-1).

Subroutine BPhaseTM (TheLattice,tp,px,pz,l,m)
Gives the betatron phase advances px and pz using the transport matrix of the ma-
chine elements between progressive numbers l and m.
Input:
TheLattice record with Lattice structure.
l progressive number of the first element.
m progressive number of the last element.
tp (6) Twiss parameters at the l-th element.
px horizontal betatron phase at the l-th element.
pz vertical betatron phase at the l-th element.
Output:
tp (6) Twiss parameters at the m-th element.
px horizontal betatron phase at the m-th element.
pz vertical betatron phase at the m-th element.

Subroutine BPhaseI (TheLattice,tp,px,pz,l,m)
Gives the machine betatron phase advances px and pz by integrating the betatron
functions over the range selected by the elements between progressive numbers l
and m.
Input:
TheLattice record with the Lattice structure.
l progressive number of the first element.
m progressive number of the last element.
tp (6) Twiss parameters at the l-th element.
px horizontal betatron phase at the l-th element.
pz vertical betatron phase at the l-th element.
Output:
tp (6) Twiss parameters at the m-th element.
px horizontal betatron phase at the m-th element.
pz vertical betatron phase at the m-th element.

Subroutine Tunes (TheLattice,tp,qx,qz)
Gives the total tunes qx and qz by integrating the betatron function.
Input:
TheLattice record with the Lattice structure.
tp (6) Twiss parameters at the starting point of the ring description.

C-14 pg. 13

Output:
qx horizontal betatron tune.
qz vertical betatron tune.

Subroutine Dispersion (tra,eta)
Calculates the dispersion function eta at the ends of a machine period from the
transport matrix over the period.
Input:
tra (5,5) transport matrix through a machine period
Output:
eta (5) dispersion function eta(1) = hx; eta (2) = h'x; eta (3) = 1;

eta (4) = hy; eta (5) = h'y.

Subroutine TMCo (TheLattice,nv,TheCstMat)
Represents the machine in the form of a sequence of elements, marked by an iden-
tifier listed in the nv array, and constant matrices. The last ones are obtained by
multiplying the transfer matrices of all those elements between two having an
identifier listed in the nv array.
Input:
TheLattice record with the Lattice structure.
nv (599) elements identifiers.
Output:
TheCM(600) array record with the CM structure.
TheCstMat record with the CstMat structure.

STRUCTURE /CM/
real*8 co(5,5)

END STRUCTURE

STRUCTURE /CstMat/
integer*4 nt,ntc,ncs(1199)
RECORD /CM/TheCM(600)

END STRUCTURE
nt number of steps into which the machine is divided.
ntc total number of constant matrices.
ncs(1199) array with nt meaningful elements, each being either the pro-

gressive number of an element in the TheLattice record, or 0
for a constant step.

 co(5,5) transport matrix for each constant step.

Subroutine CoMat (sm,TheCstMat)
Stores the sm matrix in the proper co matrix inside the TheCstMat record.
Input:
TheCstMat record with the CstMat structure.
sm (5,5) transfer matrix for a machine chunk.
Output:
TheCstMat record having the CstMat structure.

Subroutine TTCM (TheCstMat,TheLattice,tra,TheFail)
Gives the total transport matrix tra using data stored in the TheCstMat record.
Input:
TheLattice record with Lattice structure.
TheCstMat record with the CstMat structure.

C-14 pg. 14

Output:
tra (5,5) machine total transport matrix.
TheFail record with the Fail structure.
TheFail.ifail If 0 stable machine, if 1 unstable machine. The check is per-

formed on the tra matrix.
TheFail.comment explains extensively the occurred error.

Subroutine TrackCM (xx,nturn,i,j,TheCstMat,TheLattice,ctr,TheFail)
Tracks a particle with initial coordinates xx through a machine described by the
TheLattice record for nturn turns. It uses the machine chunk representation pro-
vided by the TheCstMat record. If nturn = 1 tracking can be performed between
chunks having progressive numbers i and j.
Input:
xx particle initial coordinates.
nturn number of turns to be tracked.
i progressive number of the initial chunk (only if nturn = 1).
j progressive number of the last chunk (only if nturn = 1).
TheCstMat record with the CstMat structure.
TheLattice record with Lattice structure.
ctr maximum displacement of the horizontal position in sextupoles.
Output:
xx particle coordinates after nturn turns.
TheFail record with the Fail structure.
TheFail.ifail 1 if the radial coordinate xx(1) exceeds ctr in a sextupole.
TheFail.comment explains extensively the occurred error.

Subroutine RspMat (TheLattice,tijh,tijv,nmon,ncorh,ncorv,qx,qz)
Calculates the response matrix between each one of the nmon monitors and the ncor
correctors, for both horizontal and vertical planes.
Input:
TheLattice record with the Lattice structure.
Output:
nmon number of monitors in the machine.
ncorh number of horizontal correctors.
ncorv number of vertical corrector.
tijh(nmon,ncorh horizontal response matrix.
tijv(nmon,ncorv) vertical response matrix.
qx horizontal betatron tune.
qz vertical betatron tune.

4) Programs Description

The HAL Library has been used and debugged by developing some basic pro-
grams for the DAFNE Accumulator. These programs are listed in the following.

PROGRAM AccIKick
Calculates the strength (analytical computation) of the injection kickers for the
DAFNE Accumulator in the ideal approximation of a symmetric orbit deformation. It
uses a chunk representation of the machine with fixed matrices interleaved with
sextupoles and injection kickers. The considered fraction of the ring magnetic
configuration begins at the injection septum and ends up at the second injection
kicker.

