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1. Introduction

The most demanding issues in the CTF3 RF deflector design are those related to the beam
dynamics, including the beam loading effect on the fundamenta deflecting mode [1]. A disk-
loaded waveguide working in the EH,;, hybrid mode [2-4] aready optimised for beam
deflection has been considered as a possible TW solution.

In the following we report the analysis of the wake generated by the interaction between
the beam and the deflecting mode in the RF deflector (beam loading) discussing the limitations
of the different possible wake approximations.

2. Deflecting electromagnetic field in a disk loaded waveguide

In adisk loaded waveguide (Figure 1) the em. field of the first deflecting mode (EH,,) in
the central region, in the case of smal pitch approximation (A>>D), negligible iris thickness
(/D<<1) and phase velocity equd to ¢, isgiven by the equations [2,3]:
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Figure 1: Sketch of a disk loaded waveguide

Using the expression of the Lorentz force acting on a particle of charge q that moves
through the structure on the plane 9=0, with avelocity equal to ¢, we smply obtain:

F =Re(E, ~ZH,) =—q - Sn(0) @

In the case of phase velocity different from c the eguations of the field in the structure
become more complicated [2] and, consequently, the expression of the transverse force itself.

To evauate the beam loading in the structure one has to consider both the interaction
between the travelling charges and the transverse eectric field E, (beam loading in phase) and
between the travelling charges and the longitudinal eectric field E, (beam loading 90° out-of-
phase)?.

Thefirst contribution is very similar to the beam loading of a linac accelerating section and
the deflection spread along the train can be estimated obtaining a quite small vdue in the CTF3
case.

The second contribution is of more concern because in the combiner ring the bunch
pattern is such that a a certain time the deflector will be crossed by bunch trains off axis and
with a phase separation of 2n/5 generating a mutual perturbation mainly through the out-of-
phase wake.

3. The general problem of mode excitation in a waveguide

In order to evauate the beam loading out-of-phase in a disc loaded waveguide, let us
consider the general problem of waveguide modes excitation by an eectric current J that flows
through the structure.

! Alsoin the case of phase velocity different from ¢ the longitudinal component of the electric field is 90°
out-of-phase with respect to the transverse one [2].
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If we consider a set of independent modes, the general propagating field in the structure
can be written, in frequency domain as (2):

. N e N, s
E*=Xciee = Y ci(en te,z)e
n= n=
e y ®
* + —j(xBn)z _ + —j(xB,)z
n= n=

where the signs “+” refer to the case of positive or negative phase velocities respectively, N is
the number of excited modes and ¢,” and B, are the amplitude and the propagation constant of
the ™ mode.

If we consider an dectric density current J(®) a a certain section z,-z, (Figure 2), it is
possible to calculate the coefficients ¢,” by the simple formula[5]:
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where the sign “-” refers to the case of forward waves while the sign “+” to the backward
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Figure 2: Sketch of a waveguide excited by an electric current

2 With the subscripts t and z we indicate the transverse and the longitudinal component of the fidd
respectively (e, & and g, are functions of the transverse coordinates and of the frequency).

For forward waves the group velocity (v,=dw/dB) and the phase velocity (v,,=w/p) have the same sign while
for the backward ones they have opposite sign.
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If we consider a particle of charge g that moves through the waveguide (Figure 3) at the
speed of light, we can write the density current in the time domain in the ssimple form:

309 -as (9t =)oty ®

where sisthe distance along the particle trgectory, s, is the unit vector tangent to the trgectory
and (xy") is the reference system on the plane normal to s,. In the frequency domain the
equation (5) becomes:

(6)

>

Z Z

Figure 3: Sketch of a charge g moving in a waveguide

Since we areinterested in the beam loading 90° out-of-phase in RF deflectors, we have to
consder, in the scalar product E-J of eq. (4), only the longitudinal component of the dectric
field and density current. For a particle moving in the structure one has that J =Jz, and we can
write the coefficient ¢,’(w,z,,2,) for abackward wave# in the form:

}_jwceiﬁn(w)z'dzv (7)

where 1(Z') paticetrsectory 1S the transverse position of the particle aong the structure (function of
the longitudinal position z') and IT', is given by:

particle
trajectory

Co(®2,2)= —%(w)zem[w,[(z'ﬂ

1T, (@) =5 Jenxhy- 2,08 ®

4 Weremark that the RF deflectors for CTF3 are backward structures.
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It iseasy to verify, from the analytical formulae [2], that®:
Hn ((D) = % -[gtn X b:n ’ Zod§ = _Hln (w) (9)
S

whereI1, isthe power flow along the structure®.

