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1. Introduction 
 
In CTF3 two wigglers are used for trajectory length tuning, one in the Delay Loop, the other 
one in the Combiner Ring [1]. 
The characteristics of the wigglers are given in [1-2], while the magnetic measurements 
corresponding to the integrated value of the field performed on one of the two magnets are 
described in [3]. The field map inside the wiggler has been simulated [4] with the OPERA 
code, and not measured. Figure 1 shows the wiggler view from the side and a sketch of the 
wiggler layout. 
In order to describe in optical codes the effect of the wiggler on beam dynamics, an optical 
model is needed. 
The field components in any point in a region near the axis are described analytically, and 
used for tracking purposes. The Jacobian around the trajectory is then used to define the 
optical model parameters. 
 

 

Figure 1 – CTF3 Wiggler view. 
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2.  Multipolar analysis and analytical expression for magnetic fields. 
 
Let’s recall some well known properties of magnetic field for completeness. The general 
scalar magnetic multipolar potential of order m in cylindrical coordinates can be written as 
(see for example [5]): 
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where the condition of satisfying the Laplace equation is equivalent to: 
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Writing the solution of 2) as: 
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one can demonstrate that: 
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If there is no dependence on z, the potential contains only the first term of the sum 4) for each 
multipole: for example a pure dipole is described in cylindrical coordinates by: 
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while if there is dependence on z, as in the wiggler case, the dipole potential becomes: 
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where by writing Gm2p+1(z) we mean the derivative with respect to z of Gm2p(z): 
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The vertical field component along the wiggler axis By(0,0,z) coincides with G10(z). The term 
G12 is called the pseudo sextupole, since the magnetic field component deriving from it has a 
quadratic behaviour in the coordinates. 
A normal sextupolar magnetic potential with dependence on z is given by P3(r, θ, z): 
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The wiggler potential can be fitted with a dipole plus the higher order components, as 
sextupole, decapole, etc. The magnetic field is directly derived from Eqs. 6 and 8 as the 
gradient of the scalar magnetic potential. 
Keeping only terms up to the second order, we maintain the dipole and the sextupole. The 
magnetic field components in cylindrical coordinates are then: 
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From these expressions, the vertical field component on the wiggler axis is simply: 

 )(),0,0( 10 zGzBy =  10) 

Both magnetic measurements and magnet simulation codes provide the value of the vertical 
magnetic component By. Knowing the function G10, it is possible to derive all magnetic 
components coming from the dipolar field in every point of the space inside the magnet. For 
obtaining the sextupolar term the vertical field must be known also at different values of r. 
Let’s recall here that the function Gm0(z) can be expressed analytically if we consider the 
magnetic potential as produced by a cylindrical surface with a m-pole current distribution [5]. 
Being R the radius of the cylinder, 2Z its total length, and Ic the current, we define: 
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Gm0(z)  can be written as: 
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where: 
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The three parameters R, Z, and Ic can be used to fit the measured or simulated magnetic field 
on axis with the analytical expression 13). 
In particular the functions Gmn(t) appearing in Eq. 9) can be written in terms of the functions 
fh(t): 
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 Writing the cartesian field components : 
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A Matlab code generating these expressions has been written, and can be easily extended to 
different kinds of wigglers. 

 
 
3.  CTF3 Wiggler. 
 
The CTF3 wiggler is a three pole wiggler, used to tune the trajectory length in a range of ± 4 
mm [1]. The magnetic field characteristics have been calculated with the code OPERA, in 3D. 
Figures 2-3 show the simulated vertical field component along z for half the wiggler, in the 
median plane and in the vertical plane respectively. Figure 4 shows the integral of the vertical 
field component along z for different values of the transverse coordinates. 
To be noticed in Fig. 3 the behaviour of By as the vertical coordinate increases, and the region 
approaches the magnet iron. This behaviour cannot be reproduced with the analytical function 
which reproduces a cylindrical symmetry, but in any case it corresponds to high values of y, 
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not interesting for the tracking purposes. It is more important to reproduce the sextupole 
behaviour of the field in the horizontal plane, where the trajectory excursion is large. 
In principle it is possible also to use higher order multipoles to better fit the field components, 
but in this first approximation we deal only up to the 2nd order terms. 
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Figure 2 – By(z) along half a wiggler in the median plane – OPERA simulations. 
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Figure 3 – By(z) along half a wiggler in the vertical plane – OPERA simulation. 
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Figure 4 – Integrated By(z) along half a wiggler – OPERA simulations. 
 
