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1  Introduction

The bunch train compression scheme for the CLIC Test Facility CTF3 [1] relies on the
feasibility of fast RF deflectors.

The most demanding issues in the deflector design are those related to the beam dynamics,
including the beam loading effects on the fundamental deflecting mode. On the contrary, the
efficiency required by the CTF3 parameters can be easily met by scaling already existing
travelling wave (TW) or standing wave (SW) structures.

The injection and the closed bump orbit allowing the multi-turn circulation in the combiner
ring require a pair of RF deflectors working at fDB , the Drive Beam (DB) linac frequency,
while the injection/extraction in the delay line requires a RF deflector working at fDB 2.

Table I: CTF3 RF Deflector Paramenters

Delay line Combiner ring

TW SW TW SW

nom. Energy En  [MeV] 184 184

max. Energy Emax  [MeV] 350 350

frequency f  [MHz] 1499.28 2998.55

number of cells Nc 10 1 10 1

De-phasing/cell 2π/3 --- 2π/3 ---

total length L  [cm] 67 8 33 4
group velocity v cg / -.0244 0 -.0244 0
phase velocity v cph / 1 ∞ 1 ∞
filling time τ F0

 [ns] 90 2500 46 900

Shunt impedance R E Ps RF= ( )φ 2 2  [MΩ] 0.275 1.2 0.19 0.85

Deflection φ [mrad] 10 5

max RF Power PRF
 [MW] 22 5.1 8 1.8



CTFF3-003 pg. 2

The main parameters of the CTF3 RF deflectors are summarized in Table I, comparing the
characteristics of traveling wave (TW) and standing wave (SW) structures.

A disk-loaded backward waveguide working in the EH11 hybrid mode (RF separator or
Langeler structure) [2] already optimized for beam deflection has been considered as a possible
TW solution, while a single-cell cavity working in the deflecting TM110 mode, obtained by
scaling existing designs of crab-crossing cavities, has been taken as a possible SW candidate [3].
In the last case, the shunt impedance values reported in Table I have been specified at the optimal
coupling between the SW cavity and the external RF power source. The filling time is
τ ωF Q

0 0=  in this case. In order to match the pulse length of existing RF source, the filling time
τ F  can be shortened by overcoupling the cavity input. In the latter case the effective shunt
impedance is decreased by the factor τ τ τ τF F F F0 0

2( ) ⋅ −( ) and the RF power dissipation is
increased by the same factor.

Both type of structures meet the CTF3 efficiency requirements, in the sense that they can
deliver the required deflection at expense of a reasonable amount of RF power. A TW structure
is more promising concerning beam dynamics issues, since wakefields leave the structure faster,
due to the shorter filling time, but a rigorous computation of the wake is not trivial.

In the following we report the study of the wake generated by the interaction of the beam
with the deflector operating mode (beam loading). Different formulations for the single-passage
wake in the TW structure considered in Table I (RF separator) are reported, together with the
results of a multi-passage tracking based o the simplest expression of the single-passage wake.

2  Beam loading in RF deflectors

The beam loading in transverse, deflecting structures may be described by two
mechanisms:
A. The transverse component of the bunch velocity couples with the deflecting E-field, and the

energy exchange  creates a deflection gradient along the train;
B. The longitudinal component of the bunch velocity couples with the longitudinal E-field, which

is non-zero off axis, and the energy exchange generates an out-of-phase component of the
deflecting field.

The first contribution is very similar to the loading of a linac accelerating section or to that
of a storage ring RF cavity crossed by a truncated bunch train, and the deflection spread along
the train can be estimated obtaining a quite small value in the CTF3 case.

The second contribution is of more concern, because in the combiner ring the bunch
pattern is such that at a certain time the deflector will be crossed by bunch trains with a phase
separation of only 2π/5 (= 72°), generating a mutual perturbation mainly through the out-of-
phase wake. Turn-by-turn the perturbation propagates with the one-turn transport matrix of the
ring, and the overall effect may lead to a magnification of the injection errors.