If the deflector length is L and the particle enters at z=0 we obtain, for the coefficient c,” in
z, the following expression:

411, (o)

particle
trajectory

ci(02)=— Tem(“”t(z') ]E_jw‘:em"(w)idz' (10)

The em. field of the n™ excited mode can be calculated in time domain by a Fourier
integrd:

E.(tzrd)= %T C, (@, Z)en(w,r,ﬁ)eJﬁn“"”e"‘“‘dam%ReﬁcQ €, eiﬁnZeJ'“"de
—oo 0
(11)

Hi(tzr,9)= %Tc;(a), 2)h, (e,r,0)e H@ ety = % RE[TC:, h, - e‘JﬁnZeiwtdw]
—oo 0

The induced transverse force in the radia direction (corresponding to the n™ excited mode)
on atrailing particle that enter in the deflector after a time t* from the leading one and that
moves throw the structure with avelocity equal to ¢, can be caculated by the following Lorentz
expression’:

FTn(t*,z,r,ﬁ) = ({E;[§+ t*,z,r,ﬁJ+ ZOH;}(E+ t*,z,r,z?JJ (12)

where z, r and © are the cylindrical coordinates of the trailing particle itself.

4. Approximated formulae for the coefficients c,” and for the wake field

Let us consider the coefficient ¢,” corresponding to the deflecting mode in the RF
deflectors. In order to calculate this coefficient and the corresponding em. field for all w and z
one has to use the equations (10, 11) and (12) respectively.

Unfortunately, this expressions are very difficult to manage numerically because dl the
guantities are frequency dependent and one has to compute a double integration (the first in the

Thisisvalid, in general, for al propagating field in which the longitudinal dependence (z) and the transverse
one (r,9) are separated in the form &r,9,2)=g(r,9)-e(2) [5].

In the case of backward waveIl, is negative.

We always suppose that the transverse component of the particle velocity is negligible compared with the
longitudinal one.

8  Thismodeis called EH,; mode or HEM,;.
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Z variable and the second in ) in order to caculate the wake field generated by a single
passage of a particle.

Since this way is practically not usable to evduate the beam loading of a multiparticle
passage, we discuss some approximated formulae for the wake generated by a particle.

4.1 Dispersion curve linearization in a limited range of frequency

A typical dispersion curve for an RF deflector [2] is plotted in Figure 4. The frequency
isthe frequency at which the phase velocity (vpn) isegual to ¢ and it correspondsto the working
frequency.

f
4 p=2mflc
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fmin _____,*'i}‘___Ji ________ - I__'ddr-._--/‘
fe = v,2mdfds
o ' : | -
B /L, B
N P /
L4 . . .
1% gpatial harmonic Higher spatial
(backward wave) harmonics

Figure 4. sketch of atypical dispersion curve for an RF deflector

If we consider the expressions (10-12), it is easy to show that the maor contribution, in
time domain, to the deflecting force acting on a particle 90° out-of-phase from the leading one®,
comes from a small range of frequencies near f (19).

° It meansthat t'=T/4+hT where T=1/f" isthe period of the wave in the deflector.

0 nfact for aparticle 90° out-of-phase from the leading one the real part of the coefficient ¢,*(w) (for a fixed
2) has aloca maximum for f=f* (the exponential term oscillates for f#f") and also the deflecting force has a
maximum when the particle is synchronous with the wave [2].
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It is possible to linearize the expressions (10-12) near the point (B°,f") obtaining the
following expressions for the coefficient ¢, (®,z) (11):

(8
q Teﬂ["’*’f(z'ﬂ e }][dw
gz 9

0 elsewhere

J}“’_“’)Z' , « Ao« Aw
o= dz vwelo ——,0 +—

2 2 :| (13)

where thefield e, (w',r) isequd to g, of eq. (1) and [w -Aw/2, » +Aw/2] isasuitable interval of
the center frequency ™ (22).

The expression for the e ectric field in the time domain becomes:

Ef(t' Z) = _a Rﬁ{g (w* )ejw*[t—ﬂ‘j eﬂ(w* ,[(ZI) | ]A_wg nﬂ{[t — Z;i]A_sz' (14)
21 MMy{o) s ) 2 Vs ) 2

z

where thefield e,(o') isequal to e of eq. (1) and sinc(x)=sin(x)/x.