Fitting the function represented in Fig. 2 with the analytical expression of Eq. 13 can be done 
with a very good approximation, using a superposition of several current distributions, each 
one of them defined by its three fitting parameters. 
In order to reduce the CPU time for all the following calculations, we have chosen the 
minimum number of current distributions, relaxing the condition of exactly fitting the G10(z) 
function, and maintaining in any case a good representation of the transverse behaviour of the 
field along the wiggler, specially in the central pole, where the trajectory has its maximum 
deviation from the axis, and the field has the maximum absolute value. 
Therefore we have chosen only one dipolar and one sextupolar current distribution for each 
one of the poles. The fitting parameters of such distributions are shown in Table I. The value 
of Ic is normalized to the value of the parameter of the central pole (Icent = 2e5 A corresponds 
roughly to a field at the wiggler center of 0.1T) and of course no effect of saturation is 
considered, since the maximum available field is 0.6 T. Zo represents the longitudinal 
coordinate of the current distribution center. 

Table I – Fitting parameters for current distributions of CTF3 wiggler. 

 
Central Pole 

Dipole 
Central Pole 
Sextupole 

End Pole  
Dipole 

End Pole 
Sextupole 

Z (m) 0.365 0.365 0.18 0.18 
R (m) 0.042 0.042 0.046 0.046 
Ic / Icent 1 -0.002 -1.109 0.0036 

Zo (m) 0 0 0.61 0.61 

 
Figure 5 shows the vertical field along z in the analytical computation (red full line) compared 
to the OPERA simulation (blue dashed line), along half wiggler and Figures 6-7 show the first 
and second derivative along z. The analytical expression reproduces well the integral of each 
component, even if it not exactly the behaviour. For tracking purpose this is a satisfying 
representation of the field. A better representation, as already said before, would need a larger 
number of different current distributions for each pole, instead of only one.  
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The value of the sextupolar current distribution has been adjusted in order to fit the horizontal 
behaviour of the integral along z of the vertical field component, as shown in Fig. 8. In this 
figure the value of the integral of the magnetic field vertical component along the wiggler axis 
is not exactly zero, since it corresponds to the OPERA simulations, which gave such a residual 
integrated value. The zero integral can be obtained by changing the relative currents of the 
central and end poles, as shown in the table I. In practice the relative values between the poles 
must be adjusted to give zero integral on the beam trajectory instead that on the axis, as will be 
shown in the following.   
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Figure 5 – Vertical field component on the wiggler axis for half a wiggler. 
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Figure 6 – First derivative of the vertical field component. 
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Figure 7 – Second derivative of the vertical field component. 
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Figure 8 – Integral of vertical field component along z as a function of the horizontal coordinate. 
 
 
4.  Beam trajectory and Wiggler transfer matrix. 
 
A dedicated Matlab code has been written to compute the beam trajectory inside the wiggler 
and the first order transport matrix around the trajectory. The magnetic field is defined by the 
expressions 9) in any point around the wiggler axis in a region including the wiggler and two 
adjacent drifts, to take care of the fringing fields. 
The nominal trajectory in the two wigglers of the CTF3 complex corresponds to an increase of 
the path with respect to the wiggler length of Δl = 4 mm. Tuning the wiggler field, Δl can be 
varied from zero (wiggler off) to about 1 cm. Figure 9 shows six different trajectories, 
corresponding to Δl = 0, 1.2, 2.7, 4.8, 7.5, 10.9 mm. Both wigglers are aligned with their axis 
shifted by 2.5 cm toward the centre of the rings [6], so that the nominal trajectory wigglers 
around the magnet axis. This means that the beam enters the wiggler in any case at a position 
of -2.5 cm from the axis, as shown in Fig. 9, where the zero position of the coordinate x 
corresponds to the geometric wiggler axis. 
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Figure 9 – Beam trajectory along the wiggler, corresponding to different values of Δl, and By along the 
trajectory for E = 120MeV. 
 