To study this process for a TW structure we worked out a reliable model of the single-
passage wake and then we implemented it in a tracking code to analyze the multi-passage effects
taking into account the role of the one-turn transport matrix, i.e. of the ring optics.
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2.1 Single passage wake

The RF separator fields in cylindrical coordinates ( r z, ,ϑ ) in the region inside the irises
( r a≤ ) at the resonant frequency  ω *( v cph = =ω β ω* *( ) ) are given by:
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where E  is a field scale factor proportional to the square root of the RF power flow in the
structure. A charge q crossing the gap in-phase with the deflecting field undergoes a constant
Lorentz force F q E⊥ = 2 . At frequencies  ω ω≠ * the field distribution of the mode EH11
becomes much more complicated [4] and may be generically indicated as E H0 0( ), ( )ω ω .
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Figure 1: dispersion curve of the RF separator EH11 mode

The dependence of the angular frequency ω upon the propagation constant  β is shown in
the dispersion curve of Fig. 1. The negative group velocity value reported in Tab. I is the
derivative of the dispersion curve at ω *.

Let’s consider a charge q crossing the gap along a certain trajectory. The current density
J t( ) and its Fourier transform J( )ω  are given by :

J t q t
s

c
x y s s J q e x y s sj s c( ) = −



 ( ) ( ) ( ) ( ) = ( ) ( ) ( )−δ δ δ ω δ δω' ' ; ' '0 0

(2)

where s is the distance along the path, s0  is the unit vector tangent to the trajectory, and x’,y’ are
the coordinates on the plane normal to s0 .
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The wave excited by J t( ) is a superposition of the fundamental EH11 mode fields

E H0 0( ), ( )ω ω weighted by the spectral density coefficient c z+( )ω,  given by [5];
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where P ω( ) is the flux of the Poynting’s vector and the suffix “+” indicates that the wave has a
positive phase velocity. Since we are mainly interested in the out-of-phase beam loading, eq. 3
has been obtained assuming that the current density and the EH11 mode interact essentially
through their longitudinal components.

Back to the time domain, the wave excited by a charge crossing the deflector is given by:
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The most rigorous evaluation of the single passage wake is obtained by integrating eq. 4 in
the pass-band interval ( , )ω ω1 2

 of the Fig. 1 dispersion curve tacking into account the correct
field distribution at each frequency in the band. The transverse wake excited by a leading charge
travelling 1 mm off-axis as probed by particles injected out-of-phase with a delay of T/4 and
T/4 +τ F /2 is shown in Fig. 2 (solid lines). The longer is the delay, the more synchronous is the
wake and the larger is the Lorentz force on the trailing particle.
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Figure 2: single passage wakes Figure 3: multi-bunch wakes
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A significant simplification of the problem is obtained by considering a linear dispersion
curve in the pass-band interval and a field distribution equal to the "resonant" one (see eq. 1) for
all the frequencies inside the band. The wake computed under this assumption is shown in Fig. 2
(dashed line) and reasonably agrees with the previous one.

A further simplified approach consists in considering only the resonant field configuration
of eq. 1 with a local excitation proportional to the leading charge displacement. A rigid wave
profile take place, which moves backward with the group velocity. The transverse wake calculated
with this method, which is far less accurate and physical with respect to the previous two, is also
shown in Fig. 2 (dotted line). It may be demonstrated that this approach is equivalent to the
assumption of a linear dispersion curve over an unlimited frequency range. Anyway, in spite of
the different qualitative behavior, the amplitude of this last wake is not too different with respect
to the other cases.

2.2 Multi-passage tracking

We have considered the effects of the multibunch wake for the bunch pattern of the CTF3
combiner ring. The multibunch wake is obtained by simply adding up the single passage wakes
taking into account the bunch pattern. After 1 filling time the multibunch wake converges to a
steady state regime solution. It is noticeable that the three different single passage wakes of
Fig. 2 produce steady state multibunch wakes that are almost identical, as shown in Fig. 3. The
explanation is that the multibunch regime solution is the response to an almost monochromatic
excitation, and therefore the details of the dispersion curve out of resonance are not relevant in
this case. Therefore the simplest model of single passage wake (corresponding to the dotted line
plot of Fig. 2) has been assumed to study the multibunch beam loading in the combiner ring
deflectors and, on this base, a simple tracking program has been written to simulate the behavior
of the design bunch pattern.

The tracking scheme is sketched in Fig. 4. Each bunch, represented as a macroparticle,
enters either deflector with some horizontal initial conditions ( , )'x xin in , interacts with the main
RF deflecting field and with the wake left by the bunches ahead, contributes to the wake and exits
the deflector with some new horizontal conditions ( , )'x xout out . Then the bunch is transported to
the other deflector by one of the two transport matrices ( M12 or M21), interacts with the RF fields
before leaving it, and so on up to the extraction.
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Figure 4: Ring schematics for multi-bunch tracking.
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At the end of the merging process each macroparticle ends up with certain horizontal
conditions ( , )'x xo o  corresponding to a certain value of the Courant-Snyder invariant
I x x x xo o o o o= + ′ + ′γ α β2 22  associated with the motion of the bunch center of mass. The
tracking is aimed at studying the distribution of the final values of the Courant-Snyder invariant
for all bunches, and its dependence on the deflector wakes, the injection errors and the ring tunes.

