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1. Introduction 
 
 The standard procedure to measure the β-function in DAΦNE is to measure the variation 
of tunes as a function of quadrupole magnet strengths. This is possible, in DAΦNE, because 
almost all the quadrupole magnets have independent power supplies. A different technique 
[1,2], is the use of the response matrix of the machine. This procedure allows, in principle, 
measuring the β-function at each beam position monitor (BPM) and corrector (C) position. 
The accuracy of the measurement is limited by the accuracy of the response matrix 
measurement and of the BPMs and Cs calibrations.  
 The advantages of such technique with respect to the standard one are: 
 

1) the big number of points in which the β-function can be measured. In DAΦNE, in 
fact, there are 47 BPMs and 27 C and, therefore, we can measure, in principle, the 
β-function in 74 points along the machine that are almost twice the number of 
quadrupoles. 

 
2) the response matrix acquisition is completely automatic and fast: it requires about 

15 minutes for each plane. This is, in particular, useful during a new start-up of 
the machine or when a new optics is installed. 

 

2. Theory 
 
 In the following we report, for completeness, few basic concepts that are discussed in 
more detail in [2]. 
 Let us suppose that, in the ring, there are M BPMs and N Cs. The element Rij of the 
response matrix corresponds to the beam motion at the i-th BPM per unit angle of j-th 
corrector: 
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where ν is the betatron tune of the machine, βi and ψi are the β and phase functions at the 
BPM and βcj and ψcj are those at the corrector. 
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 If we know the response matrix the β and ψ functions at the i-th BPM are given by: 
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where ci and si are solutions of: 
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Eq. (3) can be written in matrix form as: 
 
 axA =!  (4) 
 
where: 
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 The β and ψ functions at the C positions can be similarly obtained: 
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where ccj and scj are solutions of: 
 
 byB =!  (7) 
 
where: 
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 A self-consistent set of solutions of systems (5) and (8) can be obtained by iteration. 
Starting with a set of initial values (βi, ψi) and (βcj, ψcj) we calculate the matrices BA,  and 
the vectors ba, . Since the number of equations to determine x and y is larger than the number 
of unknowns, the problem is over-determined and the approximate solution can be found 
using, for example, the single value decomposition (SVD) or the QR decomposition [3]. The 
iterative procedure continues until the solutions converge for a given tune (the measured one). 
As pointed out in [2], inherent in this analysis are the ambiguities in the scaling of 
β-functions. 
 In fact in eq. (1), Rij remain unchanged when βi is multiplied by a constant and βcj is 
divided by the same constant. Therefore, an extra constraint is necessary to determine the β-
functions for BPMs and Cs. In the DAΦNE case we overcome this ambiguity by imposing 
that the β-function at some Cs near some BPMs are the same. In particular since the positions 
are not exactly the same we have considered few BPMs and Cs and we have averaged this 
condition over them.  
 
3. Results and error analysis 
 
 The number of iterations to converge and the convergence of the solution itself depends, 
in general, on the choice of the iterative algorithm. One of the best algorithms to converge in 
few tens of iterations starting from the theoretical values of the β-functions is illustrated in 
Fig. 1. At the iteration k the β-functions found are re-entered as new input of the system for 
the iteration k+1, while the β-functions at the BPM are re-entered in a weighted sum with the 
β-functions of previous iteration. 

 

calculation of β at each BPM 
and C and using (5) and (8) 

β(k-1) βc(k-1) ψc(k-1) ψ(k-1) 

β’(k) βc(k) ψc(k) ψ(k) 

β(k)= 0.9β’(k)+0.1β(k-1)
 

Fig. 1: Proposed algorithms to find iteratively the solutions of the system (5) and (8). 
 
 Once found the solution, it is possible to calculate for the i-th BPM (or h-th C) the 
following vectors: EBPM_i =Ax-a (or EC_h =By-b). The j-th element of the vector EBPM_i 
represents the “distance” between the found solution of β-function at the i-th BPM and those 
obtained using the β-function at the j-th C and the Rij element of the response matrix. Similar 
considerations can be done for the j-th element of the vector EC_h.  
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 Therefore, if for all BPMs the j-th element of vectors EBPM is always bigger than the other 
ones (or, more precisely, always few rms standard deviations away from the elements 
distribution) it means that there is a possible source of errors related to the j-th C. In this case 
we can eliminate the “suspected” elements (C and related response matrix line) from the final 
β measurement. Similar considerations can be done looking at the EC vector. 
 From data analysis it is possible to observe that, even after this “cleaning”, the equations 
defined by (5) or (8) do not give exactly the same solution. There are, in fact, the following 
sources of errors that give a residual “dispersion” of solutions: 
 

1) BPMs non linearities; 
2) errors in correctors strength calibration; 
3) non-perfect cancellation of the ambiguity previously discussed in the 

amplitude of β-function because of the non-perfect superposition between the 
considered Cs and BPMs. 