The Lorentz force acting on atrailing particle that passes through the deflector after a time
t" from the leading one and that moves on the plane 9=0 is given by the formulal3:

R (f.2)=0(E, ~ZH,)=

__1 g Esin(a)*t*)je o.1(2) Afsinr{(t*+5_z;zl)4_w}jz'; (15)

1@ cvriVelor) PPnd| ¢ 272 A,
% 4 4H1|a):w* Esn(a) ' )Zeﬂ @ ,£(2)|leading 2 Sn[{{t \ ] 2 }Z

Vg <<C particle
trajectory

If the trgjectory of the leading charge is a simple parabola on the plane ¥=0 (14):

r(Z)|eadng =1, +1' Z+ Lar z (16)
o ciory 2L

wherer;, and r';, are the initid conditions for the leading particle, L is the deflector length and
Ar'isthe angular deflection of the particle at the end of the deflector, the (16) becomes:

2 1 ]
F (t*,z)z—i g kEzsin(a)*t*)T R L A—wsin {222 A0y (17)
! 21 411 A" " 2L )2 v, |2

0=0 9

1 See Appendix Al

12 “guitableinterval” in order to have a good approximations of the exact expression for the field (11) in terms,
for example of the deflecting force seen by atrailing particle.

3 For the leading particle t=t"+z/c.
1% Thisisthe common case for an RF deflector.
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4.2 Dispersion curve linearization over an unlimited range of frequency

In this case we evduate the wake when Aw—e in the equations(14-15,17). If we
remember that:

lim A—a)sinc{ tz\;_z']%o‘: n‘vg‘é(z'—(z—tvg))

AW —o0 2 g
we obtain:
leading (14),

particle

| . trajectoy
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1 z<0
U(z)=
0 z>0

If we define [3] the R/Q of the structure as:

[E}ng
_\2)¢c (18)

(o' )k

Ol

we obtain for the field the expression:

£ = g0 Ria(z-ty,)rd 212 )ei“’(ti]‘:
2 E/2
(19)
1 R €|\ jo tfé
=540 6eﬁ(r(z—th))RE{ E(/Z)e [ )]
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where:

1 Ar!
r(z—tv,) :(rin +11 (2 tvg) + ET(z—tvg)z}J (z-L+1tv,)

R

and for the transverse force the expression:

(r(z—t'v,))sin('t") (20)

eff

R (th2)= %qzw* gkr(z— t'v,)sin(o't’) = %qzw* g

These expressions for the wake field and force correspond to what intuitively we could
expect for the field generated by a passage of a particle in the RF deflector?>: an envelope of the
field (or force) that follows the profile of the leading particle trgectory (16) and that rigidly
trandates along the structure with anegative group velocity equal to v, and with a positive phase
velocity equal to o /c.

5. Multiparticle passage: the steady state solution

Let us consider, now, the case of an infinite train of bunches spaced in time by T. In this
casewe have:

j=—co

(=05 5, (34 t- 417 oy @
If al the bunches have the same trgjectory through the RF deflector we simply obtain:

a9 =a5(9 5 - 2+17 pixaty) @

j=—co

that in the frequency domain becomes:

. 3 So-no’) (23)

N=—c0

J(0) = ds,(8)5(x)d(y)w'e
where o =21/T.

In order to evaluate the coefficient ¢,"(w,z) we remember that the CTF3 RF deflectors work
at ~3 GHz and that the dispersion curve for the mode EH,, for these structures has a pass-band
of the order of few hundred of MHz. The trains of bunches that we consider have, typicdly, a
gpectrum with a distance (UT) between the 6 in (23) bigger or equa to ~3 GHz [1].

% See Appendix A2.