A) Perfect injection of the 5 trains

We consider first the case of bunch trains injected with the initial conditions that perfectly
match the main deflecting field of the deflectors so that, if there were no wake, all the bunches
would end up on the combiner design orbit. The 1st train makes the first revolution alone, and
there are no bunches interacting with its out-of-phase wake.

During the second revolution, there is the contemporary presence of the 1st and 2nd train,
which cross the deflectors with some horizontal displacement. The two trains are interleaved with
a separation of 72° RF and their bunches interact through the out-of-phase wake. This generates
a first perturbation that deviates the bunches from their ideal trajectories. Similar processes take
place during the next interleaving phases, and when the 5 trains are finally merged in a single one,
the bunches are spread by a certain extent in the horizontal phase space.

A plot of the position and angle of the bunches with respect to the nominal orbit taken at
the 1st kicker output at the end of the merging process is shown in Fig. 5a, while the
corresponding plot of the bunch phase space is shown in Fig. 5b. In this case we are considering
a 10-cells TW Langeler structure as a RF deflector, and the transport matrices M12  and M21 are
given by the nominal combiner ring optics [6] (Qx = 7.229). The Fig. 5 plots represent the
"systematic effect" since it is not driven by initial injection errors. The average value and the
maximum value of the Courant-Snyder invariant distribution of Fig. 5 are respectively
Io ave_ ≈ ⋅ −8 10 3 mm mrad and Io _ max .≈ ⋅ −4 2 10 2 mm mrad.

The spread of the macroparticle Courant-Snyder invariant values caused by the systematic
effect is therefore a small fraction of the CTF3 bunch design emittance  ( ε ≈ 0 5.  mm mrad @
180 MeV).
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Figure 5a: Position and angle of the bunches
of the merged trains

Figure 5b: Phase space footprint of the
bunch centers-of -mass of the merged trains
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B)  Errors in the injection of the trains

The situation is different if the bunches are all injected with a certain position and/or angle

error. We considered the case of an error that is equal for all the bunches of a linac pulse, i.e. that

is equal for all the 5 incoming trains. This is the case, for instance, if one assumes that the error

can fluctuate only from pulse to pulse due to some jitter in the beam transport. The build-up

mechanism for the final invariant spread is just the same as previously described, but in this case

the initial error can drive the process to larger final errors. The bunch train footprints in the

horizontal phase space at the output of the 1st RF deflector for an injection offset of 1 mm and

for an injection error of 0.633 mrad in angle (both corresponding to an initial value of the

Courant-Snyder invariant Iin ≈   0.716 mm mrad) are reported in Fig. 6a and 6b. The statistical

properties of the two distributions are summarized in Table II.
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Figure 6a: bunch train phase space footprint
for an injection offset of 1 mm

Figure 6b: bunch train phase space footprint
for an injection angle of 0.633 mrad

Table II: Statistical properties of the Courant-Snyder invariant of the bunches
of the merged trains for an initial value Iin ≈   0.716 mm mrad

xin  = 1 mm
(see Fig. 6a)

′xin  = 0.633 mrad
(see Fig. 6b)

Courant-Snyder invariant at the injection Iin
0.716 mm mrad 0.716 mm mrad

Maximum value of the Courant-Snyder
invariant  at  the extraction

Io _ max
0.814 mm mrad 0.850 mm mrad

Average value of the Courant-Snyder
invariant  at the extraction

Io ave_
0.392 mm mrad 0.405 mm mrad

Standard deviation of the Courant-Snyder
invariant  at the extraction

σ Io
0.231 mm mrad 0.203 mm mrad
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We may conclude that, in general, the maximum value Io _ max, the average value Io ave_  and

the standard deviation σ Io
 of the final distributions are not constant for a given Iin , but, due to the

nature of the wake, depend also on the betatron phase of the bunch train at the injection. If we

consider all the possible betatron phases for a given Iin, and calculate the maximum and average

values for the corresponding final distributions, we obtain the 3D plots of Fig. 7. For any given

initial Iin value, there are some betatron phases giving the largest Io _ max  value ( ˆ
_ maxIo ), and

