
 

KK

  

DAΦNE  TECHNICAL  NOTE

INFN - LNF,  Accelerator Division

                                                                                                             

Frascati, March 31, 1994

Note: C-12

The DANTE Mailbox system

G. Di Pirro,  M. Masciarelli, M. Verola

The DAΦNE control system, DANTE, uses a direct memory access
mechanism to retrieve data and to send messages between the different
levels, instead of a standard network.

This note explains the details of the communication method and
describes the routines implemented to exchange messages in the system.

The advantages of using a direct memory access in the system are
speed and simplicity. We don't use any kind of communication protocol
and we don't need any sophisticated mechanism to check the correct data
transmission: we write and read back or read twice the same message.

The only messages used in DANTE are:

- commands from the first level (PARADISE) to the third level (HELL) to
generate some action in the system;

- error messages from HELL to second level (PURGATORY) and from this
to PARADISE.

In the system every VME CPU and every console has two memory
areas: one to send messages and one to receive from the nearest levels.
Send and receive areas are relative to the single CPU. For example, in the
communication between the first and second level the address of the send
memory area of PURGATORY is the same of the receive memory area of
PARADISE.



C-12 pg. 2

In Fig. 1 we describe a general mailbox area.

Reserved

Mail Box Start Address (MBSA)
MBSA + 0x4
MBSA + 0x8

MBSA + 0x10

DATA

MBSA + 0x10000

Write Pointer
Read Pointer

Reseved

Fig. 1 - Mailbox Structure

The read and write mechanisms for a mailbox are completely asyn-
chronous and independent, since they are performed by two separate
CPUs.

The header of the mailbox contains two pointers, one relative to the
read operation, RDPTR, and the other to the write operation, WRPTR. The
pointers are managed independently by the appropriate CPU. For example,
when a console sends a message to PURGATORY the console changes the
WRPTR after writing the message and the CPU in PURGATORY changes
the RDPTR after reading the message.

The bus error is managed by the routine. This prevents local CPU
system crashes and lets the program handle the error without losing
control of the execution.

The message structure is show in Fig. 2.

String length (long word) DATA

Fig. 2 - Message  Structure

We have written two routines to implement this mechanism.



C-12 pg. 3

WriteMailbox.

Fig. 3 shows the schematic diagram of the write mailbox operation.
The memory area is a circular memory 0x10000 bytes long. When the
WriteMailbox routine does not have enough space to write the current
message between the write pointer and the physical end of the memory, it
writes a zero in the first location that follows the last message and wraps
around to write the message from the beginning of the memory. This zero
indicates to the ReadMailbox routine that a wrap has occurred.

Mail Box Start Address = MBSA
Number of data to send = ndat
MB = Mail Box

Error Codes
 No error   0,0
 Bus Error  "busError        "
 Mail Box Full  "MBfull          "
 Data check  "MBerrWrVerify   "

Initialize Bus error check
RDPTR = *(MBSA + 4)
WRPTR = *(MBSA + 8)

RDPTR > WRPTR
?

yes

RDPTR - WRPTR
<= ndati ?

yes

Write data in MB
and test.
WRPTR =
WRPTR + ndat
return

noEND MB - WRPTR
>= ndat ?

no

Write data in
MB and test.
WRPTR =
WRPTR + ndati
return

yes

no

RDPTR - 0x10
>= ndat?

MB Full
return

no

yes

*WRPTR = 0
(wrap data)
WRPTR = 0x10
Write data in MB
and test.
WRPTR =
WRPTR + ndat
return

MB Full
return

Fig. 3: WriteMailbox Schematic Diagram



C-12 pg. 4

ReadMailbox.

Fig. 4 shows the schematic diagram of the read mailbox operation.
When a CPU is performing a read operation, a message dimension equal
to zero indicates that it must wrap the pointer and restart from the first
position in the mailbox memory area.

Mail Box Start Address = MBSA
Number of data to read = ndat
MB = Mail Box

Error Codes

   No error   0,0
   Bus Error  "busError        "
   Mem Full  "MacMemFull      "
   Data check  "MBerrRdVerify   "

Initialaize Bus error check
RDPTR = *(MBSA + 4)
WRPTR = *(MBSA + 8)

RDPTR = WRPTR
?

yes

Read data in MB
and test.
RDPTR =  RDPTR
+ ndat.
return

no

MB empty
return

ndat = *RDPTR

ndat = 0 ?

yes

ndat = *(MBSA +0x10)
(wrap in memory)

Size Handle to reserve
memory for string

Is There space
in memory?

Memory full
return

no

yes

Fig. 4: ReadMailbox Schematic Diagram



C-12 pg. 5

Time measurement

We have measured the time performance of the routines. This
measurement was executed on a Devil with two different message lengths
and in two conditions, mailbox empty and mailbox empty but at the end
of the mailbox memory area. In Table 1 we report some results.

ReadMailbox WriteMailbox
64 Bytes 128 Bytes 64 Bytes 128 Bytes

top of MB
303 365 160 218

bottom of MB
305 368 167 222

Table 1 - Time measurements in µs

As we expected, these times are very short when compared with data
exchange on a network. The read operation is longer than the write
operation because we need to reserve space in memory to accommodate
the received data.