* Thefield E, is proportional to the displacement r of the particle from the axis of the structure.
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Substituting the term €’ in eg. (10) with the spectrum (23), we simply obtain for parabolic
trgjectoriest’:

c(w,2)= 8(;'01) Ek 6(a)—w*)ﬁ(rm +r z'+%ATrz'2}jz'=

* z
oo

' Ek 1 1ar 29
:qw—6(oo—a)*)[rmz'Jr—r'in 724z 50
8H1|w:w* 2 6 L s
wherek=w'/c.
Thedectricfiddis, inthis case, given by:
. 1 qo'Ek ()
E, (t,z)=— c(z2)R w e ¢ 25
E2=gr @ e{g( ) (25)
where
zZ=L
1, o 1AM 1, > o 1A', 5 3
c(z)=|r.Z+=r" Z+=—7 =r (L-2)+=r" (L"-Z2°)+=—(L°-2Z 26
() |:|n 2 in 6 L ]Z-_Z |n( ) 2 |n( ) 6 L ( ) ( )

and the transverse force seen by atrailing particle of charge q that moves through the deflector
after atimet +hT is given by:

——_3C _§n't)e(2) (27)
The easiest way to cdculate the wake field in the multibunch regime in the case of
linearized dispersion curve over an infinite range of frequencies is to make a numerical

calculation with rigid profile fields that propagate in the structure as pointed out previoudly.
In the next session we will compare the different resultsin some relevant cases.

6. Numerical computations and comparison between the different approximations

6.1 Sngle particle passage

Let us consider the single passage of a particle in a RF deflector with the following
parameterste:

L =33cm
A= 22cm
B= 57cm

" In practice the spectrum (23) samples the eg. (10) at the working frequency o'.

% This parameters are scaed from that of [3,4] in order to have f'=3GHz. In the case of small pitch
approximation (A>>D) and negligible iris thickness (t/D<<1) the values of D and t do not affect the
calculation of the dispersion curve[2,3].
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The dispersion curvefor this structure obtained by the anaytical calculations described in
[2], isplotted in Figure 5.

By the equations (11-12), (17), (17)' isit possible to evaluate, in the correct case and in the
approximated cases respectively, the transverse field excited by a leading charge and probed by
atrailing particle injected with adelay t .

Considering the trgjectory 1 of Figure 6 for the leading charge (r,,=0.5 mm, r', =0 and
Ar'=0), we obtain for the transverse force2° probed by a particle that enter in the structure after a
timet, =T/4 and t, =T/4+25T (2), the results plotted in Figure 7. The correct result obtained
by equation (12) (solid line) is compared with those obtained in the linear approximation of the
dispersion curve in the pass-band interval of the EH,, mode [w,,®,] (dashed line) and with
those obtained by the linear approximation of the dispersion curve in an unlimited range of
frequencies (dash-dotted line). In Figures 8, 9 the same quantities for the trgjectory 2 and 3 of
Figure 6 are plotted.

21 | ,
205
20

19.5

o [Grad/sec]

19

18 I i i | I i
0 20 40 60 80 100 120 140 160

Blm ]

Figure5: dispersion curve for the considered RF deflector

¥ Theanalytical calculation gives for this structure v,=0,058c.

2 Theforceis calculated on the axis of the structure. More precisely, as shownin the eq. (17) and (17)’, in the
approximated cases the transverse force does not depend on the displacement of the trailing particle.
Nevertheless, considering the exact field distribution in the correct calculation (11-12), there is a force
dependence due to the transverse position of the trailing particle.

" For this structure the analytical calculation gives afilling time t=L/v,=50T.
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Figure 6: trajectories of the leading particle:
trajectory 1 (r;,,=0.5 mm, r', ;=0 and Ar'=0)
trajectory 2 (r,,=0 mm, r',,;=5 mrad and Ar'=5 mrad)
trajectory 3 (r;,=0.825 mm, r',,=-5 mrad and Ar'=5 mrad)
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Figure 7: transverse force probed by a trailing particle
(trajectory 1 of the leading particle)
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Figure 9: transverse force probed by a trailing particle
(trajectory 3 of the leading particle)
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If we consider now the transverse wake probed by a trailing particle that enters in the
structure after atimet, =T/4+nT defined as.

= iz IF,(t,2)dz (28)

0

we obtain the results plotted in Figures 9, 10 and 11 for the tree different trgectories
respectively.
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Figure 9: transverse wake probed by atrailing particle that entersin the
structure after atimet, =T/4+nT (trajectory 1 of the leading particle)
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Figure 10: transver se wake probed by atrailing particle that entersin the
structure after atimet, =T/4+nT (trajectory 2 of the leading particle)
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Figure 11: transver se wake probed by atrailing particle that entersin the
structure after atimet, =T/4+nT (trajectory 2 of the leading particle)