the largest Io ave_ value ( ˆ
_Io ave ).
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Figure 7: Io _ max and Io ave_  for a given Iin

for various betatron phases
Figure 8: ˆ

_ maxIo and ˆ
_Io ave  as  function  of

the injection Courant-Snyder invariant

The plots of ˆ
_ maxIo  and ˆ

_Io ave  (this last including the ± 1 standard deviation bar) for Iin

ranging from 0 to 2 mm mrad are shown in Fig. 8. It may be seen that, assuming the nominal

optics parameters, it is always ˆ
_I Io ave in< , which means that, on the average, the deflectors wake

gives a sort of "cooling" of the Courant-Snyder invariant of the bunch center-of-mass. On the

other hand from Fig. 8 one has ˆ ._ maxI Io in ≤ 2 6, which means that, in the worst case and for the

worst bunch, the magnification of the injection error is a factor ≤ ≈2 6 1 6. . . The magnification

factor is reduced to ≤ =1 5 1 23. .  for all bunches staying within +1 standard deviation above the

average (≈ 70% of the bunches).

The minimization of these magnification factors is one of the criteria for the choice of the

ring horizontal tune. Different tunes may result in very different magnification factors. For

example, we report in Fig. 9 the ratio I Io ave in_  and I Io in_ max  in the case of an injection error

caused by a pure displacement of 1 mm for various values of the betatron phase advance in the

M21 matrix. Our nominal tune corresponds to a phase advance of 262°, which is close to the

minimum. Modifications of the phase advance in the range of ±10° (corresponding to variations

of the tune value of ≈ ± .03) does not significantly change the scenario. Anyway, some tunes

outside the range shown in Fig. 9 may give magnification factors larger than 10 [7].
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Studies of the beam loading effects based on tracking simulations will continue to

investigate other aspects. The most important items to be analyzed are:
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Figure 9: Tune dependence of the Courant-Snyder invariant magnification
for an injection offset of 1 mm

A) Contribution of the RF structure modes different from the operational one to the final
quality of the merged train. In particular, the vertical polarity of the operational mode,
which is detuned by some asymmetry in the cells, has to be anyway taken into account,
since the vertical tune of the ring may be far from optimum.

B) Different injection conditions for "odd" and "even" bunches in each incoming train due to
the "memory" of the different paths in the delay loop.

C) Beam loading effects due to off-time injection and finite bunch length.

3   The delay loop RF deflector

The dynamics implications of the RF deflector for the delay loop are less demanding, and
this is mainly due to the bunch pattern in the deflector since there are no bunches probing the
out-of-phase wake in this case.
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The operating frequency of this device will be 1.5 GHz and there are not RF power

sources re-usable to excite the required deflecting field. This adds one more degree of freedom in

designing the structure, since there are a certain number of options in the market concerning the

power level of the source and the pulse duration.

An obvious possibility is that of scaling a Langeler structure to 1.5 GHz. In this case the

expected behavior for the beam dynamics is excellent, but the size of the structure is quite large.

Since the beam loading requirement are relaxed for the delay loop deflector with respect to the

combiner ring ones, we can in principle consider other options in this case, such as standing wave

cavities that are more compact and efficient (see Tab. I). A longer RF pulse could be required in

this case to fill the cavity at its best efficiency. The filling time can be shortened by properly over-

coupling the cavity input, at the expense of the reduction of the efficiency. A possible standing

wave RF deflector could be designed starting from already proposed geometry for crab-cross

cavities or standing wave separators. An HFSS model of a single cell, standing wave deflecting

cavity is shown in Fig. 10.

Figure 10: HFSS model of a SW single-cell cavity
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4   RF deflector design activities

The simulation results reported in the previous section indicate that a proper choice of the
combiner ring horizontal tune keeps under control the beam loading effects of a pair of Langler
structures. For that reason a design activity aimed at constructing two RF deflectors of this type
in less than one-year time has been started. Mechanical drawings of such a RF structure scaled at
3 GHz frequency have been almost completed and a sketch is reported in Fig. 11, while only
some details, like the geometry of the of the two terminal cells, are still under study.

Figure 11: Mechanical sketch of a 3 GHz, 10 cells Langeler structure

The study of the structure is mainly addressed by the fundamental papers and it is based
on 3D simulations that make use of the well known MAFIA and HFSS codes. Although the
codes are very powerful, some aspects of the design need to be experimentally confirmed. For
that reason the construction of an aluminum prototype suitable for laboratory measurements and
flexible enough to allow the experimental characterization of different options has been decided.
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