Figure 10 shows the value of the trajectory distance from the wiggler axis as a function of the 
elongation Δl, and the corresponding field at the wiggler center, for an energy of 120 MeV, 
which is the usual beam energy in 2007. 
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Figure 10 – Field at wiggler center (E = 120MeV) and horizontal distance of the beam trajectory from 
the wiggler axis. 
 
The wiggler configuration with zero field integral along the axis does not correspond to zero 
field integral along the trajectory, due to the field dependence on the horizontal coordinate. 
Compensating the field along the trajectory is done by adjusting the central pole field with 
respect to the end poles, as shown in figure 11, which shows the factor Icf for which Icent is 
multiplied as a function of Δl to obtain zero integral along the trajectory. This correction factor 
is in any case smaller that 1%, and it can be neglected in the usual ring operation. 
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Figure 11 – Compensation factor for central pole (Icf = 0.9015 corresponds to zero integral field on the 
wiggler axis. 
 
 
The Jacobian around the trajectory extended ±1.2 m from the wiggler center has been 
computed for different values of Δl with the home written MATLAB code. Let the vector X 
represent the particle coordinates: 

 ( ) 6,...1,)/,,',,',( === ixpplyyxx i!!X  15) 

and XIn
, XFn the initial and final coordinates of the trajectory around which the transport matrix 

is to be calculated. 
By tracking the j = 1,…6 particles with initial coordinates XIj = XIn  except for the j-th 
coordinate, which is j
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j
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j xxx !+= , the corresponding final coordinates are XFj. 

In first order approximation, the coordinates of a particle after the passage in the wiggler 
around the trajectory defined by XIn

 and XFn can be written as: 
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where the Jacobian J terms are defined as: 
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Two terms per plane of the Jacobian are shown in Figure 12. Since the system is symmetric 
around the wiggler center, the terms Ji+1 i+1 = Jii (i = 1,3) and the 4th term is given by det (J) =1. 
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Figure 12 – Jacobian terms around the trajectory as a function of the trajectory elongation. 
 
 
5.  Linear optical model for the Wiggler. 
 
The optical model describing the wiggler in the MAD code is a sequence of rectangular 
bendings. Each pole is defined by three bends, an inner one with a stronger field, and two 
lateral with lower fields, in order to describe the fringing field. Such model does not take into 
account the effect of the dropout of the field on the transverse direction. The values of the 
1st order transport matrix for the 2.4m long line centered around the wiggler midpoint are 
shown in Fig. 13, compared with those obtained by tracking in Fig. 12. It can be noticed that 
the terms corresponding to the horizontal plane behave, as expected, as the terms of a drift 
matrix (R11 = 1., R12 = trajectory length). 
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Figure 13 – MAD 1st order transport matrix elements with rectangular bends modelling and no thin 
quadrupolar lenses (dashed lines) compared to the Jacobian terms (full lines). 

 
In order to take into account the multipolar analysis, a series of quadrupolar thin lenses has 
been inserted in the model (see Fig. 14), and fitted their values to match the Jacobian terms as 
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obtained by tracking. Figure 15 shows the strength of the quadrupolar lenses as a function of 
the elongation Δl. 
The optical model obtained with the new matrix fits well the measured response matrix [7]. 
 

 

Figure 14 – Sketch of the vertical magnetic field used in the MADX optical model for half a wiggler. 
The arrows indicate the quadrupolar thin lenses. 
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Figure 15 – MAD matching values for the quadrupolar lenses accounting for the transverse behaviour 
of the wiggler field as a function of the trajectory elongation. 

 
 
5.  Conclusions 
An analytical description of the CTF3 wiggler field fitting the magnetic field simulations has 
been done. The linear optical model of the wiggler to be used in tracking codes and in the 
optical description of the CTF3 Delay Loop and Combiner Ring has been deduced.  
The derivation of the non linear model is in progress, together with a more accurate 
description which includes also an octupolar term in the description, better fitting the 
transverse behaviour of the wiggler field. 
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