 
 While in the vertical plane these sources of errors have almost the same weight, in the 
horizontal one the main source of error is given by (1). 
 To evaluate the error related to the measurement we proceed, therefore, as follow:  
 

a) for a given BPM (or C) we calculate the β-function distribution using all 
possible pairs of equations in the system (5) (or (8)); 

b) we calculate the mean and rms value of the β-function distribution; 
c) we eliminate iteratively the values of β-function until they are all in the range 

of ±4 standard deviation. It is possible to verify (se following paragraphs) that, 
within a negligible error, the mean of such “reduced” distribution is equal to 
the β-function calculated by the SV or QR decomposition. We assume that the 
standard deviation of each final distribution is equal to the standard deviation 
of each measuremen 

 
4. Vertical β-function measurement results 
 
 The vertical β-function measurement is shown in the following plots considering, as 
example, the electron ring response matrix taken on 10/12/06. In the measurement, according 
to what illustrated in the previous paragraph we have eliminated few BPM whose errors were 
several rms standard deviations out from the other ones. 
 The differences between the sum of β-functions at each BPM and C at iteration k and 
those calculated at the iteration k-1 are reported in Fig. 2. From the plot it is easy to verify the 
convergence of the algorithm after few tens of iterations. The measurement of β-function 
compared with the MAD model of the machine is reported in Fig. 3. We used for the systems 
solution the QR decomposition algorithm. In each measure we have reported the error bar 
calculated as the ±1 rms standard deviation of the measurement distribution, as discussed in 
the previous paragraph. It is easy to observe that the error bars in each point are few percent 
the value of β-function at the same point. 
 The differences between the β-functions calculated by the QR decomposition algorithm 
and those calculated as mean of the β-function distribution are reported in Fig. 4. In each 
point the difference between the two values is a small fraction of the β-function at the same 
point. 
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Fig. 2: Differences between the sum of β-functions at each BPM and C at iteration k and those 

calculated at the iteration k-1 (vertical plane). 
 

 
Fig. 3: Measurement of vertical β-function compared with the MAD model (electron ring). 
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Fig. 4: Difference between the β-functions calculated by the QR decomposition algorithm and 
that calculated as the mean of the β-function distribution (vertical plane) 

 
 
 
 
5. Horizontal β-function measurement 
 
 The horizontal β-function measurement is shown in the following plots. Also in this case 
we have eliminated few BPM whose errors were several rms standard deviations out from the 
other ones. 
 The differences between the sum of β-functions at each BPM and C at iteration k and 
those calculated at the iteration k-1 are illustrated in Fig. 5. The measured β-functions with the 
error bars are reported in Fig. 6 and are compared with the MAD model. In this case the rms 
standard deviations of each measure are bigger than the previous one because of the BPM non 
linearities. 
 Finally the differences between the β-functions calculated by the QR decomposition 
algorithm and that calculated as the mean of the β-function distribution are reported in Fig. 7. 
In each point the difference between the two values is a fraction of the β-function at the same 
point but bigger than in the vertical case. 
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Fig. 5: Differences between the sum of β-functions at each BPM and C at iteration k and those 

calculated at the iteration k-1 (horizontal plane). 
 
 

 
Fig. 6: Measurement of horizontal β-function compared with the MAD model (electron ring). 
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Fig. 7: Difference between the β-functions calculated by the QR decomposition algorithm and 

that calculated as mean of the β-function distribution (horizontal plane). 
 
 
6. Conclusions  
 
 In the paper we have illustrated the β-function measurement results obtained in DAΦNE 
using the response matrix. The technique originally suggested by M. Harrison and S. Peggs. 
in 1987 allows, in principle, measuring the β-functions at each BPM and C position. The 
accuracy of the measurement is limited by the accuracy of the response matrix measurement 
and calibration of BPMs and Cs. In the paper we have illustrated the procedure we used to 
evaluate the errors of each measurement. The obtained results show that the procedure allows 
measuring the β-function in both planes with good accuracy, especially in the vertical one. It 
has also several advantages with respect to the standard one based on quadrupole strength 
variations as the larger number of points in which the β-function can be measured and the 
faster measurement itself, since the response matrix acquisition is completely automatic. 
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