C-14 pg. 15

Program AccEKick
Calculates the strength of the extraction kickers for the DAFNE Accumulator. As a
first step the program finds the strength of the most effective couple of extraction
kickers (those near to the extraction septum) and then tries to decrease the required
angular kicks by using also the other two; a check is performed, controlling that with
the optimized solution the beam does not scrape the injection septum. The program
uses a chunk representation of the machine with fixed matrices interleaved with
sextupoles and injection kickers.

Program AccSetnu
Gives the quadrupole strengths of the DAFNE Accumulator required for given hori-
zontal and vertical betatron tunes. Such strengths are obtained numerically for van-
ishing dispersion at the injection septum.

4.1) Specific Routines

In the following the Specific Routines used in the previous programs are de-
scribed.

Subroutine FctTunAcc (TheLattice,xs,cond,fx,TheFail)
Specifies the equations to be solved in order to set the betatron tunes of the
Accumulator. This routine is called within the AccSetnu program.
Input:
TheLattice record with Lattice structure describing the Accumulator.
fx(3) f(1) = horizontal tune, f(2) = vertical tune, f(3) = dispersion at the

injection septum.
cond(50) solutions requested for the equations fixed in this routine.
Output:
xs(3) quadrupole strengths.
TheFail record with the Fail structure.
TheFail.ifail 1 if the transport matrix for the whole machine is unstable.
TheFail.comment explains extensively the occurred error.

Subroutine FctJTunAcc (TheLattice,xs,fr,cond,TheNolCst,dj,TheFail)
Computes the Jacobian determinant dj of the fx function defined in the FctTunAcc
routine. This routine is called from the AccSetnu program.
Input:
TheLattice record with Lattice structure.
xs quadrupole strengths.
fr difference between the fx, as specified in the FctTunAcc,

computed using the initial xs value at each numerical iteration of
the Nolisy routine.

TheCstNol record with the CstNol structure.
cond(50) solutions requested for the equations to be solved.
Output:
dj(50,51) Jacobian determinant
TheFail record with the Fail structure.
TheFail.ifail 1 if the transport matrix for the whole machine is unstable.
TheFail.comment explains extensively the occurred error.

C-14 pg. 16

Subroutine IKick (x0,xp0,TheLattice,TheCstMat,xki)
Gives the strength (analytical computation) of the injection kicker xki for the DAFNE
Accumulator. TheCstMat contains a chunk representation of the machine with fixed
matrices interleaved with sextupoles and injection kickers. TheLattice describes the
optics starting from the injection septum up to the second injection kicker included.
This routine is called from the AccIKick program.
Input:
x0 required stored beam trajectory displacement at straight section

center.
xp0 required stored beam trajectory slope at straight section center.
TheLattice record with Lattice structure.
TheCstMat record with CstMat structure.
Output:
xki(2) injection kicker strength (rad).

Subroutine EKick (x,xp,xx,TheLattice,TheCstMat,xke)
Gives the strengths (analytical computation) of most effective extraction kickers xke
for the DAFNE Accumulator. These are obtained from the required coordinates x xp
at the septum and the intermediate coordinates xx given by the minimization
procedure of the AccEKick program. The subroutine uses a chunk representation of
the machine with fixed matrices interleaved with sextupoles and injection kickers,
provided by the TheCstmat record.
Input:
x required beam trajectory position at the extraction septum.
xp required beam trajectory slope at the extraction septum.
xx (5) beam position and slope before most effective kickers.
TheLattice record with the Lattice structure.
TheCstMat record with the CstMat structure.
Output:
xke (2) extraction kicker strength (rad).

5) Remarks

The software described is available in the Catia folder on the Utenti disk
accessible from the LNF Div.Acc. file server, together with the specific instructions
to compile link and run it in the MPW environment.

The listed routines can be found in the HALibrary.f file, while all the used
structures are in the HADataType.h file, which has to be included in every main
program calling the HALibrary routines, finally the HLSinstall folder provides the
necessary MPW procedures.

In the following the steps necessary in order to write an HLS application using
the HALibrary routines are listed:

1) Copy the UserStartup•HLS file inside the MPW folder and restart MPW.

2) Create a new folder called HLS inside the MPW folder.

3) Copy the scripts folder inside the HLS folder.

C-14 pg. 17

4) Copy the HADataType.h file inside the MPW:Libraries:Flibraries folder.

5) Copy the HALibrary.f file inside the HLS folder and compile it with the instruc-
tion fortran HALibrary.f. The expert user can specify some compiling options,
according to the processors available on his Macintosh, in order to optimize the
routines performances.

6) Copy the HALibrary.f.o file inside the MPW:Libraries:Flibraries folder.

7) Develop your own application code including the HLSData:HADataType.h file
and compile, link and run it using the command listed in the scripts folder.

6) References

 [1] Language System FORTRAN 3.0 Reference Manual, Language System Corporation, 441
Charlisle Drive, Herndon, VA 22070-4802.

 [2] MPW: Macintosh Programmer's Workshop Development Environment, Apple Computer Inc.

 [3] A. Stecchi, LVLibrary: a set of FORTRAN subroutines for accessing the DANTE HLS interface,
note C-8.

 [4] LabVIEW® National Instrument Corporation, 6504 Bridge Point Parkway, Austin, TX 78730-
5039.

 [5] CIN.

 [6] C. Milardi, TRACK code.

 [7] M.E. Biagini, "DAFNE a tracking code for the Frascati F-Factory", Thecnical note L-5.

 [8] M.E. Biagini, S. Guiducci, C. Biscari, C. Milardi, A. Stecchi, private communication.

 [9] M.E. Biagini, private communication.

[10] M.Bassetti R.M. Buonanni, "An improved Newton-Raphson method" Nota interna: n.346,
30/1/1967.