6.2 Multiparticle passage: the steady state solution

The results obtained in the case of multiparticle passage with t” of eq. (27) equa to T/4 are
plotted in figures 12, 13 and 1. Also in this case the correct solution (dashed line) is compared
with the solution obtained by the linearized approximation over an unlimited range of
frequencies (solid line) (22).
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Figure 12: transverse force seen by a 90° out of phase particlein the
case of multibunch regime (trajectory 1 of thetrain of bunches)

22 |n the case of multibunch regime there are not differencies between the correct solution and the case of
linearaized dispersion curve in alimited range of frequencies.
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Figure 13: transver se for ce seen by a 90° out of phase particle
in the case of multibunch regime (trajectory 2 of the train of bunches)
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Figure 14: transver se for ce seen by a 90° out of phase particle
in the case of multibunch regime (trajectory 3 of the train of bunches)

Conclusions

In this paper we have compared different ways of calculating the single and multi-passage
wake of the fundamental EH,, deflecting mode of the CTF3 RF deflectors. In particular we
have considered the possibility to approximate the wake with a loca excitation proportiona to
the leading charge displacement and arigid profile for the excited field that trandates backward
with the group velocity. The numerical results have shown that the amplitude of the wake ob-
tained in thissimple way is not too different with respect to the more complicated approaches.
In particular, in the case of multibunch regime (steady state solution) the approximated model
for the wake produces aimost the same results that the correct one. The explanation is that the
multibunch regime solution is the response to an almost monochromatic excitation, and there-
fore the details of the dispersion curve out of resonance are not relevant in this case.

The simplest model of the single passage wake can therefore be assumed to study the
multibunch beam loading in the CTF3 combiner ring [1].
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Appendix

A.1 Derivation of the equation (13) from eqg. (10)

If we consider the expression (10) for the coefficient ¢,” we can develop to the first order
in o the esponential term as in the following:

—wlz—o E+(w* -0)=
¢ ¢ » ¢ (AL1)
B(w)z= (@ )z'+% ] (0-w")Z

Substituting in the equation (10) we obtain (23):

|98l L o-o)z
jeﬂ(w*) particle el(dw w=o’ C} ) dZ=z we [a)* —A—w,a)* + A—w:l
q z trajectory 2 2 (Al 2)
ClJr(w’ Z) = * i| 9B w—a)*)z' )
) - Zeﬂ((o fﬁgjrg&ﬁyej[dw ‘":“’} dz
0 elsewhere

The second approximation in the interval [ -Aw/2, » +Aw/2] comes out from the fact that

the group velocity vg for thiskind of structuresis few percent of the velocity of light.
The field is smply given by the expression (11) where we can aso develop to the first

order the esponential term -j3(w)z obtaining:

q
4rll, (')

198 ey dB .
* * - No-o)Z - Blo )z- |- (o-0 )
Rf{@f(a) )jez{w 1(2) }Teld“’mw( P g, )e'“’tdwdz']:
z Faiesry )0

__ 9
4rll, (o)

_dp e (. B ,

N . - e (Z-2)- (o )z Jw[t—— ‘(z—z)]

R{@I(a’ )] eﬂ[w 12 }]d"’“”’ L dwdz‘]
z e, 0

If we consider the integral in dw limited between o -Aw/2 and ® +Aw/2 it is easy to show

that:
o A0 (4 , o, dB .
jolt-—==  (z-Z) jo|t—  (z-2) . A
" e ( 4ol de:e [ oo ]Aaﬂn{{t—gj%o} (A14)
Vv

g

E.(t2)=

(AL.3)

where sinc(x)=sin(x)/x.

2 o' lc=p(w").
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A.2 Derivation of the eqg. (19) by intuitive considerations

Let us consider only the resonant field configuration of eg. (1) with a loca excitation
proportiona to the leading charge displacement. The energy per unit length stored in the
section corresponding to the abscissa z after the charge passage is given by:

U :—V(z)q:EE kr(z)q (A2.1)
22
where-_V(2z) isthe voltage seen by the charge q (24, r(2) is the q dispacement with respect to
the axisand E/2 isthe field amplitude (see formalism of eqg. (1)).
If we remember the definition (18) of the R/Q and that:

U= afe) (A2.2)

Vg

we smply obtain that the amplitude of the excited field at the abscissaz is given by:

E_ 1, .R
5= 2kco Qr(z)q (A2.3)

Since vg<<vp it isreasonable to suppose that the E field generated by the particle passage
has the rigid amplitude profile given by (A2.3), a phase velocity equal to ¢ and a negative group
velocity vy obtaining the equation (19).
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